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Abstract 
In this work we introduce a Brownian motion in random environment which is a Brownian con-
structions by an exchangeable sequence based on Dirichlet processes samples. We next compute a 
stochastic calculus and an estimation of the parameters is computed in order to classify a func-
tional data. 
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1. Introduction 
The Brownian motion is a very interesting tool for both theoretical and applied math. Brownian motion is 
among the simplest of the continuous-time stochastic processes, and it is a limit of both simpler and more com-
plicated stochastic processes. In this paper we construct a new process called Dirichlet brownian motion by the 
usual i.i.d. Gaussian sequence used in Brownian motion constructions is replaced by an exchangeable se-
quence. 

Despite its recent introduction to the literature, hierarchical models with a Dirichlet prior, shortly Dirichlet 
hierarchical models, were used in probabilistic classification applied to various fields such as biology [1], as-
tronomy [2] or text mining [3] and finance [4]-[6]. Actually, these models can be seen as complex mixtures of 
real Gaussian distributions fitted to non-temporal data. 

The aim of this paper is to extend these models and estimate their parameters in order to deal with temporal 
data following a stochastic differential equation (SDE). 

The paper is organized as follows. In Section 2 we briefly recall Ferguson-Dirichlet process. In Section 3 we 
consider a different construction of the Brownian motion based on an exchangeable sequence from Dirichlet 
processes samples which is shown to be a limit of a random walk in Dirichlet random environment. In Section 4, 
we prove the regularity of the new process and in the Section 5 we give some stochastic calculus and an estima-
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tion of the parameters of DBM. 

2. Ferguson-Dirichlet Process 
Let ( ), ,Ω    be a fixed probability space. Let   be a Polish space and let ( )P   denote the set of all 
probability measures defined on  . The distribution of a random variable, say Z , will be denoted by ether 

Z  or ( )Z . 
The following celebrated random distribution defined by Ferguson [7] plays a central role in our construction. 

Let α  be a finite positive measure on  . A random distribution ( ):P Ω→ P   is a Dirichlet process 
( )α  if for every 2,3,k =   and every measurable partition 1, , kB B  of  , the joint distribution of the 

random vector ( ) ( )( )1 , , kP B P B  has a Dirichlet distribution with parameters ( ) ( )( )1 , , kB Bα α  Ferguson 
proved that this definition satisfies the Kolmogorov criteria which yields the existence of such random distribu-
tions. 

For 0c > , let ( )PDir c  denote the Poisson-Dirichlet distribution with parameter c  (Kingman [8]) which 
support is the set  

( )1 2 1 2
1

, , , , : , 0, 1n n i i
i

q q q q q q q q q
∞

=

 ∆ = = ≥ ≥ ≥ ≥ ≥ = 
 

∑     

Ferguson has also shown that for a.a. ω , ( )P ω  is a discrete probability measure: there exist an i.i.d. se-
quence of random variables on  , say ( )iX X= , and a sequence of random weights ( )iQ Q=  verifying: 

( )
( ) ( )( )

iid

i

i

X

Q PDir

Q X

α
α

α

 ∼


 ⊥






                                   (1) 

such that  

( ) ( ) ( )
1

.
ii X

i
P Qω ω δ ω

∞

=

= ∑  

Let ( ), ,Ω    be a probability space on which are defined all the random variables (r.v.) mentioned in this  

paper. The probability distribution of a r.v. X  will be denoted X . Equality in distribution is denoted by 
d
= . 

For any integer 2n ≥ , let nΣ  denote the group of permutations of { }1,2, ,n .  

Exchangeable Random Variables 
Definition 1 A sequence 1, , ,nX X   of r.v.s is said to be exchangeable if for all 2,3,n =    

( ) ( ) ( )( )1 1, , , ,   for all  
d

n nnX X X Xσ σ σ= ∈Σ                          (2) 

Using transpositions, first notice that (2) implies that all the nX  have the same distribution, say  :  

{ }  for all  , 1, 2,
d

i jX X i j= ∈                                (3) 

and also  

( ) ( ) { }, ,   for all  , 1, 2, .
d

i j k lX X X X i j k l= = = ∈/ /                        (4) 

The variables nX  are assumed to take their values on a separable space   and ( )   denote the 
separable set (for weak convergence topology) of all probability measures defined on  . 

An i.i.d. sequence is of course exchangeable but an exchangeable sequence needs neither be independent nor 
Markov. 

For example a sequence ( )nX  of centered Gaussian variables with ( )2 0nX c= >  and ( ) 0i jX X ρ= >  
is exchangeable but not i.i.d.  
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Another interesting example of exchangeable sequence is a sample ( )nX  from a Dirichlet process ( )0cP  
with precision parameter 0c >  and mean parameter ( )0P ∈   [7]:  

( )
. . .

,     .
i i d

nX P P P Dir α   

The following celebrated theorem states that an exchangeable sequence is somewhat conditionally i.i.d. as in 
the preceding example. It was first established by de Finetti (1931) [9] in the case of Bernoulli variables and by 
Hewitt-Savage (1955) [10] in the general case. Very elegant proofs can be found in Meyer (1966) [11] p. 191- 
192 and Kingmann (1978) [8]. 

Theorem 1 (de Finetti-Hewitt-Savage) Let ( )nX  be an exchangeable sequence with values in  . Then 
there exists a probability measure µ  on ( )   such that  

( ) ( ) ( ) ( ) ( )1 1 1, , dn n nQ
X A X A Q A Q A Qµ

∈
∈ ∈ = ∫ 





                    (5) 

( ) ( )
1

1If  lim   then  
n

A in i
M A X M

n
µ

→∞ =

= ∑1                            (6) 

( ) ( ) ( )1 1 1, , n n nX A X A M Q Q A Q A∈ ∈ = =                         (7) 

In other words, (5) shows that the distribution of an exchangeable sequence is a mixture with mixing measure 
µ , (6) shows that µ  is the distribution of the weak limit empirical measure and finally (7) shows that if Q  is 
considered as a parameter ( )∈  , then M  is a sufficient statistic for estimating Q . 

Applying (5) with 1n =  it is seen that the mean µ  of µ , defined as ( ) ( ) ( ) ( )d
Q

A Q A Qµ µ
∈

= ∫  
, is equal 

to the common distribution of the nX :  

µ =                                            (8) 

In the example of a sample from the Dirichlet process ( )0cP , µ  is nothing but the Dirichlet process itself, 
by definition of such a sample [7], while  

0 .Pµ = =                                         (9) 

For the rest of the paper it is assumed that =   the real line.  

3. DBM Constructions 
3.1. DBM Based on Ciesielski Construction 
We follow L. Gallardo [12] pp. 79-80 and 206-208. 

Let  

1 10, ,1
2 2

.h    
     

= −1 1  

For any integer 1n ≥  and 0 2 1nk≤ ≤ −  let  

2 2
, 1 1

12 2, ,
2 2 2 2

2 2

n n n n

n n

k n
k kk k

h    + +   +
  
       

= −1 1  

that is ( ) ( )2
, 2 2

n
n

k nh t h t k= − , [ ]0,1t∈ . 

The functions ,  h1  and ,k nh  for 1n ≥  and 0 2 1nk≤ ≤ −  constitute what is called the Haar Hilbertian 
basis of [ ]( )2 0,1 ,dL x . 

Let  

( ) ( ) ( ) ( ), ,0 0
d ,     d .

t t
k n k ns t h x x s t h x x= =∫ ∫  
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Note that ,k ns  is a nonnegative triangle function with support in 1,
2 2n n

k k + 
  

 so that  

, , 0  if  j n k ns s j k= =/                                    (10) 

and  

1
2

,

1
2The maximum  2   of    is reached at  = .

2

n

k n n

k
s t

− −
+

                    (11) 

The functions ,  t s  and ,k ns  consitute the so called Schauder system. 
Now, let ( ) ( )0 1 ,, ,   for  1  and  0 2 1n

n k nX N N N n k= ≥ ≤ ≤ −  be a an exchangeable sequence such that 

( )2nX ∈ Ω  for one (and any) n . 
Notice that (3) and (4) then imply that  

( ) ( ) ( )2 2,     ,     n n i jX m X v X X c= = =                           (12) 

are constants which do not depend on ,  n i  and j . 
Let  

( ) ( ) ( ) ( ) [ ]
2 1

, ,
0

,     ,  0,1 .
n

n
t k n k n

k
S N s t tω ω ω

−

=

= ∈Ω ∈∑  

Then  
Proposition 2 The series with general term ( )

1
n

tn S+∞

=∑  converges in 2  and  

( ) ( )
0 1

1

n
t t

n
X tN s t N S

+∞

=

= + +∑  

defines a stochastic process.  
Proof: Due to (10) we have  

( ) ( ) ( ) ( )
2 12 2 2

, ,
0

n
n

t k n k n
k

S N s tω ω
−

=

= ∑  

and then (12) applied to the sequence 0 1 ,,  ,  k nN N N  and (11) give  

( ) ( )( ) ( )
2 12 22 2

,
0

2
n

n n
t k n

k
S v s t vω

−
−

=

= ≤∑  

Then ( ) 2

2
2

n
n

tS v
−

≤


 and ( )

2
1

n
tn S+∞

=
< +∞∑


 so that ( )

1
n

tn S+∞

=∑  converges in 2 . ■ 

Now, consider the following condition on the tails of  : 
There exists a convergent series with positive general term nc  such that the series with general term  

1 1 1 1
2 2 2 22 2 , 2 2 2 , 2   converges.

c cn n n n
n n

n n n nc c c cµ
+ + + +         − = −               

                (13) 

Proposition 3 If condition (13) holds then a.a. paths of ( )tX  are continuous.  
Proof: Due to (10) and (11) we have  

( ) ( ) ( ) ( ) ( )
1

2
, , ,

0 2 1 0 2 11,
2 2

max sup 2 max
n n

n n

n
n

t k n k n k n
k kk kt

S N s t Nω ω ω
− −

∞ ≤ ≤ − ≤ ≤ − +
∈ 
 

= =  

and (5) implies  
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( )( )

( ) ( )

( )

1 1
2 2

, ,
0 2 1

2
1 1

2 2

1 1
2 2

max 2 1 2 ,0 2 1

                         1 2 , 2 d

                         1 1 2 , 2

n

n n
n n

t n k n n k n n
k

n
n n

n nQ

n n

n nQ

S c N c N c k

Q c c Q

Q c c

µ

+ +

∞ ≤ ≤ −

+ +

∈

+ +

∈

   
> = > = − ≤ ≤ ≤ −      

   

  
= − −     

 
= − − −



∫

∫









  

( )

( ) ( )

2

1 1
2 2

1 1
2 2

d

                         2 2 , 2 d

                         2 2 , 2

n
c

cn n
n

n nQ

cn n
n

n n

Q

Q c c Q

c c

µ

µ

µ

+ +

∈

+ +

              
     ≤ −       

   = −     

∫ 

 

the preceding inequality being due to the inequality ( )21 1 2
n

nq q− − ≤  for any 0 1q≤ ≤  which is a conse- 
quence of finite increments theorem. 

Due to (13) we then get that the series with general term ( )( )n
t nS c

∞
>  converges. 

Then by Borel-Cantelli lemma, we have for a.a. ω , ( ) ( )n
t nS cω

∞
≤  for n  large enough so that the series 

( ) ( )n
tS ω  converges uniformly and defines a continuous function of t . Thus for a.a. ω , ( )tX ω  is 

continuous. ■ 
As a corollary observe that  
Proposition 4 For a sample of ( )( )0,1c  , a.a. paths of ( )tX  are continuous.  

Proof: Condition (13) holds for ( )0,1µ =   with 
1

22 2
n

nc n
− −

= . Indeed, since  
2 2 2

2 2 2e d e d e
t t a

a a
a t t t

− − −+∞ +∞
≤ =∫ ∫  

that is  
2

2
2

2 ee d

a
t

a
t

a

−
−+∞

≤∫  

holds for any positive number a , we have for any 1n ≥   

( ) ( ) ( )
2

21 1 12 2
2

1

e2 0,1 2 , 2 2 0,1 2 , 2 2 d
2π

2 e 1 2 2                                                   .
e e2π 2 π

tcn n cn n n
n n n

n nn n

c c n n t

n n

−
+ + +∞+

+ −

     − = − =         

   ≤ = ≤   
   

∫ 
 

which is the general term of a convergent series. ■ 

3.2. DBM Based on Random Walks 
Let 0c >  and 0σ >  be fixed. 

First, let ( )iY  be a sequence of random variables such that  

( )( )2,     0,
iid

iY P P P c σ     
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which are more explicitly described by the following hierarchical model 

( ) ( ) ( )

( ) ( )

( )

1,

20,

i

iid

i i XiQ X

i
iid

i

Y Q

Q PDir c

X

Q X

ωω δ

σ

∞

=
 ∼
 ∼

 ∼

 ⊥

∑


                              (14) 

We will rather consider centered variables  

( ) 1,
1

.
i j jj

iid

i iQ X X Q X
i

U Qδ ∞
=

∞

 − =
∑

∼∑  

Now, consider the following random walk ( )n n
S

∈
 in Dirichlet random environment, starting from 0: 

1 2n nS U U U= + + +  

so that we have  

( ) ( )1, ,
n

n i iQ X Q XS U==   

It is straightforward that  

( ) ( )( ) ( )( )
2

2 2 2
1 1 1 1, , 1

, Var i i j j i i i i j i ji i i jQ X Q X j
Q X U U Q X Q X Q Q X Q Q X Xσ

∞
∞ ∞ ∞

= = ≠
=

 
 = = = − = − −   

 
∑ ∑ ∑ ∑  

Since the iX ’s are independent with zero mean, we have  

( )( )( ) ( )( ) ( )22 2 2
1 1 1,Var i i i i ii iQ XU Q Q X Q X σ∞ ∞

= =
 = − ≤ = ∑ ∑    

Therefore ( ),Q Xσ  is finite a.e. or equivalently, for ( ),Q X  a.a. ( ) ( ) ( )( ), ,i iq x q x
∗

= ∈∆× 

   

( ) 2 2

1
, i i i i j i j

i i j
q x q q x q q x xσ

∞ ∞

= ≠

 = − − < ∞ ∑ ∑                          (15) 

For any integer 1n ≥  and real number 0t ≥  let  

[ ]1 2

1n
t ntS S

n
=                                     (16) 

where [ ]x  denotes the integer part of x . 
Let Bσ =  denote a zero mean Brownian motion with variance 2σ , B  denoting the standard Brownian 

motion.  
Proposition 5 For any 0 10 , , kt t t= < < , we have in the space of distributions  

( )
( )

( ) ( ) ( )( )0 1 0 1

, , ,

,
, , , , , ,   as  

k k

d
q x q x q xn n n

t t t t t tQ q X x
S S S B B B nσ σ σ

= =
→ → +∞   

where ( ),q xσ  is defined in (15).  

3.3. DBM 
A Brownian motion in Dirichlet random environment (BMDE) is a process Z  such that  

( )
( )( )

( )

( )

,
,

20,

q x
Q q X x

iid

i

Z B

Q PDir c

X

σ

σ

= =
 =












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Proposition 6 If Z  is BMDE then its conditional increments are independent Gaussians  

( ) ( )( )1

2
1,

0, ,
i it t i iQ q X x

Z Z t t q xσ
− −= =

− = −  

The increments 
1i it tZ Z
−

−  are orthogonal, are mixtures of Gaussians but need not be independent. Indeed, 
since  

( ) ( )( )1 1,
0, ,

i it t i iQ q X x
Z Z t t q xσ

+ += =
− −   

we see that  

( ) ( )( ) ( )
1 1 ,0, , ,

i it t i i Q XZ Z t t q x d q xσ
+ +∆×
− −∫ 




    

4. Regularity 
Theorem 7 Let ( )tZ  be as in (ref) then  

( ) 1
2

p
t s pZ Z C t s− ≤ −  

so that there exist a continuous version of (Zt)  
Proof: 

( ) ( )( ),p p
t s t sZ Z Z Z Q X− = −    

Since ( ),, q x BZ Q q X x σ= = =   then 

( ) ( )( ) ( ) ( )( )2, , , , 0,1
p pp p p p

t s t sZ Z Q X B B Q X X Q Q X t sσ σ− = − = −     

where ( )
2

1 1, i i j ji jQ X Q X Q Xσ ∞ ∞

= =
 = − ∑ ∑  Conditional to the Q , =1i j jjX Q X∞ − ∑  is a linear combina- 

tion of ( )0,1jX   , then it is a gaussian random variable with 0 mean and variance  

( ) ( ) ( )( )( )22 1 d dp
j i t s QX Q

i j
Q Q Q E Z Z P Pσ

≠

= + − −∑ ∫ ∫  

conditional to Q . 

5. Simulation and Estimation 
5.1. Sethuraman Stick-Breaking Construction 
Sethuraman (1994) [13] has shown that the sequence of random distributions  

( ) ( ) ( )
1

i

K

K i X
i

P Qω ω δ ω
=

= ∑                                  (17) 

converges to the Dirichlet process when the random weights ( )iQ  are defined by the following stick-breaking 
construction:  

( )1 1, ,   are    Beta 1, ,     1K Kb b iid c b− =                            (18) 

( ) ( )1 1 1 1,     1 1 ,     for any    2, , .k k kQ b Q b b b k K−= = − − =                     (19) 

5.2. Simulation Algorithm 
A path of the BMDE ( ),c σ  process ( )10 = 0, , ,

nt tZ Z Z
 can be simulated as follows: 

Let 1d 0i it t t+= − >  be small enough and let K  be the stick-breaking precision 
Draw ( )1 2, , , Kq q q q=   from (19) 
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Draw ( )1 2, , , Kx x q x=   with ( )20,
iid

ix s σ′
   

Compute ( )2 ,K q xσ  by truncating (15)  

Put 0 0Z =  and draw n  points 
it

Z  such that ( )( )1

20,d ,
i i

iid

t t KZ Z t q xσ
+
−     

5.3. Estimation  
Using proposition 6 we can show that  

( ) ( ) ( )( )1

2

1 1
2 1i it t i i

cZ Z t t
c c

σ
+ +

  − = − −    + +  
                        (20) 

6. Stochastic Calculus 
Consider ( ) 0t t≥

  the natural filtration defined by Z , that is ( ),t sZ s tσ= ≤  the sigma algebra generated by 
{ },sZ s t≤  A random process ( )( ) 0t

f t
≥

 is a step process if there exist a finite sequence of numbers 
0 10 nt t t= < < <  and square integrable random variables 0 1 1, , , nη η η −  such that  

( ) ) ( )1

1

,1 t jj

n

j t ti
f t I tη

+

−


= 

= ∑                                   (21) 

where jη  is 
jt -measurable for 0, , 1j n= −  The set of random step processes will be denoted by step  

Observe that the assumption that the jη  are to be 
jt -measurable ensures that ( )f t  is adapted to the 

filtration .t  The assumption that the jη  are square integrable ensures that ( )f t  is square integrable for 
each .t  The stochastic integral of stepf ∈  is defined as  

( ) ( )1
1

i ii t t
i

I f Z Zη
+

∞

=

= −∑                                  (22) 

Proposition 8 For stepf ∈ , we have ( ) 2I f L∈  and  

( )( ) ( ) ( )( )2 2

0
, dI f K c f t tσ

∞
= ∫   

where ( ) ( )( )
, 1

2 1
cK c

c c
σ σ

 
= − 

+ +  
  

This enables us to define with standard techniques, the stochastic integral  

( )
0

d
t

s sf Z Z∫  

for any continuous function f .  

Proposition 9 The stochastic process ( )( )0 0
d

t
s s

t
f Z Z

≥
′∫  is a t ′ -martingale  

Proof: 
Let t  and s  two reals numbers such that s t≤ , let k ∈  such that 0 1 10 k k nt t t s t t+= < < < ≤ ≤ < , let 

( )jj f Zξη =   

( )( ) 1 1 10

1 1

d lim lim

                              lim .

sss

s s

t n k n
s s j j j j j ji i i kn n

k n
j j j jj j kn

f Z Z Z Z Z

Z Z

η η η

η η

= = = +→∞ →∞ ′′′

= = +→∞ ′ ′

   ′ = ∆ = ∆ + ∆     

   = ∆ + ∆   
   

∑ ∑ ∑∫

∑ ∑



 

  

 
 

where 
since for every { }0, ,j k∈  , jη  and ( ),j Z p x∆  is ′ -measurable then,  
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( ) ( )
s s

j j j j j jZ Z Zη η η
′ ′

∆ = ∆ = ∆
 

   

On the other hand for every { }1, ,j k n∈ +   using the zero means of increment j Z∆  conditional to 
( ),p x .  

( ) ( )( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

,

,

1

1 1

1 1 1

, ,

                 , , , , , ,

                 , d , d ,

                 , , d , d ,

s

p x
j

p x
j

j j j j j

j j j j j j

Z

j j j j j j Z

Z a p x b B B

p x p x Z B B B B Z

p x y P y p x P p x

B B B B P B B y P x P p x

ψ ϕ

ψ ψ ϕ ϕ

ψ ψ

ϕ ϕ

+′

+ +

∆

+ + + ∆

∆ = +

= ∆ + ∆

 =   
   =      

∫ ∫

∫ ∫ ∫




                 0



=

 

consequently, 

( ) ( )
0 0

d d
s

t s
s s l lf Z Z f Z Z

′

 ′ ′= 
 
∫ ∫


  

Itô Formulae 
In this paragraph we shall give an expression of Itô formulae of the process Z  
Proposition 10 

( ) ( )( ) ( ) ( ) ( ), ,, 0 0
d d , d

t t
s s s sq x p xq x

f Z Z P p x f Z Z∗
∈∆×

=∫ ∫ ∫



 

Proof: 
Since 

( ) ( )( ) ( ) ( ) ( )1 1

2 21 1
2

, , , ,1 1
lim lim

i i i i

n n

i t t i t tp x p x p x p xn ni i
Z Z Z Zη η

+ +

− −

→∞ →∞= =

      − = −           
∑ ∑∫     

Suppose that 

( )( ) ( )
( )

( )
( )( ) ( ) ( ) ( )1 1

2 2
1 1 2
1 1, , , ,

, . , ,
i i i i

n n
n i t t i t ti ip x p x p x p x

X p x Z p x Z p x Z Zη η
+ +

− −

= =

    = − = −       
∑ ∑    

For almost surely ω′ , 

( ) ( ) ( ) ( )( ) ( ) ( )( )1

2 21 2
1 0, ,

lim , lim , d
i i

n
n i t t ji p x p xn n

X p x Z Z t p x f t tη σ
+

∞−

=→∞ →∞
= − = ∆∑ ∫    

On the other hand for almost surely ω′  and for any n∈   

( ) ( ) ( )( ) ( )2 1
0

, , dn jX p x t p x f t t L Pσ
∞

≤ ∆ ∈∫  

Therefore according to the dominus convergence theorem,  

( ) ( )( ) ( )
( ) ( )( ) ( )

( ) ( ) ( )( )
1 1

1

2 2
1 1
1 1, , , ,

2
1 2
1 , ,

lim d , lim d ,

                                                                            lim

i i i i

i i

n n
i t t n i t ti ip x p x p x p xn

n
n i t ti p x p x

Z Z P p x Z Z P p x

Z Z

η η

η

+ +

+

− −
→∞= =→∞

−
→∞ =

   
− = −   

   

= −

∑ ∑∫ ∫

∑∫

 



( ) ( )( ) ( )

( ) ( )( )

2
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2

0

                                                                            , d d ,

                                                                            , d

p x f t t P p x

K c f t t

σ

σ

∞

∞

=

=

∫ ∫

∫




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this means that 

( )( ) ( ) ( ), ,0 0
d d ( , ) d

t t
s s s sp x p xf Z Z P p x f Z Z=∫∫ ∫  

as required. ■ 
Proposition 11 Let f be a bounded and 2 times derivable function, then 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0

1d , d , d d , d
2

t t
t s s sf Z P p x f Z P p x f Z Z f Z P p x s′ ′′= + +∫ ∫ ∫ ∫ ∫   

7. Conclusion 
We have extended Brownian motion in dirichlet random environment for the application on the Dirichlet hie-
rarchical models in order to deal with temporal data such as solutions of SDE with stochastic drift and volatility. 
It can be thought that the process on which are based these parameters belongs to a certain well-known class of 
processes, such as continuous time Markov chains. Then, we think that a Dirichlet prior can be put on the path 
space, that is a functional space. It seems to us that the estimation procedure in such a context is an interesting 
topic for future works. 
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