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Abstract

In this paper, we proposed new results in quadruple Laplace transform and proved some proper-
ties concerned with quadruple Laplace transform. We also developed some applications based on
these results and solved homogeneous as well as non-homogeneous partial differential equations
involving four variables. The performance of quadruple Laplace transform is shown to be very
encouraging by concrete examples. An elementary table of quadruple Laplace transform is also
provided.
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1. Introduction

Many engineering and science fields encounter linear or non-linear partial differential equations describing the
physical phenomena. A number of methods (for example, approximate and exact methods) can be used to de-
termine the solutions of differential equations. Mostly, it may be complicated to solve these equations analyti-
cally. Such equations are commonly solved by integral transforms such as Laplace and Fourier transforms and
the worth of Laplace and Fourier transforms lies in their ability to transform differential equations into algebraic
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equations, which allows a systematic and simple way to find solution. The numerical methods can provide ap-
proximate solutions rather than analytic solutions of the problems [1]. A number of aspects of these methods
have been studied in [2] [3].

The Laplace transform has been effectively used to solve linear and non-linear ordinary and partial differen-
tial equations and is used extensively in electrical engineering. The Laplace transform reduces a linear differen-
tial equation to an algebraic equation, which can be solved by rules of algebra. The original differential equation
can then be solved by applying the inverse Laplace transform. The Heaviside first proposed a scheme, without
using the Laplace transform (see [4] and references therein).

Eltayeb and Kiligman [5] applied double Laplace transform to find the solution of general linear telegraph and
partial integro-differential equations. Dahiya and Najafai [6] established new theorems for calculating the
Laplace transforms of n-dimensions and application of these theorems to a number of commonly used special
functions was considered, and in the end, authors solved one-dimensional wave equation involving special func-
tions using two dimensional Laplace transforms. Aghili and Moghaddam [7] presented a new theorem and cor-
ollary on multi-dimensional Laplace transformations. Authors further developed some applications based on
these results. Kilicman and Eltayeb [8] discussed the relationship between Sumudu and Laplace transforms and
further made some comparison on the solutions. Authors provided some counter examples. Cheniguel and
Reghioua [9] investigated the solution of three-dimensional diffusion equation with non-local condition using
Adomian decomposition method. Atangana [4] introduced the triple Laplace transform. Author discussed some
properties and theorems about the triple Laplace transform. Moreover, author used the operator to solve some
kind of third-order differential equation.

The aim of this paper is to discuss some properties and theorems about the quadruple Laplace transform and
give a good strategy for solving the fourth order partial differential equations in engineering and physics fields,
by quadruple Laplace transform.

First of all, we recall the following definitions.

The double Laplace transform of a continuous function f (x, y) can be defined [5] [10] as

F (p.a) =Ly f(x,y)=[[; e ™e™f (xy)dxdy, (1.1)

where x, y > 0 and p, q are Laplace variables.
The inverse double Laplace transform is defined as

_ 1 (atio 1 p+io
f(xy)=LFY(p,q)=— Pl YEY (p,q)dq |dp. 1.2
(xy)=LyF¥(pa)=o—~], . ¢ (Znijﬁ_iwe (p.q) qj p (12)
The triple Laplace transform [4] of a continuous function f (x, Y, z) can be defined as
F(p,0,1) =Ly, f (% y,2) = [[[ e e ¥e ™ f (x,y,2)dxdydz, (1.3)

where x,y,z>0and p, g, r are Laplace variables.
The inverse triple Laplace transform is defined as

_ 1 a+io 1 P+io 1 Etioo

f(x,y,2)=LLFY(p,ar)=—| ™ —|[ e¥|—[ e"F*(p,qr)dr|dg|dp. (14

(xy.2) =Ly P> (par) =< (Znijﬂm [mj:m (p.ar) jq] P (L4)
In the following section definitions of quadruple Laplace transform, its inverse and some of its properties are

presented.

2. Definitions and Properties

Before launching into the main part of the paper, we define some notations and terminologies which will remain
standard.

F"(p,q,1,8) =Ly, f (W, X,Y,2),
FY(p.a,r,z) =L, f(w,xy,2),
F™(p,a,y,2) =L f (W, x,y,2),
F'(p.xy.z)=L,f(wxy,2).

)
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Quadruple Laplace transform: Let f be a continuous function of four variables, then, the quadruple Laplace
transform of f (w,x,y,z) is defined by

F™ (p0,1,5) =Ly, f (WX y,2)= I'[”:)e’pwe’c‘xe”ye’SZ f (w, X, y,z)dwdxdydz, (2.1)

where w, x,y,z>0and p, g, r, s are Laplace variables.
It is to be noted that the quadruple Laplace transform operator is linear.

Loy {8F (W, X, ¥, 2)+bg (W, X, y,2)} =aL,,, { f (w.x,y,2)}+bL,,, {g(w.x,y,2)}. (2.2)
Now, if the quadruple Laplace transform is known, its inverse is given by
f(w,x,y,t)=L,,F" (p.a.r,s)

1 ratio 1 (p+iw 1 py+io 1 o+ (2-3)
=— e — ™| — eV | — e¥F"™"(p,q,r,s)dz |dy |dx |dw.
2 ti Ja—ioo (Zﬁi Iﬂ—ioc [2ni Iy—iw (Zﬁi .[5400 (p q ) j YJ ]
Quadruple Laplace transform for some partial derivatives of function of four variables are given as
1) Quadruple Laplace transform for first order partial derivative of function of four variables
Loy [ai f(w,xy, z)} =sF"(p,q,r,s)-F"(p,q,r,0). (2.4)
z
2) Quadruple Laplace transform for second order partial derivative of function of four variables
82 WXyzZ Xyz a Xyz
o {W”W'X’ V'Z)} pPF (P,air,s) = PF (0,0,1,8) = —F ™ (0,q,1.5), (2.5)
62 2 = wxyz wyz 0 wyz
Loz pv f(w,xy,2)|=0F"(p,q,r,s)-qF (p,O,r,s)—&F (p.0,r,s), (2.6)
| 62 2 = Wxyz WXz a WXz
(I v f(w,x,y,2)|=r*F"(p,qr,s)-rF (p,q,O,s)—EF (p.a.,0,s). (2.7)

3) Quadruple Laplace transform for the mixed fourth order partial derivative of function of four variables
4

Loz m f(w,x, y,z)}

= parsF"*(p,q,r,s)- pqrF"® (p,q,r,0)— pasF**(p,q,0,s)— prsF**(p,0,r,s)
—qrsF**(0,q,r,s)+ paF"(p,,0,0)+ prF* (p,0,r,0)+ psF**(p,0,0,s) (2.8)
+qrF™(0,q,r,0)+qsF*(0,q9,0,s)+rsF*(0,0,r,s)— pF*"(p,0,0,0)
~qF*(0,4,0,0)-rF”(0,0,r,0)~sF*(0,0,0,s)+ f (0,0,0,0).

4
waxx |:— f (vavylz)i|
X
= p’q’F"™™(p.q,y,2)- p’dF*(0,0,y,2)- pg*F"(p.0,y,2) (2.9)
+pqgf (0,0,y,2)- p°F,’(p.0,y,2)-0°F; (0,0, y,2)
+pf, (p,0,y,2)+qf,(0,a,y,2)+ f,(0,0,0,0).

The uniqueness and existence of the quadruple Laplace transform is discussed in the following section.

3. Uniqueness and Existence of the Quadruple Laplace Transform

Consider f(w,X,y,z) be a continuous function on the interval [0,). Also, assume that f(w,X,y,z) is of
exponential order, that is, there exists some constants a, b, ¢, d € R such that f(W, X, y,z) satisfy the fol-
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lowing condition

|f (W, x,y,2)|

eavv+bx+cy+dz

sup =

w,X,y,z>0

< oo, (3.1)

The quadruple Laplace transform

o (D18)= L (1..2) =[] & e % e c2)

exists forall p>a, q>b, r>c, s>d and satisfy the condition (3.1). The following theorem explains the
unigueness.

Theorem 1. Let f(w,X,y,z) and g(w,X,Y,z) is defined be continuous functions defined for w, x, y, >0
and having Laplace transforms, F"*(p,q,r,s) and G"(p,q,r,s) respectively. If

F™ (p,q,r,s)=G""(p,q,r,s), then f(w,Xy,z)=0g(WxY,2).
Proof If «, B, y, 6 are sufficiently large. Then, from the definition of the quadruple inverse Laplace
transform, we have

f(w,x, y,z):i_ afimepw[ilj‘ﬁfiooeqx[L-J';/Jr-iooery(L-J-inweszlzwxyz(p’q'r,S)dedyjdedW. (3.3)

27 Ca-ie 27 2 F-i 27l 77 27 09w

Using the hypothesis, F"*(p,q,r,s)=G""(p,q,r,s), the expression (3.3) can be written as

1 a+io 1 P+io 1 y+io 1 S+io
f — pw agx ry SZGWXyZ , T, d d d d
(W XY Z) 2t i € (27‘& -[ﬁ—ioo € (27& L—ioo € (ZRi .[5430 € (p Q.r S) Zj yj XJ w (3.4)
=g(w,x,vy,2),

this completes the proof.

4. Convolution Theorem for the Quadruple Laplace Transform

In this section, we will give some definitions of convolution for functions and state the convolution theorem of
the quadruple Laplace transform.

Consider the functions f,(w,x,y,z), f,(w,xy,z), f;(w,xy,z) and f,(w,xy,2).

The convolution of functions f, and f, can be defined as

=[]t (w=p.x=0.y-y.2-1) T,(p.0.w.0)dpdedwdn. (4.1)
The convolution of functions f,, f, and f, can be defined as
(f,%f,) j.[.[j f,(w=(w,+p), x=(x+9),y— (Y, +¥).2
~(z,+n)) fz(Wl—plxl—qo, Yi—v.z—n) f (00w, 1) dpdpdydy.
Similarly, the convolution of functions f,, f,, f; and f, can be defined as
fox(fx(fyx 1) IIJ‘J' f (W= (W, +W, + p),Xx=(X + X +¢),y
—(y1+y2+1//), ~(z,+2,+7m)) (W= (W, + ), % — (X, + ),
V= (Yo+¥),2(2,+1)) fs (W = 0%, =0, ¥, —, 2, = 17)
~f.(po.vw.n)dpdpdydn.
Theorem 2. (Convolution Theorem) If

() =[] e e e e . e &

(4.2)

£ (p,q,r,s) = ””: e ™e e e ™ f, (W, X, y,z)dwdxdydz, (4.4)

)
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F" (p,a,r,s) = [[[[ e ™e e ™e ™ f, (w,x, y,2) dwdxdydz, (4.5)
are convergent at the point (p,q,r,s) and if
F (p,q,r,s)= ””: e ™e¥e Ve " f, (w,X, y,z)dwdxdydz, (4.6)
is absolutely convergent, then, the following expression
F™ (p,a,r,s)=F""(p,q,r,s)F," (p,a,r,8)F"™ (p.a,r,s)F,"™ (p.q,r,5), 4.7
is the Laplace transform of the function
(w,x,y,2) jjjj f(W=(W,+W, +p), X=(X + X, +9),y
(Y1 + Y, +¢//), ~(z+2,+7)) f, (W, — (W, + ), %~ (X, +0), 48)
V= (Yo +w). 2 (2, +1)) (W, — 0. X% — 0, ¥, —w, 2, —17)

~f, (00w, m)dpdpdydn,
and the integral

F" (p,q,r,s)=[[[[ e ™e e e f (w,x,y,z)dwdxdydz, (4.9)
is convergent at the point (p, qg.r, s) , see the proof in [11].

5. Properties of Quadruple Laplace Transform

In this sectioon, some properties of quadruple Laplace transform are presented
Property (1)

F* (p+a,q+b,r+c,s+d)=L,, [e’a‘we’bxe’“ye’dZ f(w,x, Y, z)}( p.q.1,8). (5.1)
Proof: By definition (2.1) of quadruple Laplace transform left hand side of (5.1) can be solved as
Lo [ €6 e e f (W,X,y,2) |(p,.T,5)
=[] j: e e e Ve Pe e e Ve f (W, X, y, ) dwdxdydz (5.2)
= [[[ e e e e e e (I: e e f (w,x,Y,2) dz)dwdxdy.
The inner integral with respect to z in Equation (5.2) can be solved after proper substitution as
I: e e f (w,x,y,2)dz = .[:e’(s“’)Z f(w,x,y,2)dz=F*(w,x,y,s+d). (5.3)
Equation (5.2) becomes
Ly [e’*‘"”e’*’*e’Cye’dZ f(w,x, Y, z)]( P,q.r,5)
= [[[ e e ™e e Me e "F* (w,X, y,s+d)dwdxdy (5.4)
= ” g e e Mg (J e ¥ "F’(w,x,y,s+d )dy)dwdx
The inner integral with respect to y in Equation (5.4) can be solved after proper substitution as
j:e‘°ye‘WFZ (w,x,y,s+d)dy = J':e’(c”)yFZ (w,x,y,s+d)dy=F"(w,x,c+r,s+d). (5.5)
After substituting the value from Equation (5.5) in Equation (5.4), we can get
Ly | €6 e % £ (w,x,y,2) |(p.qr,5) = [[ e e ™ e ™e ™ F* (w,x,r +¢,5+d ) dwdx. (5.6)

On the similar lines, integrating Equation (5.6) twice accordingly, we can obtain required result Equation
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(5.1).
Property (2)

1 WXyz p q r S
——F" = = = = =L | f(aw, BX,7y, 62 ,0,1,8). 5.7
i by S N UG L) LR 6)
Proof: By definition (2.1) of quadruple Laplace transform right hand side of (5.7) can be solved as

Lunge | f (@W, BX,7y,62)](p.a.1,5)

= J’J’“’: e ™e e e f (aw, BX, Y, 6z)dwdxdydz (5.8)

=[[[ e e re™ (j: e f (aw, fX,7Y, §z)dz)dwdxdy.

The inner integral with respect to z can be solved, after proper substitution as
e f (aw, BX,yy,0z)dz==F*| w,X,y,— |. 5.9
[ e (aw, Bx,yy,52) 5(y5j (5.9)

On the similar lines, integrating Equation (5.9) with respect to y, x, w after proper substitution, we can obtain
required result Equation (5.7).

Property (3)
(_1)m+n+y+v am—nww wayz(p q,r s): Lo [W’“x”y"zvf (W X,y Z)] (5.10)
op™aq"ortos” T ¥z A '
Proof: By definition (2.1) of quadruple Laplace transform left hand side of (5.10) can be solved as
m+n+u+v am+n+y+v
)" —————F"™*(p,q,r,s
m+n+p+v am+n+”+v © — — —
=(-)"" — e Me e e ™ f (w,X,y,z)dwdxdydz 5.11
= (=) ﬂ”ﬁe‘“e‘“*e"" Jwie‘“ f (w,X,y,z)dz |dwdxdy.
op™oq"or# 740 0 gs”
The inner integral with respect to z can be solved by parts and gives
w 0" —sz v v
IO a?e f(wxyz)dz=(-1)"L, {z f(wx,y, z)} (5.12)

Equation (5.11) becomes

M+N+u+v
(_1)m+n+/l+\/ a[)fww FWXyZ ( p’ q’ r’ 5)
=(-1)"" —api;n:; o H J: e Pe e ((—1)V L, {z“ f(w,x,Yy, z)})dwdxdy
= (=)™ %”f e Pl ¥ (LZ {2 f (wxy, z)})dwdxdy.

On the similar lines, integrating Equation (5.13) accordingly with respect to y, X, w, we can obtain required
result Equation (5.10).

Theorem 3. A function f (w,x,y,t) which is continuous on [0,%0) and satisfies the growth condition (3.1)
can be recovered from only F"*(p,q,r,s) as

-1 M +Ny+Ng+Ny m+1 ny+1 ng+1 ng+1 Ny +Ny+Ng+Ny
meﬂZM1LL__@jP%(% @jj___P&&&}mm

mng.ng g 0y 1N, IngIn, T w X y z anonongon, [ w' x 'y 'z

To check the efficiency of the theorem, we consider the following example.

)
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Wb gor which Laplace transform can easily be found as

o rs)= 1 :
F(pars) (p+a)(g+b)(r+c)(s+d)

Taking higher order mixed derivatives of Equation (5.14), leads

Let f(wxy,z)e

(5.14)

M2 Na N My +Ny+Ng+ny

on,on,on,on,

n!n,!ngIn, 1(-1)
(p +a)n1+1 (q 4 b)n2+l (r " C)n3+l (S —|—d )n4+1 :

F"(p,q,r,s)=

Using (5.14) and theorem 5.1, yields

n+1 ny+1 ng+1 ny+1 -1 -ny-1 —nz-1 —ny-1
f(wxyz)=lim L Ny D Ny a+ b+l e+l d+
MN2,Ng,Mg =0\ W X y z w X y Z
-m-1 —np-1 -ng-1 —ny-1
= lim [1+a—W] [1+%J [l+c_y] (1+d—ZJ .
M2, N3,Ng —>0 n, n, n, n,

Using the application of logarithm and the L’Hospital’s rule on the previous expression reveals

Inf(w,Xx,y,z)=—aw-bx—-cy-dz,
( v:2) Y (5.15)

—aw—bx—cy—dz

f(wxy,z)=e

6. Numerical Examples

To illustrate the applicability and effectiveness of our method, some examples are constructed in this section.
Example 4.1. Consider the following fourth order partial differential equation

84
AWAXAVE7 1M Ya e )T IRAYD A :0,
awoxayer (WX y2)mu(wxy.2)
U(O,)(l y'Z)zex+y+z' U(W, 0,y,Z)=€W+yH,
U(W, X,O’Z):ew‘*x‘”, U(W’X’y'o):ew+x+y.

Applying quadruple Laplace transform L, on both sides of Equation (6.1), gives
(pars—1)U (p,q,r,s)-G(p.q,r,s)=0, (6.1)
where
G(p.,q,r,s)=parF*(p,q,r,0)+ pasF"*(p,q,0,s)+ prsF"™ (p,0,r,s)+qrsF**(0,q,r,s)

- paF"™(p,q,0,0)— prF™(p,0,r,0)— psF**(p,0,0,5)—qrF*(0,q,r,0)
-qsF*(0,9,0,s)—rsF**(0,0,r,s)+ pF"(p,0,0,0)+qF*(0,9,0,0) (6.2)
+rF¥(0,0,r,0)+sF*(0,0,0,s)- f (0,0,0,0)

(pars—1) .
(P-1)(a-1)(r-1)(s-1)

After substituting the value, Equation (6.1) becomes

1
(P-1)(a-1)(r-1)(s-1)

Applying the quadruple inverse Laplace transform on (6.3)

L 1 g
e e M 0

(6.3)

U(p.q,r,s)=
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Example 4.2. Consider the following three-dimensional diffusion equations [9]
@2u azu aZu au
gu e duv_
ot oy ot ot
U(O, y,Z,t)zeV*“3‘, U(l,y,Z,t):el+y+z+3t,
U(X,O,Z,t):eX”*at, U(X,l,Z,t):eX+1+Z+3t'
u(x, y:O.t)zex*y*a, u(x, y,llt):ex+y+l+3t’
U(X, Y, Z,O) — Xty

Applying quadruple Laplace transform L,,, on both sides of Equation (6.5), gives
(p2+q2+r2—s)U(p,q,r,s)=G(p,q,r,s), (6.5)
where
G(p.a.r,s)=pF*(0,q,r,s)+F(0,q,r,s)+qF*(p,0,r,s)+F*(p,0,r,s)
+rF*(p,q,0,5)+F*(p,a,0,s)-F*(p,q,r,0) (6.6)
(p*+a*+r*-s)
(P-1)(a-1)(r-1)(s-3)
After substituting the value of G(p,q,r,s), Equation (6.5) becomes

1
R CET R e )

Applying the quadruple inverse Laplace transform on (6.7)

(6.7)

-1 1 _ aX+y+z+3t
u(x,y,z,t)= Ly, P D(a-Dr—D(5-3) =e . (6.8)

Example 4.3. Consider the following non-homogeneous fourth order partial differential equation

4
8 W—-2X+Yy-22
y

——u(w,X,y,2)+u(w,X,vy,z)=5e
awoxaya (WX Y2 Hu(wx.y.2)
W+y-22

u(0,x,y,z)=e u(w,0,y,z)=e ,
u (W, X,O’ Z) — eW*ZX*ZZ, u (W, X, y, O) — ew—2x+y.

-2X+y-22
L

Applying quadruple Laplace transform L,,, on both sides of Equation (6.9), gives

5

(D@2 (-n=2) S Pers) (6.9)

(pars+1)U(p,q,r,s)=

where
G(p.q,r,s)=parF*”(p,q,r,0)+ pasF"*(p,q,0,s)+ prsF " (p,0,r,s)+qrsF**(0,q,r,s)
- pgF*(p,0,0,0)— prF*™(p,0,r,0)— psF**(p,0,0,s)—qrF¥(0,q,r,0)
—qsF*(0,0,0,s)—rsF**(0,0,r,s)+ pF*“(p,0,0,0)+qF*(0,q,0,0) (6.10)
+rFY(0,0,r,0)+sF*(0,0,0,s)— f (0,0,0,0)
(pars—4)
(p-1)(q+2)(r-1)(s+2)

After substituting the value of G ( p,q,r, s) , Equation (6.9) becomes
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1
u(p.a.r,s)= . (6.11)
( ) (p-1)(q+2)(r-1)(s+2)
Applying the quadruple inverse transform on (11)
- 1 W-2X+y-22
u(w,x,y,z)=L, =" (6.12)
( ) 1 (p-1)(q+2)(r-1)(s+2)
Example 4.4. Consider the following non-homogeneous three-dimensional diffusion equation
2 2 2
Pu U S A
ox* oy* or® ot
u(0y,z,t)=e*"  u(Ly,zt)=e"""",
u(x,0,zt)=e""" u(x1zt)=-e""",
u(x y,0,t)=e"7, u(xy1Lt)=e"""",
u(x,y,z,0)=e>".
Applying quadruple Laplace transform L,,, on both sides of Equation (6.13), gives
(p*+0*+r*=s)U(p,q,r,5)=G(p,q,r,5)+ 4 (6.13)

(p-1)(q+1)(r-1)(s+1)’
where
G(p.a.r,s)=pF**(0,q,r,s)+F(0,q,r,s)+qF*(p,0,r,s)+F*(p,0,r,s)
+rF*(p,q,0,s)+F,"(p,q,0,5)+F™(p,q,r,0). (6.14)
pP+q°+ri-s—4
“(p-1)(a+1)(r-1)(s+1)’

After substituting the value G(p,q,r,s), Equation (6.13) becomes

1
U(p,q.r,s)= . (6.15)
( ) (pP-1)(q+1)(r-1)(s+1)
Applying the quadruple inverse transform on (6.15)
u(x,y.z,t)=L,; ! =gyt (6.16)

Y (p-1)(q+1)(r-1)(s+1) |

7. Conclusion

In this paper, we extend the work of [4] [5] to quadruple Laplace transform. Existence and uniqueness of the
quadruple transform are also discussed in this work. Some properties, theorems using the new quadruple
Laplace transform and a table in which quadruple Laplace transform applied on some functions have also been
presented. It is analyzed that our proposed method is well suited for use in partial differential equation involving
four variables. Therefore, the present method is an accurate and reliable technique for the partial differential
equations.
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Appendix

Table of quadruple Laplace transform L.y, for functions of four variables.

Function f (w,x,y,z)

Quadruple Laplace transform F*”(p,q,r,s)

abcd
WXyz
wx"y“z"
p-wbeor
WXy e
cos (aw)cos(bx)cos(cy)cos(dz)
sin(aw)sin (bx)sin(cy)sin(dz)
cos(W+ X+ Yy +2)
sin(w+x+y+2)
Sz
cosh (aw)cosh (bx)cosh(cy)cosh (dz)
sinh (aw)sinh (bx)sinh (cy)sinh (dz)
e % gin (ew)sin ( fx)sin(gy)sin(hz)
e ecos (ew)cos( fx)cos(gy)cos(hz)
e sinh (ew)sinh ( fx)sinh(gy)sinh(hz)

e %cos (ew)cos( fx)cos(gy)cos(hz)

sin(aw) sin (bx) sin(cy) sin(dz)
w X y z

wxyzsin (aw)sin (bx)sin (cy)sin (dz)

wxyzcos (aw) cos (bx)cos(cy)cos(dz)

abcd
pars

1

2321202

p°g°r’s

C(1+m)C(1+n)C(1+ )T (1+v)
pm+1qn+1r}1+1sv+1

1
(p+a)(a+b)(r+c)(s+d)

T(1+m)T(1+n)T(1+ x)T(1+v)
(p+a)(m+1)(q+b)(n+1)(r+c)(u+1)(s+d)(v+1)

pars
(p*+a®)(q® +b*)(r* +c*)(s* +d)
abcd
(p*+a®)(q" +b*)(r* +c*)(s* +d*)
P+Q+T+S—pars
(1+p*)(1+97) (1+17)(1+57)
pg+ pr+ps+qr+qgs+rs—1
(1+p*)(1+0°)(1+17)(1+5%)

7[2

202,202

16p°g°r’s

pgrs

(p*-a%)(a -b*)(r*—c*)(s* - d?)
abcd

(p*—a’)(a" -b)(r*—c*)(s*~d?)

efgh

(e2+(p—a)z)(fz+(q—b)2)(gz+(r—c)z)(h2+(s—d)2)
(p-a)(a-b)(r—c)(s-d)

(e2+(pfa)2)(fz+(qu)2)(gz+(r7c)2)(hz+(sfd)2)

16abcd
(p*+a%)(g? +b*)(r* +c?)(s* +d?
(P —a)(a" =b?)(r* —C*)(s" -

(p*+a%)(g® +b*)(r* +c?)(s* +
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