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Abstract 
Solid boundary as energy source and sink of the turbulent kinetic energy of the grains, and its in- 
fluence on the mean and turbulent features of a dry granular dense flow, are investigated by using 
the proposed zero- and first-order turbulent closure models. The first and second laws of ther- 
modynamics are used to derive the equilibrium closure relations, with the dynamic responses 
postulated by a quasi-static theory for weak turbulent intensity. Two closure models are applied 
to analyses of a gravity-driven flow down an inclined moving plane. While the calculated mean 
porosity and velocity correspond to the experimental outcomes, the influence of the turbulent 
eddy evolution can be taken into account in the first-order model. Increasing velocity slip on the 
inclined plane tends to enhance the turbulent dissipation nearby, and the turbulent kinetic energy 
near the free surface. The turbulent dissipation demonstrates a similarity with that of Newtonian 
fluids in turbulent boundary layer flows. While two-fold roles of the solid boundary are apparent 
in the first-order model, its role as an energy sink is more obvious in the zero-order model. 
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1. Introduction 
Dry granular dense flows are continuous motions of a large amount of discrete solid particles with interstitial 
space filled by a gas, moving with slow to moderate speed. The grain-grain interaction, in contrast to creeping or 
rapid flows, results from ong-term enduring frictional contact and sliding, and short-term instantaneous inelastic 
collision [1]-[4]. Two-fold grain-grain interactions induce fluctuations on the field quantities at the macroscopic 
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level, a phenomenon similar to turbulent motion of Newtonian fluids with two distinctions: 1) it emerges 
from grain-grain interactions, in contrast to those resulted from incoming flow instability, instability in 
transition region, or flow geometry in Newtonian fluids; and 2) it emerges at slow speed, in contrast to 
those in Newtonian fluids which are strongly velocity-dependent, characterized by the critical Reynolds’ 
number [5] [6]. 

Solid boundary has been demonstrated to be an energy source and sink of the turbulent kinetic energy of the 
grains, and conventional no-slip condition of velocity is not valid [7] [8]. Whereas these influences were hardly 
accounted for in laminar flow formulations, e.g. [9]-[17], they were not appropriately taken into account in the 
limiting turbulent flow formulations, e.g. [18]-[21]. Thus, the goal of the present study is to propose a ther- 
modynamically consistent turbulent closure model to account for these effects, with their influence on the mean 
and turbulent flow features. Specifically, a zero- and a first-order closure models are proposed, with the focus on 
the intercomparison of the roles played by the solid boundary, and the influence of velocity slip. 

In the following sections, the mean balance equations, state space and entropy inequality are presented for 
two models. The closure relations are summarized as results from thermodynamic considerations of the first and 
second laws. Two closure models are applied to analyses of stationary gravitational flows down an inclined 
moving plane. While solutions of two models demonstrate a qualitative agreement with experimental outcomes 
in the mean porosity and velocity profiles, the distributions of the turbulent dissipation are similar to those of 
Newtonian fluids in turbulent boundary layer flows, with their vanishing and finite values obtained on the free 
surface by the zero- and first-order models, respectively. Increasing velocity slip near the inclined plane tends to 
enhance the turbulent dissipation nearby, resulting in larger mean porosity and turbulent kinetic energy near the 
free surface. While boundary as energy source and sink is apparent in the first-order model, its latter role is more 
obvious in the zero-order model. 

2. Mean Balance Equations and Equilibrium Closure Relations 
To account for the distribution of solid volume and its microstructural effect, the (solid) volume fraction ν , 
defined as the total solid volume divided by the volume of a granular representative volume element (RVE), is 
introduced, with its time evolution described by the Wilmánski model for dense flows [12] [22]. A dense flow is 
considered a rheological fluid, which must satisfy the basic laws of motion for continuum mechanics. Since in 
turbulent motion the field quantities experience fluctuations, with solutions random and unpredictable, their sta- 
tistically averaged values (e.g. Reynolds-averaging) should be defined and investigated. With these, the fol- 
lowing mean balance equations must be satisfied [5] [12] [23] [24] 
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The variables and parameters in (1)-(6) are defined in Table 1. 
Equations (1)1.2, (2)1.2 and (3)1 are respectively the conventional mean balances of mass, linear momentum, 

angular momentum, internal energy and entropy for a continuum, with the mean density ρ  decomposed into 
ρ γ ν= , and the symmetry of the mean Cauchy stress is required. Equation (3)2 is the Wilmánski model for 

(1) 

(2) 
(3) 

(4) 
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Table 1. Variables and parameters in the mean balance equations.                                                 

b  mean specific body force; D  symmetric part of ∇v ; 

e  mean specific internal energy; f  mean production associated with ν ; 

f ε  production associated with γνε ; h  mean flux associated with ν ; 

k  specific turbulent kinetic energy;      TK , εK  fluxes associated with kγν  and γνε , respectively; 

q  mean heat flux; Q  turbulent heat flux; 

r  mean specific energy supply; R  Reynolds’ stress; 

s  mean specific entropy supply; t  transpose; 

t  mean Cauchy stress; ν  mean velocity; 

Z  mean internal friction; α  arbitrary quantity; 

α  material derivative of α  w.r.t.     α , α′  mean and fluctuating values of α , respectively; 

γ  mean density of the solid grains; ε  specific turbulent dissipation; 

η  mean specific entropy; ν  mean volume fraction; 

π  mean entropy production; φ  mean entropy flux; 

φ′  turbulent entropy flux; Ω  any mean orthogonal rotation of a granular RVE; 

 
the time evolution of ν , Equation (4)1 is the phenomenological generalization of the Mohr-Coulomb model for 
the mean internal friction in a granular material at low energy and high-grain volume fraction [12] [25] [26], 
while Equations (4)2 and (5) are the balances of turbulent kinetic energy and dissipation, respectively. They are 
included to denote the influence of the energy cascade from the mean flow scale toward the smallest (dissipation) 
scale in turbulent flows. In doing so, two turbulent closure models are constructed: Equations (1)-(4) apply for 
the zero-order model with the turbulent dissipation considered a closure relation, and Equations (1)-(5) apply for 
the first-order -k ε  model, in which the time evolutions of the turbulent kinetic energy and dissipation are des- 
cribed independently and separately. 

For the application of two models, the quantities  

{ } { }0 T 1 T, , , , , ,    , , , , , , ,M Mγ ν ϑ ϑ γ ν ϑ ϑ ε= =v Z v Z                       (7) 

are introduced as the primitive mean fields, with the superscripts 0 and 1 denoting the model specification, while 
the closure relations 
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are constructed based on the state spaces given by 

{ } { }0 T 1 0
0 1 2 3 4 5, , , , , , , , , , , ,     , , ,Mν ν ν γ ϑ ϑ ε= = g g g g D Z g                  (9) 

with ( )0 0 0ˆ=   , and ( )1 1 1ˆ =   , where 1g ν≡ ∇ , 2 γ≡ ∇g , 3
Mϑ≡ ∇g , T

4 ϑ≡ ∇g , 5 ε≡ ∇g , Tφ φ φ′≡ + , 
and ∇  the Nabla operator. The quantity Mϑ  is the material coldness, with Tϑ  the granular coldness, a si- 
milar concept to granular temperature [20] [23]-[25] [27] [28]. While it is used to index both variations in tur- 
bulent kinetic energy and dissipation in the zero-order model, it is employed only for the variation in turbulent 
kinetic energy in the first-order model. The quantity 0ν  is the value of ν  in the reference configuration, 
included due to its influence on flowing granular matter. In (9), 0ν , ν , ν , ν∇ , γ  and γ∇  are for the ela- 
stic effect; Mϑ  and Mϑ∇  represent the temperature-dependence of physical properties, Tϑ  with Tϑ∇  and 
ε  with ε∇  denote the influence of turbulent fluctuation, while D  and Z  are for the viscous and rate- 
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independent effect, respectively. 
The forms of the closure relations are reduced by the second law of thermodynamics, which is formulated 

here as the Müller-Liu entropy principle. In its local form, it represents the restriction that the mean entropy 
production must be non-negative, i.e., T 0sπ γ ν η φ γ ν= +∇ ⋅ − ≥ . A physically admissible process must si- 
multaneously satisfy this Equation, (1)-(2) and (3) 2 -(5). One can account for all these requirements by using the 
method of Lagrange multiplier, viz., 
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with the mean balance equations appearing as constraints of the entropy inequality, and γλ , vλ , eλ , νλ , 
Zλ , kλ , 0ελ , 1ελ  the corresponding Lagrange multipliers. 
Substituting (8) and (9) into (10) with the assumption of material isotropy and chain rule of differentiation, 

the corresponding restrictions on forms such as (8) have been defined elsewhere [23] [24]. They are expressions 
for 0h  and 1h , 0k  and 1k , as well the dependence of the specific turbulent Helmholtz free energies T0ψ  
and T1ψ , defined by T0 0 T 0 0M M e kϑ ψ ϑ ϑ η= + −  and T1 1 T 1 1M M e kϑ ψ ϑ ϑ η= + − , for the zero- and first- 
order models, respectively, viz.,  
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( )0 0+t R  and ( )1 1+t R  at an thermodynamic equilibrium state denoted by the subscript E| , defined by 
( )3 4, , ,ν = 0 g g D  and ( )3 4 5, , , ,ν = 0 g g g D  in the zero- and first-order models, respectively, are given by 
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where 1 T1
,

Mε
ελ ϑ ψ= − . The variables p  and β  stand for the turbulent thermodynamic and configurational  

pressures, respectively, viz.,  
2 T T

, ,,     ,p γ νγ ψ β γ νψ≡ ≡                                     (20) 

for both models. Otherwise, for incompressible grains, p  is an independent field and can no longer be deter- 
mined by Equation (20)1; Equations (11)1, (18) and (19) are simplified to [12] 
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while (11)2-3 and (12)-(16) remain unchanged, with (17) reducing to 0ε =K . 

3. Closure Models 
For isothermal flows with incompressible grains, we assume that 0t , 1t , 0R , 1R , 0γ νε , f ε , T0K  and 

T1K  may be decomposed according to 

( ) ( ) ( )
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with ( )0,1i = ; the superscript D  indicates dynamic response, which should vanish at thermodynamic equi- 
librium. Within a quasi-static theory, the dynamic responses are assumed to depend explicitly and linearly on the 
independent dynamic variables, respectively of the forms,  
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0  functions of ( )T
0 , , , ,Mν ν γ ϑ ϑ ; 0

Mλ , T
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Mµ  and T
0µ  functions of

( )T
0 , , , ,Mν ν γ ϑ ϑ  and the three invariants ( )1 2 3, ,I I ID D D  of D . The functional dependences of ( )1 1 T

1 4 1 1, ,Mf f−    
and ( )T T

1 1 1 1, , ,M Mλ λ µ µ  are the same as above, with ε  additionally included. We choose the material vis- 
cosities ( )0 1,M Mµ µ  and phenomenological (turbulent) viscosities ( )0 1,T Tµ µ  be given by [12] [16] [17] [26]  

8 8T
2 T T 2

0 1 0 0 1 0,     ,M M m m
M

ν νϑµ µ µ γ µ µ µ γ
ν ν ν νϑ∞ ∞

   
= = Ξ = = Ξ   − −   

               (28) 

with Ξ  depending on the three invariants of D ; ( )0 0 0ˆ , Mµ µ ν ϑ= , a positive constant; ν∞  the mean vol- 
ume fraction corresponding to the possible most dense packing of the grains; and mν  the critical mean volume 
fraction at which shearing is decoupled from dilatation. Equation (28) asserts that the total stress is larger in 
turbulent than in laminar flows, and is justified for weak turbulent intensity [29] [30]. 

For explicit expressions of 0t , 1t , 0R  and 1R , the simplest form of the specific turbulent free energy is 
proposed following previous works by [12] [17] [26] 

( ) ( )
T

2T0 T1 T 1 2 3
0 1 , , ,m fM I I Iϑψ ψ α ν ν ψ

ϑ
 

= = − + + 
 

Z Z Z                           (29) 

with the plastic contribution confined within T
fψ . Equation (29) is justified for weak turbulent flows, and as- 

serts that smaller granular coldness results in smaller free energy [27]-[30]. A hypoplastic form for the mean 
production of mean internal friction is given by [31] [32]  

( ) ( ) ( ) ( )0 1 1 2ˆ , , , ,s df I a tr f aν ν ν
∗∨ ∨   = = = + + +      

ZD Z D Z ZD Z Z DΦ Φ Φ                (30) 

to account for rate-independent characteristics, in which ( )tr
∨

=Z Z Z , the versor of Z ; / 3
∗∨ ∨

= −Z Z I , the 
deviator of 

∨

Z ; 2tr=D D , and a  a positive constant, relating to the internal friction and frictional angle in 
the critical state. The scalar functions sf  and df  are the stiffness and density factors, denoting strain harding/soft- 
ing and mean-pressure dependent bulk density, respectively. 

The specific forms (28)-(30) are assigned for both models, for they are proposed based on experiments. With 
these, the closure relations of T0K , T1K , 0kγ ν , 1kγ ν , 0γ νε , f ε , 0t , 1t , 0R  and 1R  for an isochoric, 
isothermal flow with incompressible grains and weak turbulent intensity are given by 

( )2T 0 1
3 4 0,     ,i i

mf k kγ ν γ ν α γ ν ν ν= − = = −K g                              (31) 

(25) 

(26) 

(27) 
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( ) ( ) ( )0 0 0 1 1 1
1 2 4 4 1 2 4 4 4 5 5,     ,f f f f f fεγ νε ν ν= + ⋅ = − ⋅ + ⋅ g g g g g g                       (32) 
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with ( )0,1i = , where Cayley-Hamilton theorem, Truesdell’s equi-presence principle and the notations 

( ) ( )
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Z Z Z
Z Z Z Z
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        (35) 

are used. Substituting (20), (21), (30)-(34) into (1)-(5) yields the field equations for both models. 

4. Inclined Gravity-Flow Problem 
4.1. Field Equations and Boundary Conditions 
Consider a fully-developed, isothermal, two-dimensional stationary turbulent shear flow down an inclined mov- 
ing plane, as shown in Figure 1. With this, 

( ) ( ) ( ) ( ) ( ) ( ) ( )T T, ,0 ,     ,     ,     ,     ,     ,ij ijv u y v y y p p y y y Z Z yν ν ϑ ϑ ε ε= = = = = =         (36) 

and 0v u  , 0u′ ≠ , 0v′ ≠ , are assumed, with { } { }, ,i j x y= ; ( )u y , ( )yν , ( )T yϑ  and ( )ijZ y  the 
mean velocity component in the -x direction, the mean volume fraction, the granular coldness and the mean 
internal friction components, respectively; and ( )yε ε=  applies for the first-order model. 

The flow corresponds to the critical state, defined as the state in which 0ρ =  and = 0


Z  [33] [34]. Since 
in the critical state df  is set to be unity, Equation (30) reduces to  

2 ,s c cf a tr a
∗∨ ∨ ∨ ∨    = + + +         

0 D Z Z D Z Z D                            (37) 

in which 8 27sinc ca ϕ= , the value of a  at the critical state; and cϕ  the critical friction angle [34]. Since 
sf  does not vanish in general, substituting (37) into (4) 1  yields  

2 21 10 2 ,     0 2 ,     0 2 ,
3 3xx xy c xx yy xy c yy c xy c xyZ Z s a Z Z Z s a Z a s Z s a Z   = + − = + − = + +   

   

       

       (38) 

with xy xy xys D D D≡ =D . The only non-trivial solution of (38) is xx yyZ Z=  and 8 3sinxy c yyZ s Zϕ= − . 
Thus, Equation (4)1 is decoupled from other mean balance equations in both models. For further identification, a 
specific form of sf  is proposed by [35] [36] 
 

 
Figure 1. Gravity-driven stationary flow down an inclined 
moving plane and the coordinate.                       
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Table 2. Dimensionless parameters in the dimensionless field equations.                                                
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with sν  the minimum mean volume fraction. With these, the mean field equations reduce to  

( )
8 2T

2 2
2 3 0

1d d0 1 sin ,
d 1 d

s m
xy xy M

uZ Z b
y y

ν νϑζ ζ µ γ γ ν θ
ν ν νϑ ∞

   −   = + + + −     − −     
                  (40) 

( ) ( )
T

2 2
0 1 2 3

1d0 2 1 cos ,
d 1

s
m yy yyM Z Z b

y
νϑα γν ν ν ζ ζ ζ γ ν θ
νϑ

   −
= − + − + + +   −  

                   (41) 

8 23T T 2 T
2 0 0

0 2 3 2

d d d0 ,
d d d

m
M

u f f
y y y

νϑ ϑ ϑµ γ
ν νϑ ∞

    
= − −    −     

                                    (42) 

8 3T 2 T
2 1

0 3 2

d d0 ,
d d

m
M

u f
y y

νϑ ϑµ γ γνε
ν νϑ ∞

   
= − −   −   

                                          (43) 

2 2T
1 1
2 4

d d0 ,
d d

f f
y y
ϑ ε   

= − +   
  

                                                         (44) 

for ( )u y , ( )yν , ( )T yϑ  and ( )yε , where Equations (40)-(42) apply for the zero-order model, and (40)-(41) 
and (43)-(44) apply for the first-order model. 

Due to velocity slip, the grains on the solid plane may not assume the plane velocity. Velocity slip provides 
extra energy flux toward to, or away from the granular body, which is proportional to the square of the slip 
velocity and with the same direction of the momentum flux on the boundary [7] [8]. On the contrary, due to the 
experimental setup [37], ν  approaches a fixed value on the solid plane. Since experiment is carried out by 
discharging a constant mass flux on the plane, the flow thickness is fixed, and the shear force on the free surface 
is negligible due to the significant density difference between the granular body and air. Thus, the boundary 
conditions are given by 

T
2 2T T

0 0
d d0 :  ,  ,  , ;     :  0  0,
d ds b b s b s
uy u V V V V V y L
y y

ϑν ν ϑ ϑ ϕ ε ε ϕ′= = = = + − = + − = = =     (45) 

with bν , T
bϑ  and bε  the boundary values on the inclined plane; 0V  the velocity of the solid plane; sV  the 

grain velocity on the plane; ϕ  and ϕ′  the coefficients relating respectively the contributions of the slip 
velocity 0sV V−  to the boundary values of Tϑ  and ε ; and L  the flow thickness. The prescription of ε  
on the plane applies only for the first-order model. In doing so, solid boundary as an energy source and sink is 
taken into account by prescribing the values of Tϑ  and ε  separately in the first-order model, and by a fixed 
boundary value of Tϑ  in the zero-order model. Nonvanishing T

bϑ  and bε  correspond to experimental ob- 
servations at vanishing slip velocity. 

4.2. Nondimensionalization and Numerical Method 
With the dimensionless parameters defined in Table 2, Equations (40)-(44) are recast respectively by 
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                   (49) 

with the dimensionless boundary conditions,  
T

2 2T T d d0 :  ,  ,  1 1 ;     1:   0,   0,
d db b b
uy u y
y y

ϑσ ν ν ϑ ϑ ς σ ε ε ς σ′= = = = + − = + − = = =




 

     

 

        (50) 

where 0sV Vσ = , 2
0

MVς ϕ ϑ=  and ( ) ( )2 2 1
0 3

M
mV L fς ϕ γν ϑ′ ′= . 

The two-point nonlinear BVPs (46)-(50) are solved numerically by means of the method of successive ap- 
proximation with under-relaxation scheme. For the implementation of numerical simulation, the values of bν , 

mν , ν∞  and sν  are given by [12] [16] [35] 
0.51,     0.555,     0.644,     0.25,         0.919,     1.16,     0.451,b m s b sν ν ν ν ν ν ν∞ ∞= = = = → = = =       (51) 

with fixed values of T
bϑ  and bε , motivated by experimental observations. 

4.3. Numerical Results 
As a parametric study, numerical simulations are carried out for variations in σ , ς  and ς ′ , with 

1 2 0.001Ξ = Ξ = , 0.01χ = , 2 0.01S = , 0.5ξ = , T 0.1bϑ =  and 0.15bε = . The inclined angle 15.6θ =   is 
chosen to match the experiments [37]. 

Figure 2 illustrates the profiles of 1 ν−   (the mean porosity), u  and the dimensionless turbulent kinetic 
energy and dissipation, in which [ ]1.0,0.9,0.8σ =  indicated by the arrows, with the dashed lines representing 
laminar flow solutions [12]. Decreasing σ  tends to increase velocity slip on the solid plane, resulting in more 
intensive friction near the solid plane with significant turbulent dissipation, as shown in Figure 2(f) and Figure 
2(j) in both models. Due to velocity slip, the shearing generated by the plane is less efficiently transferred 
toward the granular body. The flow above the slip surface is dominated by gravity, in which the grains are 
moving with larger velocity in the reverse direction, as shown in Figure 2(d) and Figure 2(h). In this region, the 
grains are colliding with one another in a relatively free manner, resulting in larger mean porosity and di- 
mensionless turbulent kinetic energy, as shown in Figure 2(c) with Figure 2(g) and Figure 2(e) with Figure 
2(i), respectively. The profiles of 1 ν−   and u  corresponding qualitatively to the experimental outcomes (see 
Figure 2(c) with Figure 2(g) with Figure 2(a), and Figure 2(d) and Figure 2(h) with Figure 2(b)). The nu- 
merical results approach better to the experimental measurements with smaller values of σ  in both models, 
resulted from the fact that velocity slip is identified near the solid plane in experiments. This finding suggests 
that the influence of velocity slip needs be taken into account for more accurate numerical prediction. 

The dimensionless turbulent dissipations, shown in Figure 2(f) and Figure 2(j), decrease from their ma- 
ximum values on the solid plane toward the minimum values on the free surface with an “exponential-like” 
tendency in variations in σ  in both models. Although such a tendency is similar to that of Newtonian fluids in 
turbulent boundary layer flows [5] [6], the first-order model is more justified, for finite turbulent dissipation is 
obtained on the free surface, where the turbulent kinetic energy is maximum (see Figure 2(e) and Figure 2(f)), 
in contrast to vanishing turbulent dissipation from the zero-order model (see Figure 2(i) and Figure 2(j)). This 
is due to that in the first-order model, the turbulent kinetic energy and dissipation are indexed separately by Tϑ   
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Figure 2. Profiles of ( )1 ν−  , u  and the dimensionless turbulent kinetic energy and dissipation compared with ex- 

perimental outcomes, in which 0.5ς ς ′= =  and [ ]1.0,0.9,0.8σ =  indicated by the arrows. (a) and (b): Experimental results; 
(c)-(f): Results by the first-order model; (g)-(j): Results by the zero-order model. Dashed lines: laminar flow solutions.       
 
and ε , respectively, whilst in the zero-order model, Tϑ  is used as a direct measure of the turbulent kinetic 
energy and an indirect measure of the turbulent dissipation. 

Difference between two models can further be recognized by the profiles of u , as shown in Figure 2(d) and 
Figure 2(h). While in the zero-order model a “local” energy balance is imposed between the turbulent kinetic 
energy and dissipation, the influence of turbulent eddy evolution is accounted for in the first-order model, re- 
sulting in more efficient turbulent kinetic energy transfer across the flow. This leads to more efficient transfer of 
the mean shearing and stress power of the solid plane, giving rise to a discrepancy isn the lower and central 
regions, when compared with experimental outcomes and those from the zero-order model. It should not be 
concluded, however, that the first-order model is inaccurate, for the flows in experiments deviate only slightly 
from laminar flow. On the other hand, Figure 2(d) and Figure 2(h) demonstrate that the turbulent eddy evo- 
lution influences significantly on the mean flow characteristics, and need be taken into account when the 
turbulent intensity is not weak. 

Numerical simulations have been carried out for variations in ς  and the results are summarized in Figure 3, 
in which [ ]0.1,0.5,0.9ς ′ =  indicated by the arrows. Increasing ς  tends to enhance the energy flux from the 
solid plane toward granular body (boundary as energy source), yielding more intensive turbulent dissipation near 
the solid plane and near the free surface in the zero- and first-order models, respectively, as shown in Figure 3(d) 
and Figure 3(h). Since intensive turbulent kinetic energy induces intensive turbulent dissipation, as implied by 
Newtonian fluids characteristics, the first-order model is more justified than the zero-order model (see Figure 
3(c) and Figure 3(d) with Figure 3(g) and Figure 3(h)). With the enhanced turbulent dissipation, the profiles of 
1 ν−   and u  shown in Figure 3(a), Figure 3(e) and Figure 3(b), Figure 3(f), illustrate similar tendencies with 



C. Fang 
 

 
969 

 
Figure 3. Profiles of ( )1 ν−  , u  and the dimensionless turbulent kinetic energy and dissipation, in which 0.9σ = , 

0.5ς ′ =  and [ ]0.1,0.5,0.9ς =  indicated by the arrows. (a)-(d): Results by the first-order model; (e)-(h): Results by the 
zero-order model. Dashed lines: laminar flow solutions.                                                         
 
those described in Figure 2. Boundary as energy source and sink is apparent in the first-order model, while its 
latter role is more obvious in the zero-order model. 

Figure 4 illustrates the profiles of 1 ν−  , u  and the dimensionless turbulent kinetic energy and dissipation 
from the first-order models, in which [ ]0.1,0.5,0.9ς ′ =  indicated by the arrows. Increasing ς ′  tends to en- 
hance the energy flux from the granular body toward solid plane, resulting in more intensive turbulent dis- 
sipations near the solid plane, with slightly affected turbulent kinetic energy profiles, as shown in Figure 4(d) 
and Figure 4(c), respectively. Comparing Figure 4(d) with Figure 3(d) illuminates two different mechanisms 
for the turbulent dissipation: In the latter figure it is induced by the enhanced energy sink on the boundary, 
yielding enhanced turbulent dissipation near the solid plane. In the former figure it is induced by the intensive 
turbulent kinetic energy near the free surface, giving rise to the enhanced turbulent dissipation there. In view of 
these, the profiles of 1 ν−   and u  are only slightly affected by larger values of 2ς , as displayed in Figure 4(a) 
and Figure 4(b), respectively. Comparing Figure 4(c) and Figure 4(d) with Figure 3(g) and Figure 3(h) illus- 
trates that the first-order model delivers more justified and accurate estimations on the turbulent kinetic energy 
and dissipation, and the influence of boundary as energy source can be accomplished. 

5. Conclusions and Discussions 
Boundary as energy source and sink, and the influence of velocity slip near solid boundary on the mean and 
turbulent features of a dry granular dense flow, were investigated by the proposed zero- and first-order closure 
models, in which the granular coldness was introduced to index both variations in the turbulent kinetic energy 
and dissipation in the former model, while they were indexed separately by two independent fields in the latter 
model. Both models were applied to analyses of isothermal, stationary turbulent shear flows with incompressible 
grains down an inclined moving plane. 

Velocity slip near solid boundary tends to enhance turbulent dissipation in both models. The turbulent dis- 
sipation profile is similar to that of Newtonian fluids in turbulent boundary layer flows. The first-order model is 
however more justified, for it asserts that intensive turbulent kinetic energy induces intensive turbulent dis- 
sipation, with non-vanishing turbulent dissipation obtained on the free surface, in contrast to vanishing turbulent 
dissipation identified by the zero-order model. In both models, the mean shearing of the solid plane is less 
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Figure 4. Profiles of ( )1 ν−  , u  and the dimensionless turbulent kinetic energy and dissipation from the first-order model, 

in which 0.9σ = , 0.5ς =  and [ ]0.1,0.5,0.9ς ′ =  indicated by the arrows. Dashed lines: laminar flow solutions.          
 
efficiently transferred toward the granular body, and the turbulent dissipation is confined within a thin layer 
above the solid plane. Outside this thin layer, the grains are dominated by gravity, and collide with one another 
in a free manner, resulting in significant short-term grain interaction, as reflected by larger mean porosity, vel- 
ocity and turbulent kinetic energy near the free surface. 

Two-fold roles played by the solid boundary are more apparent in the first-order model, while boundary as 
energy source is less apparent in the zero-order model. Comparison with experiments shows qualitative agree- 
ment in the ν - and u -pofiles, and also suggests that velocity slip needs be taken into account for more ac- 
curate numerical prediction. Although the velocity profiles from the zero-order model approach better to ex- 
perimental outcomes, the first-order model is better to account for the influence of turbulent eddy evolution by 
using a -k ε  energy cascade. 

Acknowledgements 
The author is indebted to the Ministry of Science and Technology, Taiwan, for the financial support through the 
project MOST 103-2221-E-006-116. 

References 
[1] Aranson, I.S. and Tsimring, L.S. (2009) Granular Patterns. Oxford University Press, Oxford. 
[2] Ausloos, M., Lambiotte, R., Trojan, K., Koza, Z. and Pekala, M. (2005) Granular Matter: A Wonderful World of Clus-

ters in Far-from-Equilibrium Systems. Physica A, 357, 337-349. http://dx.doi.org/10.1016/j.physa.2005.06.034 
[3] Pöschel, T. and Brilliantov, N.V. (2013) Granular Gas Dynamics. In: Lecture Notes in Physics (Book 624), Springer- 

Verlag, New York. 
[4] Rao, K.K. and Nott, P.R. (2008) Introduction to Granular Flows. Cambridge University Press, London. 

http://dx.doi.org/10.1017/CBO9780511611513 
[5] Batchelor, G.K. (1993) The Theory of Homogeneous Turbulence. Cambridge University Press, Cambridge. 
[6] Tsinober, A. (2009) An Informal Conceptual Introduction to Turbulence. Springer, Heidelberg. 

http://dx.doi.org/10.1007/978-90-481-3174-7 
[7] Richman, M.W. (1988) Boundary Conditions Based upon a Modified Maxwellian Velocity Distribution for Flows if 

Identical, Smooth, nearly Elastic Spheres. Acta Mechanica, 75, 227-240. http://dx.doi.org/10.1007/BF01174637 
[8] Richman, M.W. and Marciniec, R.P. (1990) Gravity-Driven Granular Flows of Smooth, Inelastic Spheres down Bumpy 

Inclines. Journal of Applied Mechanics, 57, 1036-1043. http://dx.doi.org/10.1115/1.2897623 
[9] Campbell, C.S. (2005) Stress-Controlled Elastic Granular Shear Flows. Journal of Fluid Mechanics, 539, 273-297. 

http://dx.doi.org/10.1017/S0022112005005616 
[10] Daniel, R.C., Poloski, A.P. and Sáez, A.E. (2007) A Continuum Constitutive Model for Cohesionless Granular Flows. 

Chemical Engineering Science, 62, 1343-1350. http://dx.doi.org/10.1016/j.ces.2006.11.035 
[11] Faccanoni, G. and Mangeney, A. (2013) Exact Solution for Granular Flows. International Journal for Numerical and 

Analytical Methods in Geomechanics, 37, 1408-1433. http://dx.doi.org/10.1002/nag.2124 
[12] Fang, C. (2009) Gravity-Driven Dry Granular Slow Flows down an Inclined Moving Plane: A Comparative Study be-

tween Two Concepts of the Evolution of Porosity. Rheologica Acta, 48, 971-992.  

http://dx.doi.org/10.1016/j.physa.2005.06.034
http://dx.doi.org/10.1017/CBO9780511611513
http://dx.doi.org/10.1007/978-90-481-3174-7
http://dx.doi.org/10.1007/BF01174637
http://dx.doi.org/10.1115/1.2897623
http://dx.doi.org/10.1017/S0022112005005616
http://dx.doi.org/10.1016/j.ces.2006.11.035
http://dx.doi.org/10.1002/nag.2124


C. Fang 
 

 
971 

http://dx.doi.org/10.1007/s00397-009-0378-4 
[13] Fang, C. (2010) Rheological Characteristics of Solid-Fluid Transition in Dry Granular Dense Flows: A Thermody-

namically Consistent Constitutive Model with a Pressure-Ratio Order Parameter. International Journal for Numerical 
and Analytical Methods in Geomechanics, 34, 881-905. 

[14] Jop, P. (2008) Hydrodynamic Modeling of Granular Flows in a Modified Couette Cell. Physical Review E, 77, Article 
ID: 032301. http://dx.doi.org/10.1103/PhysRevE.77.032301 

[15] Jop, P., Forterre, Y. and Pouliquen, O. (2006) A Constitutive Law for Dense Granular Flows. Nature, 441, 727-730.  
http://dx.doi.org/10.1038/nature04801 

[16] Savage, S.B. (1993) Mechanics of Granular Flows. In: Hutter, K., Ed., Continuum Mechanics in Environmental Sci- 
ences and Geophysics, Springer, Heidelberg, 467-522. http://dx.doi.org/10.1007/978-3-7091-2600-4_6 

[17] Wang, Y. and Hutter, K. (1999) A Constitutive Theory of Fluid-Saturated Granular Materials and Its Application in Gra- 
vitational Flows. Rheologica Acta, 38, 214-223. http://dx.doi.org/10.1007/s003970050171 

[18] Ahmadi, G. (1985) A Turbulence Model for Rapid Flows of Granular Materials. Part I. Basic Theory. Powder Tech-
nology, 44, 261-268. http://dx.doi.org/10.1016/0032-5910(85)85008-7 

[19] Ahmadi, G. and Shahinpoor, M. (1983) Towards a Turbulent Modeling of Rapid Flow of Granular Materials. Powder 
Technology, 35, 241-248. http://dx.doi.org/10.1016/0032-5910(83)87014-4 

[20] Luca, I., Fang, C. and Hutter, K. (2004) A Thermodynamic Model of Turbulent Motions in a Granular Material. Con-
tinuum Mechanics and Thermodynamics, 16, 363-390. http://dx.doi.org/10.1007/s00161-003-0163-z 

[21] Ma, D. and Ahmadi, G. (1985) A Turbulence Model for Rapid Flows of Granular Materials. Part II. Simple Shear 
Flows. Powder Technology, 44, 269-279. http://dx.doi.org/10.1016/0032-5910(85)85009-9 

[22] Wilmánski, K. (1996) Porous Media at Finite Strains. The New Model with the Balance Equation of Porosity. Archives 
of Mechanics, 48, 591-628.  

[23] Fang, C. and Wu, W. (2014) On the Weak Turbulent Motions of an Isothermal Dry Granular Dense Flow with Incom-
pressible Grains, Part I. Equilibrium Turbulent Closure Models. Acta Geotechnica, 9, 725-737.  
http://dx.doi.org/10.1007/s11440-014-0313-4 

[24] Fang, C. (2014) A k-ε Turbulent Closure Model of an Isothermal Dry Granular Dense Matter, Part I: Equilibrium Clo-
sure Relations. Acta Mech. (In Review)  

[25] Hutter, K. and Wang, Y. (2003) Phenomenological Thermodynamics and Entropy Principle. In: Greven, A., Keller, G. 
and Warnecke, G., Eds., Entropy, Princeton University Press, Princeton, 57-77. 

[26] Kirchner, N. (2002) Thermodynamically Consistent Modeling of Abrasive Granular Materials. I: Non-Equilibrium 
Theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 458, 2153-2176.  
http://dx.doi.org/10.1098/rspa.2002.0963 

[27] Goldhirsch, I. (2008) Introduction to Granular Temperature. Powder Technology, 182, 130-136.  
http://dx.doi.org/10.1016/j.powtec.2007.12.002 

[28] Vescovi, D., di Prisco, C. and Berzi, D. (2013) From Solid to Granular Gases: The Steady State for Granular Materials. 
International Journal for Numerical and Analytical Methods in Geomechanics, 37, 2937-2951.  
http://dx.doi.org/10.1002/nag.2169 

[29] Fang, C. and Wu, W. (2014) On the Weak Turbulent Motions of an Isothermal Dry Granular Dense Flow with Incom-
pressible Grains: Part II. Complete Closure Models and Numerical Simulations. Acta Geotechnica, 9, 739-752.  
http://dx.doi.org/10.1007/s11440-014-0314-3 

[30] Fang, C. (2014) A k-ε Turbulent Closure Model of an Isothermal Dry Granular Dense Matter, Part II: Closure Model 
and Numerical Simulations. Acta Mech. (In Review) 

[31] Fellin, W. (2013) Extension to Barodesy to Model Void Ratio and Stress Dependency of the Ko Value. Acta Geotech-
nica, 8, 561-565. http://dx.doi.org/10.1007/s11440-013-0238-3 

[32] Fuentes, W., Triantaftllidis, T. and Lizcano, A. (2012) Hypoplastic Model for Sands with Loading Surface. Acta Geo-
technica, 7, 177-192. http://dx.doi.org/10.1007/s11440-012-0161-z 

[33] Ai, J., Langston, P.A. and Yu, H.S. (2014) Discrete Element Modeling of Material Non-Coaxiality in Simple Shear 
Flows. International Journal for Numerical and Analytical Methods in Geomechanics, 38, 615-635.  
http://dx.doi.org/10.1002/nag.2230 

[34] Kirchner, N. and Teufel, A. (2002) Thermodynamically Consistent Modeling of Abrasive Granular Materials. II: Ther- 
modynamic Equilibrium and Applications to Steady Shear Flows. Proceedings of the Royal Society A, 458, 3053-3077. 
http://dx.doi.org/10.1098/rspa.2002.1020 

[35] Bauer, E. and Herle, I. (2000) Stationary States in Hypoplasticity. In: Kolymbas, D., Ed., Constitutive Modeling of 

http://dx.doi.org/10.1007/s00397-009-0378-4
http://dx.doi.org/10.1103/PhysRevE.77.032301
http://dx.doi.org/10.1038/nature04801
http://dx.doi.org/10.1007/978-3-7091-2600-4_6
http://dx.doi.org/10.1007/s003970050171
http://dx.doi.org/10.1016/0032-5910(85)85008-7
http://dx.doi.org/10.1016/0032-5910(83)87014-4
http://dx.doi.org/10.1007/s00161-003-0163-z
http://dx.doi.org/10.1016/0032-5910(85)85009-9
http://dx.doi.org/10.1007/s11440-014-0313-4
http://dx.doi.org/10.1098/rspa.2002.0963
http://dx.doi.org/10.1016/j.powtec.2007.12.002
http://dx.doi.org/10.1002/nag.2169
http://dx.doi.org/10.1007/s11440-014-0314-3
http://dx.doi.org/10.1007/s11440-013-0238-3
http://dx.doi.org/10.1007/s11440-012-0161-z
http://dx.doi.org/10.1002/nag.2230
http://dx.doi.org/10.1098/rspa.2002.1020


C. Fang 
 

 
972 

Granular Materials, Springer Verlag, Berlin, Heidelberg, New York, 167-192.  
http://dx.doi.org/10.1007/978-3-642-57018-6_7 

[36] Herle, I. and Gudehus, G. (1999) Determination of Parameters of a Hypoplastic Constitutive Model from Properties of 
Grain Assemblies. Mechanics of Cohesive-Frictional Materials, 4, 461-486.  
http://dx.doi.org/10.1002/(SICI)1099-1484(199909)4:5<461::AID-CFM71>3.0.CO;2-P 

[37] Perng, A.T.H., Capart, H. and Chou, H.T. (2006) Granular Configurations, Motions, and Correlations in Slow Uniform 
Flows Driven by an Inclined Conveyor Belt. Granular Matter, 8, 5-17. http://dx.doi.org/10.1007/s10035-005-0213-2 

http://dx.doi.org/10.1007/978-3-642-57018-6_7
http://dx.doi.org/10.1002/(SICI)1099-1484(199909)4:5%3C461::AID-CFM71%3E3.0.CO;2-P
http://dx.doi.org/10.1007/s10035-005-0213-2


http://www.scirp.org/
http://www.scirp.org/
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
mailto:submit@scirp.org

	Solid Boundary as Energy Source and Sink in a Dry Granular Dense Flow: A Comparison between Two Turbulent Closure Models
	Abstract
	Keywords
	1. Introduction
	2. Mean Balance Equations and Equilibrium Closure Relations
	3. Closure Models
	4. Inclined Gravity-Flow Problem
	4.1. Field Equations and Boundary Conditions
	4.2. Nondimensionalization and Numerical Method
	4.3. Numerical Results

	5. Conclusions and Discussions
	Acknowledgements
	References

