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Abstract 
We show how the famous soliton solution of the classical sine-Gordon field theory in (1 + 1)-di- 
mensions may be obtained as a particular case of a solution expressed in terms of the Jacobi am-
plitude, which is the inverse function of the incomplete elliptic integral of the first kind. 
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1. Introduction 
The sine-Gordon field theory and the associated massive Thirring model [1] are some of the best studied 
quantum field theories. In view of its connections to other important physical models, some of which in 
principle admit actual realizations in nature [2] [3], a huge mass of important exact results have been obtained 
for this fascinating integrable system [4]-[7]. However, no less fascinating are the remarkable mathematical and 
physical properties of its soliton (or “solitary wave”) solutions which have contributed, along the last decades, to 
turning the physics of solitons into a very active research topic. 

In this work we present a simple and yet appealing step-by-step derivation of a more general solution for the 
classical sine-Gordon field theory in (1 + 1)-dimensions in terms of a special kind of elliptic function, namely 
the Jacobi amplitude, which has the famous sine-Gordon soliton solution as a particular case. Despite the fact 
that the connection between solitons and Jacobi elliptic functions has already been explored in [8], we believe 
that this work comes to shed more light on this interesting subject, helping to fill in a gap existing in the corres- 
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ponding specialized literature. 

2. An Alternative Pathway to Solitons in Sine-Gordon Field Theory   
2.1. The Jacobi Amplitude Function 

We start by considering the following theory describing a real scalar field in (1 + 1)-dimensions ( )( ),x tφ φ≡ ,  

( )1 ,
2

Vµ
µφ φ φ= ∂ ∂ −                                         (1) 

where the potential term is given by  

( ) ( )2 cos 2 ,V φ α βφ γ= +                                         (2) 

with α , β  and γ  being real parameters.  
The above Lagrangian gives rise, through the Euler-Lagrange equation, 

( )µ
µ φφ

 ∂ ∂ ∂ =
  ∂∂ ∂ 

  , to the following 
field equation  

( )2 2

2 2 2

1 .
V

c t x
µ

µ

φ
φ φ φ

φ
∂ ∂ ∂

∂ ∂ ≡ ≡ − = −  ∂∂ ∂ 
                                (3) 

Notice that since Equation (3) is invariant under Lorentz transformations ( )x x xµ µ µ ν
ν′→ = Λ  [9], its 

solutions may be obtained through the solutions of the corresponding equation for the static case ( )( )xφ φ≡  

by a simple Lorentz boost, namely ( ) ( )2 2
0 0 1x x x x vt v c− → − − − , for arbitrary v  ( )83 10 m sv c< ≈ ×  

[10] [11]. Thus, in what follows, we will focus on the solutions of the equation  
2

2

d d .
dd
V

x
φ

φ
=                                               (4) 

Indeed, by multiplying the above equation by d dxφ  we obtain  
22

2

d d d d d 1 d d ,
d d d d 2 d dd

V V
x x x x xx
φ φ φ φ

φ

  = ⇒ =  
   

                                (5) 

which, after an integration with respect to x  and some algebra, may be rewritten as  

( )
dd .

2
x

V
φ
φ

′
′ = ±

′
                                          (6) 

By integrating both sides of the above equation, from 0x x′ =  to x x′ =  ( ( )0xφ φ′ =  to ( )xφ φ′ = ), we get  

( )
( )

( )0
0

d .
2

x

x
x x

V

φ

φ

φ
φ

′
− = ±

′∫                                        (7) 

In order to compute the above integral, we must firstly notice that the potential, shown in Equation (2), may 
be rewritten as  

( ) ( ) 222 1 sin .
2

V α βφφ α γ
α γ

′  ′ = + −   +   
                                (8) 

Thus, by making the change of variables 
2
βφ θ φ′ ′ ′→ = , defining 2 2k α

α γ
=

+
 and choosing 0x  such that 

( )0 00 0xφ θ= ⇒ = , we are left with  

0 0 2 2

d .
2 1 sin

kx x
k

θ θ
β α θ

′
− = ±

′−
∫                                   (9) 

The integral appearing in Equation (9) is called an incomplete elliptic integral of the first kind, ( ),F kθ , 
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whereas k  is called the elliptic modulus or eccentricity. The upper limit, θ , of this integral may be written in 
terms of the Jacobi amplitude (the inverse function of the incomplete elliptic integral of the first kind) as [12] 
[13]  

( ) ( )1
0 0

2 2, am , .F x x k x x k
k k

β α β αθ −    
= ± − ≡ ± −      

   
                      (10) 

Notice that, from the above definition, we have ( )( )am , ,F x k k x= . 

The solution of Equation (4) may be, finally, written as  

( ) ( )0
2 2am , .x x x k

k
β αφ

β
 

= ± −  
 

                                (11) 

Hence, from the above equation, we may notice that  

( ) ( )0
2 am 0, 0,x kφ
β

= ± =                                     (12) 

as it should.  

2.2. The Case 1k = : The Gudermannian Function and the Soliton Solution of  
Sine-Gordon Equation   

From the definition ( )2 2k α α γ= +  we may obviously see that when γ α=  we have 1k = . Hence, the 
solution for Equation (4) with the potential given by  

( ) ( )2 1 cos ,V φ α βφ= +                                      (13) 

may be obtained as a special case of the solution presented in Equation (11). Indeed, since  
( ) ( )am ,1 gd 2arctan e π 2,xx x= ≡ −  

where gd x  is called the Gudermannian function (a special function which relates the circular functions to the 
hyperbolic ones without using complex numbers, named after Christoph Gudermann (1798-1852)), we are left 
with  

( ) ( )( ) ( )( )

( )( )

0 0

0

2 2am 2 ,1 gd 2

4 πarctan exp 2 .

x x x x x

x x

φ β α β α
β β

β α
β β

= ± − = ± −

 ≡ ± −  
                      (14) 

Last but not least, we must notice that by substituting the Equation (14) into Equation (3) and making the  

change (Lorentz boost) ( ) ( )2 2
0 0 1x x x x vt v c− → − − − , we obtain the famous sine-Gordon field equation, 

namely  
2 sin 0,S Sφ αβ βφ+ =                                        (15) 

where ( ),S S x tφ φ≡  is the no less famous soliton/anti-soliton solution [10] [11], given by  

( )
( )

0

2 2

4, arctan exp 2 .
1

S
x x vt

x t
v c

φ β α
β

  
− −  = ±    −   

                          (16) 

This result allows us to characterize the Lorentz boosted, and shifted by π β , version of the solution in terms 
of the Jacobi amplitude shown in Equation (11), namely  

( )
( )

0

2 2

2 2 π, am , ,
1

x x vt
x t k

k v c

β αφ
β β

 
− − = ± ±  − 

                           (17) 

as a generalization of the sine-Gordon soliton/anti-soliton solution for 1k ≠ . 
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Figure 1. The Jacobi amplitude solution given by Equation (17) with 0.50α = , 2.00β = , 

0 0x = , 0.99k =  and 0.50v c= .                                                 
 

 
Figure 2. The soliton solution given by Equation (16) with 0.50α = , 2.00β = , 0 0x = , 

1.00k =  and 0.50v c= .                                                        

3. Concluding Remarks  
We would like to make a few comments about the soliton solution, shown in Equation (16), and its generalized 
version, shown in Equation (17). Firstly, we may notice by comparing Figure 1 and Figure 2 how different are 
these solutions, where we would like to highlight the doubly periodic behaviour of the Jacobi amplitude 
solution.  

Finally, let us observe that, as remarked in [10], this soliton solution, though arising in a classical field theory, 
looks very much like a classical particle since its energy density is localized at a point ( )0x x=  and its total 

energy for a static field configuration ( )( )S S xφ φ≡ , namely  

( ) ( )
21 d 8 2d ,

2 dSE x V
x
φ αφ φ

β
∞

−∞

  = + =  
   

∫                         (18) 

is finite, just as we should expect. 



L. Mondaini 
 

 
1206 

Acknowledgements 
This work has been supported by University of Alberta’s Li Ka Shing Applied Virology Institute and CNPq, 
Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil. 

References 
[1] Coleman, S. (1975) Quantum Sine-Gordon Equation as the Massive Thirring Model. Physical Review D, 11, 2088- 

2097. http://dx.doi.org/10.1103/PhysRevD.11.2088   
[2] Kosterlitz, J.M. (1974) The Critical Properties of the Two-Dimensional XY Model. Journal of Physics C: Solid State 

Physics, 7, 1046-1060. http://dx.doi.org/10.1088/0022-3719/7/6/005   
[3] Samuel, S. (1978) Grand Partition Function in Field Theory with Applications to Sine-Gordon Field Theory. Physical 

Review D, 18, 1916-1932. http://dx.doi.org/10.1103/PhysRevD.18.1916   
[4] Dauxois, T. and Peyrard, M. (2006) Physics of Solitons. Cambridge University Press, New York.  
[5] Mondaini, L. and Marino, E.C. (2005) Sine-Gordon/Coulomb Gas Soliton Correlation Functions and an Exact Evalua-

tion of the Kosterlitz-Thouless Critical Exponent. Journal of Statistical Physics, 118, 767-779.  
http://dx.doi.org/10.1007/s10955-004-8828-y   

[6] Mondaini, L., Marino, E.C. and Schmidt, A.A. (2009) Vanishing Conductivity of Quantum Solitons in Polyacetylene. 
Journal of Physics A: Mathematical and Theoretical, 42, Article ID: 055401.  
http://dx.doi.org/10.1088/1751-8113/42/5/055401   

[7] Mondaini, L. (2012) Thermal Soliton Correlation Functions in Theories with a Z(N) Symmetry. Journal of Modern 
Physics, 3, 1776-1780. http://dx.doi.org/10.4236/jmp.2012.311221   

[8] Cervero, J.M. (1986) Unveiling the Solitons Mistery: The Jacobi Elliptic Functions. American Journal of Physics, 54, 
35-38. http://dx.doi.org/10.1119/1.14767   

[9] Mondaini, L. (2012) Obtaining a Closed-Form Representation for the Dual Bosonic Thermal Green Function by Using 
Methods of Integration on the Complex Plane. Revista Brasileira de Ensino de Física, 34, 3305.  
http://dx.doi.org/10.1590/S1806-11172012000300005   

[10] Jackiw, R. (1977) Quantum Meaning of Classical Field Theory. Reviews of Modern Physics, 49, 681-706.  
http://dx.doi.org/10.1103/RevModPhys.49.681   

[11] Rajaraman, R. (1987) Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory. 
Elsevier, Amsterdam.  

[12] Gradshteyn, I.S. and Ryzhik, I.M. (2000) Table of Integrals, Series, and Products. Academic Press, San Diego.  
[13] Weisstein, E.W. Jacobi Amplitude. MathWorld—A Wolfram Web Resource.  

http://mathworld.wolfram.com/JacobiAmplitude.html   

http://dx.doi.org/10.1103/PhysRevD.11.2088
http://dx.doi.org/10.1088/0022-3719/7/6/005
http://dx.doi.org/10.1103/PhysRevD.18.1916
http://dx.doi.org/10.1007/s10955-004-8828-y
http://dx.doi.org/10.1088/1751-8113/42/5/055401
http://dx.doi.org/10.4236/jmp.2012.311221
http://dx.doi.org/10.1119/1.14767
http://dx.doi.org/10.1590/S1806-11172012000300005
http://dx.doi.org/10.1103/RevModPhys.49.681
http://mathworld.wolfram.com/JacobiAmplitude.html


http://www.scirp.org/
http://www.scirp.org/
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
mailto:submit@scirp.org

	The Rise of Solitons in Sine-Gordon Field Theory: From Jacobi Amplitude to Gudermannian Function
	Abstract
	Keywords
	1. Introduction
	2. An Alternative Pathway to Solitons in Sine-Gordon Field Theory  
	2.1. The Jacobi Amplitude Function
	2.2. The Case : The Gudermannian Function and the Soliton Solution of Sine-Gordon Equation  

	3. Concluding Remarks 
	Acknowledgements
	References



