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Abstract 
We investigate different techniques for fitting Bézier curves to surfaces in context of high-order 
curvilinear mesh generation. Starting from distance-based least-squares fitting we develop an in-
cremental algorithm, which incorporates approximations of stretch and bending energy. In the 
process, the algorithm reduces the energy weight in favor of accuracy, leading to an optimized set 
of sampling points. This energy-minimizing fitting strategy is applied to analytically defined as 
well as triangulated surfaces. The results confirm that the proposed method straightens and shor- 
tens the curves efficiently. Moreover the method preserves the accuracy and convergence beha-
vior of distance-based fitting. Preliminary application to surface mesh generation shows a re-
markable improvement of patch quality in high curvature regions. 
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1. Introduction 
The present work is motivated by curvilinear mesh generation for high-order numerical methods such as spectral 
and hp element methods [1] [2] or discontinuous Galerkin methods [3] [4]. Exploiting the superior convergence 
properties of these methods for problems of practical interest requires an accurate and well behaved piecewise 
polynomial representation of complex domains including their boundaries. Unfortunately, contemporary state- 
of-the-art mesh generators are tailored to low-order discretization methods and, hence, provide only piecewise 
linear or quadratic meshes. Consequently, various approaches were developed for converting straight meshes 
into curvilinear ones [5]. Recently, considerable effort has been dedicated to assure the validity and to improve 
the quality of the curved mesh [6]-[8]. Most of this work deals with situations where the mesh spacing is smaller  
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or of the same size as the radius of curvature, often in conjunction with a moderate polynomial degree. To the 
best of our knowledge, the generation of suitable meshes with higher order (say 5 20n≥ ≥ ) and spacings ex-
ceeding the radius of curvature still remains a challenge. 

As a first step of curvilinear mesh generation we consider the construction of polynomial curves from a given 
straight-sided surface mesh. This problem can be regarded as a special case of curve fitting, which, in turn, is a 
well established research area in computer aided geometric design [9] [10]. Typically the sought curve is not fit-
ted to the surface as such, but to a set of samples extracted from the latter. A widespread approach is to use 
splines in tension or smoothing splines, which attain a fair shape by minimizing a certain energy functional re-
lated to stretching, bending, twist, or a combination thereof [9]. Veltkamp and Wesselink [11] explored these 
and a variety of related energy functionals in fitting B-splines to a set of given points in 2  or 3 . High-
er-order curves such as B-splines are often computed by minimizing an error functional augmented by a suitable 
energy measure for regularization [12]. Unfortunately, the energy functional tends to act diametrically to the er-
ror functional and thus prevents convergence to the exact surface with increasing polynomial order. As an alter-
native Alhanaty and Bercovier [13] proposed the use of optimal control methods for constructing interpolating 
splines with minimal energy. Apart from the advantage of guaranteeing optimality, this approach implies that 
the number of samples does not exceed the degree of freedom available for fitting, which may prove too restric-
tive for many applications. Flöry and Hofer [14] advocated an incremental strategy for fitting curves on mani-
folds using a weighted average of error and energy functionals as the objective function. In course of their itera-
tive procedure the weight of energy is successively reduced, thus improving the accuracy of the final curve. It 
should be remarked, however, that this method is not intended for generating energy-minimized curves. Indeed, 
the curve energy is essentially determined by the chosen sample points, which remain fixed throughout the fit-
ting procedure. A direct approach to energy-minimizing splines was developed by Hofer and Pottmann [15] [16]. 
The key idea consists in translating the sample points tangentially on the given manifold until the imposed energy 
functional attains a minimum. This process is embedded in an iterative procedure which constrains the move-
ment of samples to a trust region. More precisely, the method does not minimize the curve energy, but a finite 
difference approximation of the latter based on the sample points. The optimality of the resulting curve will 
therefore depend on the sampling density. Finally we remark that curvature minimizing smoothing offers a power-
ful alternative to fitting worth considering especially with noisy surface data, see e.g. [17] and references therein. 

In this paper we investigate techniques for fitting Bézier curves to surfaces for application with high-order 
mesh generation. Starting from squared distance minimization we develop an incremental algorithm leading to 
an accurate, energy-minimizing method that combines the ideas put forward in [14] [15]. The paper is organized 
as follows: In Section 2 we first revisit least-squares fitting and then elaborate the energy-minimizing curve fit-
ting procedure. Section 3 provides a comparison of both methods covering analytically defined smooth surfaces 
as well as scattered surface data. Section 4 concludes the paper. 

2. Surface Curve Construction 
In spectral or hp element methods, each element face coinciding with the domain boundary constitutes a poly-
nomial surface patch. Therefore, the construction of well behaved polynomial patches represents a natural 
building block in curvilinear mesh generation. Starting from a straight-sided initial mesh, the curvilinear mesh is 
often built in a hierarchical process consisting of the following steps: i) construction of boundary curves 
representing the edges of the boundary faces; ii) generation of patches defining the boundary faces; and iii) crea-
tion of curved volume elements. Here we focus on the first step, the construction of high-order polynomial 
boundary curves. Adopting the Bézier form, a curve of order n  is expressed as 

( ) ( )
0

,
n

n
i i

i
t B t

=

= ∑c b                                     (1) 

where n
iB  are the Bernstein polynomials and ib  the corresponding control points. For convenience we assume 

that the vertices of the initial mesh and, hence, the start and end points of the curves are fixed and given such 
that they fit to the boundary surface. 

2.1. Distance-Based Curve Fitting 
Curve fitting is used to construct a boundary edge ( )tc  between vertices 0p  and 1p . For this purpose we 
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perform a least squares fitting to a set of sampling points generated from the initial, linear edge. 
The procedure starts with the selection of m  samples ( )0,1jt ∈  in parameter space. Next, a corresponding 

point distribution is generated on the straight edge by means of linear interpolation. Projecting these points to 
the boundary surface yields the sampling points 

( ) 0 11 ,j j jt t = − + x p p                                (2) 

where, ideally, the operator [ ]p  represents the normal projection of a given point p  to a surface point x . 
In practice the projection is realized by means of an iterative procedure based on the approximate normal vector. 
In case of scattered data, we use a fine triangulation combined with a smoothing interpolation as the surface de-
finition. Fitting is performed by minimizing the average squared distance 

( ) ( )( )2

1

1; ,
m

x j j
j

J t t
m =

= −∑I J Jb x c x                             (3) 

where Ib  denotes set of the interior control points of the curve, tJ  the set samples in parameter space and 
Jx  the corresponding set of surface points. Since the number of samples typically exceeds the degrees of free-

dom, the minimization problem is solved using the least-squares method, which yields the interior control points 
Ib  of the curve c . 

2.2. Energy-Minimizing Curve Fitting 
With coarse meshes purely distance-based fitting can lead to severe undulations in regions of high curvature. As 
a remedy one may look for curves that minimize a certain energy functional. Here we consider the 2L  norms of 
the first and second derivative of ( )tc : 

( )
1

2
1

0

d ,E t t= ∫ c                                   (4) 

( )
1

2
2

0

d .E t t= ∫ c                                   (5) 

The norm of the first derivative (4) is related to the elastic stretch energy of a string [11]. A surface curve 
which minimizes 1E  represents the shortest path between between the two endpoints and is called a geodesic. 
Geodesics are regularly applied in computer vision, image processing and motion design [16]. It is worth noting 
that the functional 1E  also improves the curve towards an isometric parametrization. The norm of the second 
derivative (5) corresponds to bending or strain energy. Minimizing 2E  is a fundamental ingredient in cubic 
spline interpolation. The combination of both energies leads to the concept of splines in tension (see, e.g. [9]). 
We use 1E  and 2E  for augmenting the error functional (3), leading to the objective function 

( ) ( ) ( )( )E E E 1 2; , , 1 1 ,xJ t w w J w E Eα α= − + − +I J Jb x                     (6) 

where overbars indicate the normalization which has been introduced to compensate possible differences in the 
order of magnitude between the individual terms. In particular we define 
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where the superscript “0” refers to the curve obtained from distance-based fitting and “lin” to the straight edge. 
Note that lin

1E  equals the squared length of the latter, whereas lin
2E  is identical to zero. As these two cases are 

close to the extrema that are to be expected in the fitting process, the normalized distance and error functionals 
vary typically between zero and one. The parameter Ew  represents the relative weight of the energy functionals 
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compared to the error functional, while the value of α  determines the blend of bending and stretch energy to 
be used in the former. Hence, applying J  with E 0w =  is equivalent to distance-based fitting, whereas 
choosing any E 0w >  and thus taking into account the curve energies leads to smoother and shorter curves but 
allows for deviation from the surface. 

To obtain fair surface curves we employ an incremental approach, which is outlined in Algorithm 1. The ba-
sic idea is to start fitting with a high energy weight, which is successively reduced according to a generic shape 
function w , until reaching the minimum value in the final step (line 8). Furthermore, the sampling points are 
recomputed from the current curve (line 9) before performing the next fitting (line 10). In this manner, curve and 
surface points move towards each other in course of the process, the former approaching the surface, the latter 
converging to an energetically improved configuration. 

Throughout the present study we used the shape function 

( ) ( )
( )

2

22
max

1 1, ,
11

a kw k a
ka a

− −
= =

−+ −
                           (9) 

which starts with 1 at 1k =  followed by a gradual transition to 0 at maxk k= . This choice always recovers the 
straight edge in the first step. Note that the final curve minimizes the mean quadratic error as well as the energy, 
since it results from distance-based fitting to optimized sampling points. Various other choices for the shape 
function w  are possible, but have not been explored yet. 

3. Results 
In the following we study the performance of the energy-minimizing fitting method in two different cases. As 
the first case we consider a coarse, but nearly uniform triangulation of an explicitly defined screw surface. In the 
second case the “exact” surface is defined as a patchwork of cubic triangles based on a fine mesh derived from 
CT scans of a rabbit aorta. For assessment we use the 2L  error evaluated over all mesh curves 

( ) ( )( )
1 21 2

0

dx i i
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t t tε
 

= −    
 
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and the curve energy norms 

( )
1 2
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i
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∑ c ，                                 (11) 

 
Algorithm 1. Incremental energy-minimizing curve fitting 
starting from linear edge 0 1p p . 

1: Select energy composition α  

2: Select parameter values jt  

3: ( ) ( )0
0 11j j jt t ← − + x p p  

4: ( ) ( )( )0 0minimize ; ,xJ t← I J Jc b x  

5: Compute lin
xJ , lin

1E , lin
2E  from 0p  and 1p  

6: Compute 0
xJ , 0

1E , 0
2E  from ( )0c  

7: for max= 1k k  do 

8:    ( ) ( )e
kw w k←  

9:    ( ) ( ) ( )1k k
j jx c t− ←    

10:   ( ) ( ) ( )( )minimize ; , ,k k k
eJ t w← I J Jc b x  

11: end for 

12: ( )maxk←c c  
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where again 1l =  corresponds to stretch energy and 2l =  to bending energy. The integrals in Equation (10) 
were computed by means of Gauss quadrature using 1n +  points. 

3.1. Analytically Defined Smooth Surface 
As a first test case we consider the screw surface defined by the analytical expression 

( ) ( ) ( )( ) ( ) ( )( )2 216cos π sin π sin π cos π 1 0.
9

F x z y z x z y z= + + − − =x              (12) 

The projection [ ]=x p  of a given point p  onto the surface is realized by means of the iterative proce-
dure 

( ) ( )
( )( )
( )( )

1 ,
l

l l

l

F

F
+ = −

∇

x
x x

x
                                 (13) 

starting with ( )0 =x p . We remark that this scheme results from a linearised solution of exact condition 
( ) ( ) 0F F s= + =x p n , where F∝∇n  is the surface normal vector. Figure 1 shows the exact surface in the 

interval 0 2z≤ ≤  along with a coarse uniform triangulation. The mesh consists of 32 triangles and has an av-
erage spacing of 10.85  times the minimum curvature radius, c 0.117r ≈ . 

The energy-minimizing fitting procedure was examined over a wide range of polynomial degrees, ranging 
from 2n =  to 20. As an example we consider the case 12n = . Figure 2 illustrates the influence of the energy 
blending parameter α  and the number of fitting steps maxk  on the error xε  and the energy norms 1ε  and 

2ε . The graphs correspond to three different energy compositions in the objective function: 1.0α =  implies 
using only stretch energy 1E , 0.0α =  only bending energy 2E  and 0.5α =  an equal mixture of both. Note 
that the plot does not show stepwise progress, but only the characteristics of the final curve. The case max 0k =  
is equivalent to single-step distance-based fitting. Increasing the number of fitting steps reduces the curve ener-
gy rapidly until approximately max 25k = . In the present example, this improvement is accompanied by a slight 
increase in the error, which lessens with growing maxk . We remark, however, that with finer meshes the ener-
gy-minimizing fitting succeeded in reducing the error simultaneously with the curve energy. 

Figure 2 indicates that the incremental method improves both energies, even if one is excluded from the ob-
jective function by the particular choice of α . However, with higher maxk  the excluded energy may increase 
slightly in favor of a further error reduction. In the present example such behavior is observed with 1α =  for 

1ε  and 0α =  for 2ε , whereas 0.5α =  retains both energies close to the minimum. 
Figure 3 shows the effect of different parameter choices for an edge crossing the ridge of the screw. In this 

 

        
Figure 1. Exact definition (left) and a coarse linear grid (right) of the screw surface 
example. The mesh contains 32 triangles, which results in an average mesh spacing of 
10.85 times the minimum curvature radius of the geometry. 
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Figure 2. 2L  error and energy norms for energy-minimizing fitting with order 

12n =  and different blending parameters α  as a function of the number 
maxk  of fitting steps. 

 

 
Figure 3. Comparison of different fitting methods for “Curve 54” crossing the 
ridge of the screw: dotted magenta line distance-based, dashed red energy- 
minimizing with 0.0α = , solid blue 0.5α =  and dash-dotted green 1.0α = . 
Energy-minimizing fitting was performed with max 100k =  steps. 
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case, mere distance-based fitting yields a meandering curve, whereas energy-minimizing fitting straightens the 
path and removes undulations regardless of the chosen energy composition. As expected, the balanced energy 
mix, 0.5α = , yields a curve nestling in between the extreme cases of minimal stretch, 0.0α = , and minimal 
strain, 1.0α = . Yet these curves follow a rather similar path. 

Figure 4 illustrates the performance of the energy-minimizing fitting procedure with 0.5α =  for the edge 
depicted in Figure 3. Starting with the straight edge, the normalized error functional assumes its maximum 

1xJ = , while the normalized energies 1E  and 2E  vanish after the first step. As a result of tapering Ew  both 
energies increase, thus allowing for error reduction. At the end of the process, the normalized error approaches 
zero and thus recovers the accuracy of single-step distance-based fitting. The energy functionals finally approach 

1 0.85E ≈  and 2 0.35E ≈ , respectively. The latter value indicates a significant strain reduction compared to the 
reference case. Note that 1E  is related to the curve length and thus dominated by surface curvature, which ex-
plains the comparably lower reduction. 

Finally we look at the convergence behavior with respect to the fitting order n . Figure 5 depicts the 2L  
errors of distance-based fitting and energy-minimizing fitting with 0.5α =  and max 100k = . The comparison 
shows only a negligible difference between the two graphs. In both cases the slope attains an asymptotic regime 
which indicates a linear dependence of the error exponent on the fitting order, i.e., d ln dx nε ∝ . Thus we 
conclude that the proposed energy-minimizing fitting procedure preserves the spectral convergence of the 
original, distance-based method. 

3.2. Scattered Surface Data 
Scanning methods such as computed tomography (CT) or magnetic resonance imaging (MRI) provide scattered 
data that can be processed to give triangulated volume and surface representations of the investigated object. 
Here we consider a partition of a rabbit’s aortic arch, given as a fine mesh consisting of 24,644 triangles (Figure 6). 

 

 
Figure 4. Evolution of the normalized error and energy functional for 
Curve 54 in course the energy-minimizing fitting procedure with 

0.5α =  using 100 steps. 
 

 
Figure 5. Convergence of distance-based and energy-minimizing 
fitting with respect to the polynomial degree of curves. 
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Figure 6. Fine mesh (blue) of a rabbit aorta and coarse mesh used for fitting 
(red). Fine mesh courtesy of Spencer Sherwin, Imperial College London. 

 
This representation was enhanced in two steps, yielding the “exact” surface: First, computing the vertex normals 
using the method of Max [18]. Second, constructing a cubic interpolant based on the point-normal vertex data in 
terms of the PN Triangles proposed by Vlachos et al. [19]. The projection [ ]x  of a point x  onto the sur-
face is defined as the shortest projection along the Phong normal [20], which is based on the linear mesh. For 
details we refer to [21]. 

To evaluate the curve fitting methods we generated a curvature-dependent coarse mesh comprising 532 trian-
gles (Figure 6). The ratio between the local mesh spacing and the radius of curvature was limited in order to al-
low for reasonable accuracy with moderate fitting order. 

Starting from the linear mesh we constructed curves of order 6n = . Figure 7 presents the curves after 50 fit-
ting steps in comparison with the distance-based fitted curves in the high curvature bifurcation region. For clari-
ty, the “exact” surface is also shown. In accordance with the previous test case the energy-minimizing fitting 
method yields straighter and shorter curves. In low curvature regions both methods result in nearly straight 
curves. This is not surprising, since a straight line is energetically optimal. Therefore, the computational cost can 
be reduced by applying energy-minimizing fitting only to those curves, which can be expected to profit from it. 
We explored a decision criterion based on the relative change in length 

0 lin

lin ,L L
L

λ −
=                                     (14) 

where 0L  is the length of the curve resulting from distance-based fitting and linL  the length of the straight 
edge. Only when λ  exceeds a certain threshold minλ  energy-minimizing fitting is performed. Table 1 com-
piles the results of distance-based fitting with energy-minimizing fitting using either no threshold (equivalent to 

min 0λ = ) or min 0.01λ = . Note that the energy norm 1ε  is adjusted by the value lin
1ε , which represents a 

mesh-dependent lower bound corresponding to the straight edges. 
Remarkably, the energy-minimizing approach not only succeeds in reducing the energy norms, but also im-

proves the approximation accuracy. Assuming a threshold of min 0.01λ =  energy-minimized fitting is applied 
only to about ten percent of edges, which saves almost 90 percent of the computational cost. It is important to 
note that the improvements in energy and accuracy are not affected by this measure. 

In addition we constructed triangular Bézier patches in two steps [21]: First, we inject the previously generated 
boundary curves. Second, we determine the inner control points by least-squares minimization of a distance 
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functional. To assess the patch quality we consider the distortion measure sI , which is based on the Jacobian of 
the mapping from parameter to physical space [5]. This measure has an upper bound of s 1I =  corresponding to 
an isometric mapping, which is the preferred case. Smaller values indicate distorted patches and with s 0I ≤  
the mapping becomes invalid. As can be seen from Table 1, the energy-minimized curves lead to improved 
patches without further optimization. The quality measure sI  increases by a factor of 2 , yielding 0.47sI >  
for all patches, which represents an acceptable quality for a high curvature geometry. 

4. Conclusion 
We investigated different techniques for fitting Bézier curves to surfaces as a first step of curvilinear mesh gen-
eration for high-order discretization methods. As a starting point we examined a distance-based least-squares fit-
ting method. This method achieves a high accuracy, but tends to produce distorted curves where the mesh spac-
ing is large compared to the radius of curvature. As remedy, we included approximations of stretch and bending 
energy into an incremental algorithm, resulting in an energy-minimizing fitting method. Both approaches were 
evaluated using two examples: an analytically defined screw surface and a surface triangulation of a rabbit aorta. 
The results confirm that the energy-minimizing method straightens and shortens the curves efficiently. Moreo-
ver the method preserves the accuracy and convergence behavior of distance-based fitting. In accordance with 
previous work (see e.g. [9] [11] [16]), our study indicates that combining stretch and bending energy yields better 
results than using only one of those. Additionally, we analyzed the influence of the curve fitting method on 
 

 
Figure 7. Comparison of fitting methods in the bifurcation of the rabbit aorta: 
dotted magenta lines distance-based, solid blue energy-minimizing with 

0.5α =  and max 50k =  steps. 
 
Table 1. Results obtained with different fitting approaches for the rabbit aorta test case with polynomial order 6n = . Listed 
are: the 2L  error xε , the energy norms 1ε  and 2ε  and the Jacobian distortion sI . The offset lin

1 15.227ε =  corresponds 
to the straight edges. Energy-minimizing fitting was performed with 0.5α =  and max 50k = . 

Method minλ  xε  lin
1 1ε ε−  2ε  sI  

distance-based - 39.28 10−×  25.34 10−×  4.24 0.21 

energy-minimizing 0.00 33.22 10−×  25.28 10−×  4.03 0.47 

energy-minimizing 0.01 33.23 10−×  25.27 10−×  4.01 0.48 
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patch construction. This investigation shows a clear improvement in patch quality when using energy-minimized 
curves. Nonetheless distortion remains an issue in the patch interior. Therefore, future work should address the 
extension of energy-minimizing approach to surface patch fitting. 
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