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Abstract 
In this paper, I applied the Euler-Lagrange equations in order to obtain the coupled-nonlinear mo-
tion equations for an elastic structure. The model is composed of six coupled and strongly nonlin-
ear ordinary differential equations. The new contribution of this work arises from the fact that a 
convenient and innovative parameterization of the motion equations for the elastic system was 
developed with all mathematical nonlinearities taken into account, without the usage of any sim-
plifying linearization procedure, as found in most of the works presented in the literature. The 
results can be used as a source for conducting experiments and can be useful for a better under-
standing and control of such nonlinear elastic systems. 
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1. Introduction 
The use of the lightweight structural elements in space applications, underwater interventions as well as in ro-
botic manipulators under the requirement for precise positioning, easier transportation, less power consumption, 
has increased the interest in having a precise model that closely represents such mechanical systems for all their 
conditions. The position and velocity vector obtained, after imposing the inextensibility conditions, are used in 
kinetic energy expression while the curvature is used in the potential energy. The Lagrangian dynamics [1] in 
conjunction with the assumed modes method [2] are utilized in order to obtain the non-linear [3] equations of 
motion that are treated with all non-linearities taken into account, without the usage of any simplifying lineari-
zation procedure, as found in most of the works found in the literature. The resulting non-linear model is com-
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posed of six coupled and strongly non-linear ordinary differential equations are discussed, simulated and some 
results of this simulation are presented. The way in which the motion equations were treated in this paper, al-
lows the monitoring of each contributing factor for the system elasticity. The main goal of this work is to treat 
the motion equations according to a general approach, without the usage of any linearization procedure, and this 
way to permit assesses the system behavior through controlled simulations. 

2. Problem Description 
In this work the dynamic modeling is performed for a system that contains two elastic beams and two rotational 
joints. 

A convenient parameterization of the terms of the motion equations, which makes it easier to compare the 
simulation results for the rigid and for the elastic structure [4] is also developed. The studied elastic system is 
assumed to have a planar movement. Even with this assumption, the complexity of the resulting dynamic equa-
tions for this system is large when compared to the equations for rigid structures [5]. 

The model is established basically by the superposition of the elastic movement with the movement of a hy-
pothetical rigid body. A convenient mathematical set of equations is developed for this purpose. The elastic [6] 
movement of the beams is truncated in the second mode, that is, it is considered that the amplitudes of all higher 
order vibration modes [7] are much smaller than the amplitude of vibration of the first mode. In such a case, a 
non-linear model with six degrees of freedom is obtained. 

I outline that, one of the tasks of this work is to treat the motion equations according to a general approach, 
without simplifying linearizations procedure. 

3. The Model 
The physical model for the elastic system is established in accordance to the schematic drawing shown in the 
Figure 1. 

The following assumptions are made: the system has planar movement and the relative movement between 
the two links is resulting from the torques applied in each joint of the system. 

At the terminal of the beam 1, a concentrated mass represents both the servo-motor and the joint masses. At 
the terminal of the beam 2, a discrete mass is used to represent the load to be handled between two points of the 
plane. 

In order to describe the movement, three reference systems are defined: 
[ ], ,O X Y —inertial referential system with origin in joint 1; 

[ ]1 1, ,O x y —referential system with origin in O and the x1 axis tangent to beam 1 at point O; 

[ ]2 2 2, ,O x y —referential system with origin in joint 2 and with the x2 axis tangent to beam 2 at point O2. 
Two angles are defined: 
( )1 tθ  is the angle between the x1 and x axes; ( )2 tθ  is the angle between the x1 and x2 axes. 

It is also defined a new system that is formed by the two segments OO1 and O1O3, with angle 2θ  in O1. The 
global (total) movement may be understood as being the movement of an hypothetical rigid system OO1O3 and a  
 

 
Figure 1. Physical model. 
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flexible movement of the beams 1 and 2 with respect to this mobile system. 

3.1. Kinematics Description 
The position can be described by a convenient description of a set of coordinates. Any point Pi may be specified 
if a new variable ( ),i iu x t  is defined as being the coordinate of the flexible movement with respect to the ref-
erence system [ ]i iOx y . 

In order to simplify the notations, a matrix representation form of the reference frames can be introduced. Let 
them be: 

{ } x

y

 
=  
 

u
U

u
, is the unit vector of the frame OXY;  

{ } 1

1

1
x

y

 
=  
  

u
U

u
, is the unit vector of the frame 1 1Ox y ;  

{ } 2

2

2
x

y

 
=  
  

u
U

u
, is the unit vector of the frame 2 2 2O x y . 

Then, 
{ } [ ]{ }1 1C=U U                                      (1) 

and 

{ } [ ]{ }2 2C=U U                                     (2) 

where [ ]1C  and [ ]2C  are the rotational transformation matrices and can be written: 

[ ] 1 1
1

1 1

c s
C

s c
θ θ
θ θ

 
=  − 

                                   (3) 

and 

[ ] ( ) ( )
( ) ( )

1 2 1 2
2

1 2 1 2

c s
C

s c
θ θ θ θ
θ θ θ θ

 + + 
=  − + + 

                             (4) 

with, 

( ) ( ) ( ) ( )1 1 1 1 1 2 1 2 1 2 1 2cos ,    sin ,    cos ,    sinc s c sθ θ θ θ θ θ θ θ θ θ θ θ= = + = + + = +  

Figure 2 shows ( ),i iu x t  defined like a coordinate of the elastic motion of the beam with respect to the 
frame [ ]i iOx y . 

The (generic) position vector iP  (Figure 2) will be: 

{ } ( )T i
di i i xi i yi

i

x
x y

y
 

= = + 
 

R U u u                             (5) 

 

 
Figure 2. Vector (beam i). 
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where { }T
iU  means the transpose matrix. 

With the usage aformentioned equation, can be written the vector position of any point on the beam 1 of the 
following manner: 

Beam 1 

{ } { } [ ] ( ) ( )T T T1 1
1 1 1 1 1 1 1 1 1 1 1

1 1
d x y

x x
C x c u s x s u c

u u
θ θ θ θ

   
= = = − + +   

   
R U U u u               (6) 

where { }TU  and [ ]T1C  means the transpose matrix. 
Beam 2 
In order to define the vector position of any point on the beam 2, it will be convenient to assume that the dis-

placements of the elastic beams with respect to reference frames [ ]1 1Ox y  and [ ]2 2 2O x y  be small enough to 
consider the paths of points O2 and Op as straight lines normal to the respective reference frames. Then, the posi-
tion vector of any point P2 on the beam 2 is established in accordance to the schematic drawing shown in Figure 
3. It is also possible to note that, 

| |
2 1 1 2 2 2 2 2d = + + +R OO O O O P P P                                (7) 

If now, u1E = elastic linear displacement at the end of the beam 1; L1, L2 = lengths of the beam 1 and 2, then, 

{ }T 1 1
1 1 1 1 1

1 1
x y

L c
L c L s

L s
θ

θ θ
θ

 
= = + 

 
OO U u u                            (8) 

1 2 1 1 1 1E x E yu s u cθ θ= − +O O u u                                 (9) 

( ) ( )|
2 2 2 1 2 2 1 2x yx c x sθ θ θ θ= + + +O P u u                           (10) 

( ) ( )|
2 2 2 1 2 2 1 2x yu s u cθ θ θ θ= − + + +P P u u                           (11) 

and thus, 

( ) ( )
( ) ( )

2 1 1 1 1 2 1 2 2 1 2

1 1 1 1 2 1 2 2 1 2

d E x

E y

L c u s x c u s

L s u c x s u c

θ θ θ θ θ θ

θ θ θ θ θ θ

= − + + − +  
+ + + + + +  

R u

u
                   (12) 

Consequently, 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1d x yx s u s u c x c u s u cθ θ θ θ θ θ θ θ θ θ   = − − − + − +   
   

 R u u               (13) 

and 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
2 1 1 1 1 1 1 1 1 2 1 2 1 2 2 1 2 2 1 2 1 2

1 1 1 1 1 1 1 1 2 1 2 1 2 2 1 2 2 1 2 1 2

d E E x

E E y

L s u s u c x s u s u c

L c u c u s x c u c u s

θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ

 = − − − − + + − + − + + 
 + + − + + + + + − + + 

R u

u

     


 

     

 

   (14) 

Similarly, one can obtain j
R  and p

R , for a mass concentrated at the joint 2 and for the payload, respec-
tively, and will be shown in the next section. 

3.2. Kinetic Energy 
By means of the velocity vectors previously mentioned, the total kinetic energy of the system may be expressed 
by the following equation: 

1 1 2 2
1 2

|2
1 2 2

1 1 1 1 1d d
2 2 2 2 2j p d d d d j j j p p p p E

m m

T T T T T m m m m J u= + + + = ⋅ + ⋅ + ⋅ + ⋅ +∫ ∫       

R R R R R R R R     (15) 
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where, 
1 1

1

1
1 d
2 d d

m

T m= ⋅∫  R R  is the kinetic energy of the beam 1 and it is given by: 

1 1 1 1

2 2 2 2 2
1 1 1 1 1 1 1 1 1

1 1 1d d d d
2 2 2m m m m

T x m u m x u m u mθ θ θ= + + +∫ ∫ ∫ ∫  

                      (16) 

Similarly, 
2 2

2

2
1 d
2 d d

m

T m= ⋅∫  R R  is the kinetic energy of link 2 and it is given by: 

( )

( ) ( ) ( )

( ) ( )

2

2 2 2 2

2 2 2

22 2 2 2 2 2
2 2 1 1 2 1 2 1 1 2 1 1 1 1 2 2

22 2
2 1 2 2 1 2 2 2 1 1 1 2 2 2

1 1 1 2 2 2 1 1 2 2 1 1 2 2 2

1 1 1 1 d
2 2 2 2

1 1d d d d
2 2

d d d

E E E
m

m m m m

E
m m m

T m L m u m u m L u x m

u m u m x u m L c x m

L c x m L c u m u c x m

θ θ θ θ θ

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ

= + + + + +

+ + + + + + +

+ + + + +

∫

∫ ∫ ∫ ∫

∫ ∫

    

 

      

 

     



( ) ( ) ( )

( ) ( ) ( )
2 2 2

2 2 2

1 2 2 1 1 2 2 2 1 1 1 2 2 2

1 1 1 2 2 2 1 1 1 2 2 2 1 1 2 2

d d d

d d d

E E E
m m m

E E
m m m

u c u m u s u m u s x m

L s u m u c u m u s u m

θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ

+ + + − + +

+ + − + + +

∫

∫ ∫ ∫

∫ ∫ ∫

    

  

      



         (17) 

The same procedure can be applied to both: a mass concentrated at the joint 2 and a load with moment of in-
ertia (Jxp) with respect to an axis normal to the plane of motion and through the center of gravity. By doing this 
for a mass in the joint 2, the expression (13) can be modified to 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1j E E x E E yL s u s u c L c u c u sθ θ θ θ θ θ θ θ θ θ   = − − − + + −   
   

 R u u               (18) 

and 
1
2j j j jT m= ⋅ R R                                      (19) 

is the kinetic energy related to the concentrated mass that represents the servo-motor and the joint. The mass is 
located at point O2, in joint 2; 

Note that: 
1) x1 was replaced by L1, in which case we are not at any point on the first link, but at its end; 
2) u1 has been replaced by u1E, because u1E is the linear displacement at the end of the elastic beam 1. 
Similarly too, 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1 1 1 2 1 2 1 2 2 1 2 2 1 2 1 2

1 1 1 1 1 1 1 1 2 1 2 1 2 2 1 2 2 1 2 1 2

p E E E E x

E E E E y

L s u s u c L s u s u c

L c u c u s L c u c u s

θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ

 = − − − − + + − + − + + 
 + + − + + + + + − + + 

R u

u

     


 

     

 

  (20) 

Note, yet 
1) The load is located at the end of the beam 2 and therefore, 2x  was replaced by 2L . 
2) 2u  and 2u  were replaced, respectively by 2Eu  and 2Eu , emphasizing that the displacement considered 

due to the flexibility at the end of the beam 2. 

3) Considering 
2 2

|2
2

2
E

x L

u u
x

=

 ∂
= ∂ 

 and the moment of inertia of the load with respect to an axis through of the  

point O2 defined by Jp, then  

|2
2

1 1
2 2p p p p p ET m J u= ⋅ + 

R R                                   (21) 

is the kinetic energy related to the mass of the load and the rotational kinetic energy of the load due to its 
movement around the axis that passes through point O2 and that is perpendicular to the plane shown in Figure 1. 
With these facts in mind, one can obtain the following final expression for the total kinetic energy of the system: 
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( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

22 2 2 2
0 1 1 11 12 1 11 11 12 12 2 1 1 2 11 11 12 12

222 2 2
2 1 11 11 12 12 2 1 1 11 11 12 12 1 2 01 2 21 22

1 2 21 21 22 22 2 1 1 1

1 1 1 1
2 2 2 2

1 1 1
2 2 2

1
2

E E

E E E E

T J m q q nw q nw q m L m q q

m q q m L q q J m q q

nw q nw q m L

θ θ θ φ φ

θ φ φ θ φ φ θ θ

θ θ θ θ

= + + + + + + +

+ + + + + + + +

+ + + + +

  

     

   

   

   

  ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

2 2 1 1 21 21 22 22 2

2 2 1 2 11 11 12 12 2 11 11 12 12 21 21 22 22 2

1 2 21 21 22 22 11 11 12 12 2 2 2 1 1 2 11 11 12 12 2

1 1 1 2 21 2

1
2

1
2

E E E E

E E E E

c L nq q nq q c

m L q q c q q nq q nq q c

nq q nq q q q s m L q q s

L nq q

θ θ θ θ

θ θ φ φ θ φ φ θ

θ θ φ φ θ θ θ θ φ φ θ

θ θ θ

+ +

+ + + + + +

+ + + + − + + +

+ +

 

 

     

    

 

   ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 22 22 2 1 1 2 21 21 22 22 11 11 12 12 2

2 2
1 21 21 22 22 11 11 12 12 2 1 1 1 1 11 11 12 12

2 22 2 2
11 11 12 12 1 11 11 12 12 1 1

1
2

1 1 1 1
2 2 2 2

E E

E E j j E E

j E E j E E p p

nq q s nq q nq q q q c

nq q nq q q q s m L m L q q

m q q m q q m L m

θ θ θ θ φ φ θ

θ φ φ θ θ θ φ φ

φ φ θ φ φ θ φ

+ − + + + + +

+ + + + + +

+ + + + + +

  

  

   

 

  ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

2
11 11 12 12

222 2
1 11 11 12 12 1 1 11 11 12 12 2 1 2

22
21 21 22 22 1 2 21 21 22 22 2 1 2 21 21 22 22

1 2 1 1 2 2 1 1 21 21

1 1
2 2
1 1
2 2

E E

p E E p E E p

p E E p E E p E E E

p p E

q q

m q q m L q q m L

m q q m q q m L q q

m L L c m L q

φ

θ φ φ θ φ φ θ θ

φ φ θ θ φ φ θ θ φ φ

θ θ θ θ θ φ

+

+ + + + + +

+ + + + + + + +

+ + + +

 

   

 

   

   

    ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

22 22 2 2 1 2 11 11 12 12 2

11 11 22 22 21 21 22 22 2 1 2 11 11 12 12 21 21 22 22 2

2 1 1 2 11 11 12 12 2 1 1 1 2 21 21 22 22 2

E p E E

p E E E E p E E E E

p E E p E E

p

q c m L q q c

m q q q q c m q q q q s

m L q q s m L q q s

m

φ θ θ θ φ φ θ

φ φ φ φ θ θ θ φ φ φ φ θ

θ θ θ φ φ θ θ θ θ φ φ θ

θ

+ + +

+ + + + + + + −

+ + + + + + −

+

 

 

 

     

     

 ( ) ( ) ( )

( ) ( ) ( )
1 1 2 11 11 12 12 21 21 22 22 2

2| |
1 11 11 12 12 21 21 22 22 2 21 21 22 22

1 1
2 2

E E E E

p E E E E p E E

q q q q c

m q q q q s J q q

θ θ φ φ φ φ θ

θ φ φ φ φ φ θ φ φ

+ + +

+ + + + +

 



   

 (22) 

3.3. Potential Energy 
In the calculation of the total potential energy of the system it is assumed an energy associated to the rigid 
movement (gravitational potential energy), plus the elastic potential energy of the links. Ox is taken as reference 
and the potential energy of the system (assuming u1 and u2 sufficiently small) is given by: 

( ) ( )

1 2

1 2
1 1 1 1 2 1 1 1 2 1 1 2 1 2

2 22 2
1 2

1 1 2 22 2
1 20 0

2 2

1 1d d
2 2

j p

L L

L LV m g s m gL s m g L s s m g L s L s

u uEI x EI x
x x

θ θ θ θ θ θ θ θ = + + + + + + +    

   ∂ ∂
− −   ∂ ∂   

∫ ∫
          (23) 

where: 
g is the gravitational acceleration constant; 
L1 and L2 are the lengths of the links 1 and 2, respectively; 
EI1 and EI2 are the rigidity of the links 1 and 2, respectively, which in this model are assumed to be constants. 

In fact, the elastic displacements u1 and u2 (Figure 2 and Figure 3), were considered sufficient small. However, 
I would like to outline that the assumption that the deformation is sufficient small do not implies, necessarily, 
that the angles are small. 

3.4. Motion Equations 
In order to write down the motion equations of the system it will be used the assumed modes method. For the  
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Figure 3. Position vector (beam 2). 

 
elastic displacements of the beams 1 and 2, it is possible to assume that 

( ) ( )1 1 1 1
1

n

i i
i

u x q tφ
=

= ∑                                   (24) 

( ) ( )2 2 2 2
1

n

i i
i

u x q tφ
=

= ∑                                  (25) 

where the admissible functions ( )ji xφ  must satisfy the geometrical boundary conditions with respect to the 
representation of the links in the reference systems [ ]1 1Ox y  and [ ]2 2 2O x y . Hence the system becomes repre-
sented by ( )2 2n +  degrees of freedom. 

If it is assumed that the amplitudes of the higher order vibration modes are very small when compared to the 
first vibration mode, the system may be truncated with n equal to 2, resulting in a problem involving six degrees 
of freedom. 

Besides this, if it is assumed that ( )ji xφ  are eigenfunctions of the problem of a clamped free beam and due 
to the ortogonality of this functions we will have: 

( ) ( )
1

0

0 if   
d

1 if   

L

r s

r s
x x x

r s
φ φ

≠
=  =

∫                              (26) 

With this equation, one can assess each one of the integrals in the equations for both the kinetic and the po-
tential energy considering 1 2 11 12 21 22, , , , ,q q q qθ θ  the generalized coordinates and 1 2,Γ Γ  the non-conservative 
torques acting at the joint of the system, it is possible to write the equations of the movement—with convenient 
parameterization of the terms and without the usage linearization procedure—using the Lagrange equations for 
non-conservative systems, 

( )d ,     1 1 6
d r

r r r

T T V Q r
t q q q
 ∂ ∂ ∂

− + = = ∂ ∂ ∂ 
                           (27) 

where: Qr are the time dependent generalized non-conservative forces (or torques). 
The equations assume the final form, 

1 1 1 1 perturb 1 1J Fθ θ τ+ + Γ =                                   (28) 

2 2 2 2 perturb 2 2J Fθ θ τ+ + Γ =                                  (29) 

3 11 3 11 perturb 3 0J q F q+ + Γ =                                  (30) 

4 12 4 12 perturb 4 0J q F q+ + Γ =                                  (31) 

5 21 5 21 perturb 5 0J q F q+ + Γ =                                  (32) 

6 22 6 22 perturb 6 0J q F q+ + Γ =                                  (33) 

where 
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1 1 1 1 2 1 2 1J A B C s D c Eθ θ= + + + +                               (34) 

1 1 1 2 1 2F H I s M cθ θ= + +                                  (35) 

( )

2
perturb.1 1 2 111 11 112 12 121 21 122 22 1 2 1 2 1 1

2
1 1 2 1 1 2 1 2 1 2 1 2.

P R q R q R q R q S T U c

V c Y a b c e s

θ θ θ θ

θ θ θ θ θ θ

Γ = + + + + + − +

 + + − + − − + 

  

   

  

              (36) 

2 2 2J A B= +                                      (37) 

2 2F H=                                        (38) 

( ) 2
perturb.2 2 1 21 21 222 22 2 1 2 1 2 2 2 1 2 1 2 1 2 2

2
2 1 2 1 2 1 2 2.

P R q R q S V c Y a b c e s

p r s v c

θ θ θ θ θ θ θ θ

θ θ θ θ

 Γ = + + + + + + + + − 
 + − + + 

    

 

  

         (39) 

3 311J A=                                       (40) 

3 0F =                                        (41) 

( )
( ) ( )

2
perturb.3 311 1 312 12 312 1 311 11 3 1 2 3 1 3 2 3 2

2 2
11 3 1 2 3 1 2 1 2 3 2

2

1 12 .2 2

E

E

P R q T Kw a b c e s

p a v c

θ θ φ θ θ θ θ θ

φ θ θ θ θ θ θ θ

 Γ = + − − − + + + + 
 + + + + + +  

     



     

          (42) 

4 412J A=                                       (43) 

4 0F =                                        (44) 

( )
( ) ( )

2
perturb.4 412 1 411 11 411 1 412 12 4 1 2 4 1 4 2 4 2

2 2
12 4 1 2 4 1 2 1 2 4 2

2

1 12 .2 2

E

E

P R q T Kw a b c e s

p a v c

θ θ φ θ θ θ θ θ

φ θ θ θ θ θ θ θ

 Γ = + − − − + + + + 
 + + − + + +  

     



     

          (45) 

5 521J A=                                       (46) 

5 0F =                                        (47) 

( ) ( )2
perturb.5 521 1 2 522 22 521 521 521 1 521 1 521 2 521 1 2 1 2

2
521 1 521 1 521 1 2 521 2

2

.

P R q Z Kw a b c d s

p r s v c

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ

 Γ = + + − − + + − + + 
 − + + − 

       



   

      (48) 

6 622J A=                                       (49) 

6 0F =                                        (50) 

( ) ( )2
perturb.6 622 1 2 621 21 622 622 622 1 622 1 622 2 622 1 2 1 2

2
622 1 622 1 622 1 2 622 2

2

.

P R q Z Kw a b c d s

p r s v c

θ θ θ θ θ θ θ θ θ

θ θ θ θ θ

 Γ = + + − − + + − + + 
 − + + − 

       



   

      (51) 

The coefficients of these equations are presented as follows: general coefficients are relative of the rigid sys-
tem. Table 1 and Table 2 show the specific coefficients for the elastic system. Thus, 

General coefficients: 
| | | | |

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5,    ,    ,    ,    A A A A Aα α α α α α α α α α∗ ∗ ∗ ∗ ∗= + = + = + = + = +               (52) 

2 2 2 2
1 1 1 2 2 2 1 2 2 1 2 3 2 2

1 1 1,    ,    
3 3 3

m L m L m L m L L m Lα α α= + + = =                      (53) 

4 1 1 2 1 5 2 2
1 1,    
2 2

m L g m L g m L gα α= + =                             (54) 

| 2 2 | | 2 | |
1 1 2 2 1 2 3 2 4 1 5 2,    2 ,    ,    ,    p p p p p pm L m L m L L m L m L g m L gα α α α α= + = = = =             (55) 
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Table 1. Coefficients of the first three equations of motion. 

Coefficients of the motion equations 

1st equation 2nd equation 3rd equation 

1 1A A∗= ; 2
1 1jB m L= ; 1 1 2 52C α β γ= ℑ − ℑ − ℑ ; 

( )1 2 1 2 1 52D A δ∗= + ℑ ℑ + ℑ ℑ ; 2
1 1E ε= ℑ ; 1 4 1 32H η ε= ℑ + ℑ ℑ ; 

( )( )1 3 4 6 2 1 2 1 5 23 2 2I Aη β γ δ θ∗ = ℑ − ℑ − ℑ − + ℑ ℑ + ℑ ℑ 
 ; 

( ) ( ) ( )1 1 2 5 2 1 4 2 3 1 6 3 53 2 2 2M η β γ θ δ = ℑ − ℑ − ℑ + ℑℑ + ℑ ℑ + ℑℑ + ℑ ℑ 
 ; 

1 3 2P A η∗= + ℑ ; 111 11R nw= ; 112 12R nw= 121 21R nw= 122 22R nw= ; 

1 4S η= ℑ ; 1 1 5T = ℑ ℑ ; 1 4U A∗= ; 1 5V A∗=  1 7Y εγ= ℑ ; 1 1

1
2

a C= ; 

1 4 6b β γ= ℑ + ℑ ; ( )1 2 1 2

1 2
2

c A δ∗= + ℑℑ ; 1 1p c= ; 1 1r a= ; 

( )1 6 1 4 1 6

1 3 4
2

s γ δ= ℑ + ℑℑ + ℑℑ ; 1 7 8 1 9

1
2

v α η= ℑ + ℑ + ℑℑ  

2 3A A∗= ; 2
2 2B δ= ℑ ; 2 4H η= ℑ ; 

2 3 2P A η∗= + ℑ ; 221 121R R= ;  

222 122R R= ; 2 1S S= ;  

2 1V V= ; 2 8Y η= ℑ ; 2 1a a= ;  

2 3 4b α β= ℑ − ℑ  

( )2 2 1 2 1 5

1 2 2
2

c A δ∗= + ℑℑ + ℑℑ  

2 2 7 5 7e δ= ℑ ℑ + ℑ ℑ ;  

2 2p c= ; 2 2r a= ; 

( )2 1 4 2 3 3 5

1 4 4
2

s δ δ= ℑℑ + ℑ ℑ + ℑ ℑ  

2 7

1
2

v α= ℑ  

( ) 2
311 1 11EA m ε φ= + ; 

311 11 11

1
2 EP nw εγφ = + 

 
; 

312 11 12E ER εφ φ= ; 

( )2
312 11 11 12 12E E ET qε φ φ φ= + ; 

311 111Kw Kw= ; 3 5 2a δ= ℑ + ℑ  

3 6 4

32
2

b δ= ℑ + ℑ ; 

3 6 42 2c δ= ℑ + ℑ ; 

( )2 2
3 1 2 1 2

1 2
2

e α θθ θ θ= + +    ; 

3

1
2

p α= ; 3 8 9v δ= ℑ + ℑ  

 
Table 2. Coefficients of the last three equations of motion. 

Coefficients of the equations of motion 

4th equation 5th equation 6th equation 

( ) 2
412 1 12 EA m ε φ= + ; 

412 12 12

1
2 EP nw εγφ= + ; 411 312R R= ;  

( )2
411 12 11 12 11E E ET qε φ φ φ= + ; 

412 122Kw Kw= ; 4 3a a= ; 4 3b b=  

4 3c c= ; 4 3e e= ; 4 3p p= ; 4 3v v=  

( ) 2 2
521 2 21 22E p EA m Jδ φ φ= + + ; ( )521 21 21EP nw ηφ= + ; 

521 211Kw Kw= ; ( )| |
522 21 22 21 22p E E E ER J φ φ δφ φ= + ; 

( )2 2
521 21 1 2 1 2

1 2
2 EZ βφ θθ θ θ= + +    ; 

521 21 21 1

1
2 Ea nq δφ = + ℑ 

 
;  

521 21 21 3

32
2 Eb nq δφ = + ℑ 

 
; 

( )521 21 21 32 2 Ec nq δφ= − ℑ ; 521 21

1
2

p nqγ= ; 

521 21 1

1
2 Es δφ= ℑ ; ( )521 21 21 1Er nq δφ= + ℑ ; 

( )521 21 21 7Ev nq δφ= + ℑ  

( ) 2 2
622 2 22 22E p EA m Jδ φ φ= + + ; 

( )622 22 22 EP nw ηφ= + ; 622 222Kw Kw= ; 

( )| |
621 21 22 21 22p E E E ER J φ φ δφ φ= + ; 

( )2 2
622 22 1 2 1 2

1 2
2 EZ βφ θθ θ θ= + +    ; 

622 22 22 1

1
2 Ea nq δφ = + ℑ 

 
; 

622 22 22 3

32
2 Eb nq δφ = + ℑ 

 
; 

( )622 22 22 32 2 Ec nq δφ= − ℑ ; 622 22

1
2

p nqγ= ; 

622 22 1

1
2 Es δφ= ℑ ; ( )622 22 22 7Ev nq δφ= + ℑ  

 
1 1 2 2 2 2, 2 , , , , , 2p p j p pm L L m L m m m m L mβ γ η ε ψ δ α ψ η= = = = + + = = = +        (56) 

and, 
1 11 11 12 12

2 21 21 22 22

3 11 11 12 12

4 21 21 22 22

5 21 21 22 22

6 21 21 22 22

7 11 11 12 12

8 21 21 22 22

9 21 21 22 22

E E

E E

E E

E E

E E

E E

q q
q q
q q
q q

nq q nq q
nq q nq q

q q
q q

nq q nq q

φ φ
φ φ
φ φ
φ φ

φ φ
φ φ

ℑ = +
ℑ = +
ℑ = +
ℑ = +
ℑ = +
ℑ = +
ℑ = +
ℑ = +
ℑ = +

 

 

 

 

 

 

                                 (57) 
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This convenient parameterization of the terms of equations of motion allows us a comparison with pre-estab- 
lished methods and the contribution of each elastic term of the parameterized system. 

4. Some Numerical Simulation Results 
The simulations are performed considering sinusoidal excitation. Some results are presented, according to the 
following methodology: 

1) The elastic system was simulated with all its contributions taken into account. Full elastic system, equa-
tions simulated (28) to (33) and Figure 4 to Figure 7. 

2) After that, the effects are individually and cumulatively subtracted and the system behavior is analyzed. 
Elastic system, Equations (28) to (33) subtracted flexibility in the J-term; (Figure 8 and Figure 9) and after sub-
tracted flexibility in the perturbT  term (Figure 10 and Figure 11). 

3) The effects are subtracted until the limit condition in which the elastic system is reduced (mathematically) 
to a rigid one by means of vanishing the flexibility related terms, and the system response converges—as ex-
pected—for the case of the rigid system modeled separately. Equations reduced (28) to (33) and Figure 12 and 
Figure 13. 

 

 
Figure 4. Angular position x time (beam 1). 

 

 
Figure 5. Angular position x time (beam 2). 
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Figure 6. Angular velocity x time (beam 1). 

 

 
Figure 7. Angular velocity x time (beam 2). 

 

 
Figure 8. Subtracted flexibility in J-term (beam 1). 
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Figure 9. Subtracted flexibility in J-term (beam 2). 

 

 
Figure 10. Subtracted flexibility in Tperturb (beam 1). 

 

 
Figure 11. Subtracted flexibility in Tperturb (beam 2). 



S. A. David 
 

 
3472 

 
Figure 12. Elastic system reduced to a rigid one (beam 1). 

 

 
Figure 13. Elastic system reduced to a rigid one (beam 2). 

5. Conclusions 
The Lagrangian dynamic in conjunction with the assumed modes method were utilized in order to obtain the 
non-linear equations of motion. 

A convenient parameterization of the terms of the motion equations, which makes it easier to compare the 
simulation results for the rigid and for the elastic system, was also developed. 

About the comparison with other equations of motion in current literature, I outline that the approach here 
formulated is innovative. The works founded in the literature involving dynamic modelling of the elastic struc-
tures uses some kind of the linearization procedure and presents your equations of motion in most cases like a 
matrices formulation, i.e., mass matrix, damping matrix, stiffness matrix and elasticity matrix. In this paper, 
equations are treated with all non-linearities taken into account and the approach entails parameterization of the 
nonlinear dynamics without the usage of any simplifying linearization procedure. The elastic structure may be 
mathematically reduced to a rigid one by means of vanishing the flexibility related terms. The same procedure 
may be extended to the simulations, which makes it possible to find a mathematical frontier between both sys-
tems. 

The effects of the flexibility are explored by comparing the resulting simulation results. 
Besides, the way in which the motion equations are treated in this paper allows the monitoring of each con-
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tributing factor for the system elasticity. Thus, one can be taught about the efficient controllers which can make 
compensation about the flexible (elastic) physical effects. 
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Nomenclature 
Latin Letters 

, , , , , A B a b  geometric vectors 
[ ] [ ], ,A B    matrices 
E     Young’s modulus 
EI    stiffness 
m     mass 

pm    payload mass 
jm    joint mass 

g     gravity 
L     length 

iq     generalized coordinate  
t     time 
T     kinetic energy 

·Eu    elastic displacement at the end of the beam (•) 
V     potential energy 
A     first time derivative of A, a, ∙∙∙ 
A     second time deriv. of A, a, ∙∙∙ 
k     stiffness 

Greek Letters 

ijφ    admissible functions 
1 2,θ θ    angles 
1 2,τ τ    torques 

Abreviations 
•T    transpose of the matrix (•) 
Tr    trace of a matrix 
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