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Abstract 
 
In this paper we are interested in studying the dissipativity of degenerate mixed differential operators in-
volving an interface point. We show that, under particular interface conditions, such operators generate ana-
lytic semigroups on an appropriate Hilbert space H . To illustrate the results an example is discussed. 
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1. Introduction 
 
The evolution of a physical system in time is usually 
described in a Banach space by an initial value problem 
for a differential equation on the form: 

   
  0

d
0, 0

 d
0

U t
LU t t

t
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       (1) 

Such problems are well posed in Banach space X  if 
and only if the operator L  generates a 0C -semigroup 
 

0t t
T


 on X  [1]. Here the solution  U t  is given by 

   0 0fortU t TU U D L  . 
Problems involving interface arise naturally in many 

applied situation such as acoustic wave in ocean [2] and 
also as heat conduction in non homogeneous bodies. A 
systematic study of interface problems involving ordi-
nary differential operator was done in [3]. 

Several authors have been interested to differential 
operators with matrix coefficients. Such operators arise 
in diverse range of applications (e.g. in Quantum phys-
ics), some examples in harmonic analysis have been 
treated in [4-6] and for an example in semigroups theory 
we refer to [7-8]. 

In this paper, inspired in the works of A. Saddi and O. 
A. Mahmoud Sid Ahmed [9] and also that of T. G. 
Bhaskar and R. Kumar [10], we establish with suitable 
assumptions the analyticity of semigroups generated by a 
class of differential operators involving matching inter-
face conditions in the setting of complex Hilbert space. 

As it is well known, in order that an operator L  gen-

erates an analytic semigroup it suffices that it satisfies 
the m -dissipativity and we must have (see [11]) 

, , 0, 0LU U m LU U     e   (2) 

The paper is organized as follows: In section 2 we in-
troduce the different notions and notations which we 
shall need in the sequel. In section 3 we study the mixed 
operator L  and its adjoint L  and we investigate some 
of its properties. In section 4 we study the dissipativity of 
the operator  L   and its adjoint for some suitable 
real number  . We show that, under particular interface 
conditions, such operators generate strongly continuous 
semigroups. Using the previous results we conclude in 
section 5 with the aim of the paper about generation of 
analytic semigroups of operators with respect some reg-
ular interface conditions. Finally we discuss an example 
as an application to our results. 
 
2. Notations and Preliminaries 
 
Let  nM C  be the space of all square n  order matrix 
with complex coefficients, and  nGL C  the subset of 

 nM C  consisting of invertible matrices. The adjoint of 
a matrix  nM CA  is denoted by *A . 

Let    1 2,0 , 0, ,I a I b  where 0a b     
  , and  * \ 0k kI I . For 1,2k   and an interval 

,k kX I  denote by  2 ,kL X C  the complex Hilbert 
space defined by 

    22 , : ,measurable d
k

k k X
L X u X u t t   C C  

endowed with the canonical inner product 
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We set also, 
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Consider now the product Hilbert space  2
1,L X C  

 2
2 ,L X C  equipped with the inner product 

1 1 2 21 2
, , ,U V u v u v        (4) 

for all 

       2 2
1 2 1 2 1 2, , , , ,U u u V v v L X L X   C C  

Fix now    2 2
1 2, ,L I L I H C C  and denote its 

subspace    2 2
1 2H H I H I   Let kL  be the dif-

ferential operator defined on kI  by 

,  1, 2k k k k k kL u a u b u k        (5) 

where ka  and kb  are two real measurable functions on 

kI . We make the following assumptions: For k = 1,2 
 1 : kh a  is continuous and 0ka   on kI , ,k ka b  are 
absolutely continuous on kI  . 
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exist in R  and  k kb a   is bounded on kI  . 
Let 1A  and 2A  two matrices in  2GL C  For 

 2
k kH Iu , denote 
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The interface condition at the singular point 0x  , is 
given by        1 23 1 20 0 0: : 0h    Au uA . 

Note that this work can be easily generalized to de-
generate matrix differential operators. Here the operator 
may have non-regular coefficients and may be singular at 
the extremities of intervals and especially at the interface 
point. In particular with this meaning this study is a 
proper extension of [9]. 
 
3. Mixed Operator   ,L D L  and  

its Adjoint 
 
In order to study the operator L , we introduce its Green 
formula. We will be able to obtain some characteristic 
properties. According to ([12], p. 189) the corresponding 
formal Lagrange adjoint expression of , 1,2kL k   are 
given as 

   * ,  1, 2k k k k k kL u a u b u k        (6) 

We consider the operator   ,L D L  given by 

     
   

1 2 1 1 2 2

1 2

, ,  

for ,

L U L u u L u L u

U u u D L

 

 
    (7) 

where 

      1 2, 0 0, 0a bD L U u u H          

and 

       1 1 2 2,a a b bu u ba u a b u          (8) 

a  and b  are here two fixed real numbers. 
It is easy to show that   ,L D L  is a densely defined 

closed unbounded linear operator in H  and hence has a 
unique adjoint (see for example Theorem 3.6 [5]). 

For      1 2 1 2, , ,U u u V v v D L   , and 0a    
b  , a simple calculation gives the Green’s Formula. 
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Using the conditions 0a   and 0b   we get, 
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v B uv B u  

where , 1,2k k B  are matrix functions defined on *
kI , 

given by 

0
k k k

k
k

b a a

a

 
   

B  

The matching interface condition  0 0  , and the  

notation    
* *1 , 1, 2,k k k k C A B  imply 
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(9) 

where 
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with these simplifications, we obtain the following result. 
Proposition 3.1 Let   ,L D L  be the operator de-

fined as in (7) and (8). Then its adjoint   ,L D L   is a 
densely defined closed unbounded operator given by 

      * *
1

* *
2, 0 0, 0a bD L V v v H          

     
   

* * * *
1 2 1 1 2 2

*
1 2

, ,   

for ,

L V L v v L v L v

V v v D L

 

 
    (10) 

where        1 2
*

1
0 0

2li0 m lim
x x

x x
  

  C Cv v . 

Proof. Let   ,M D M  be the operator given by 

      *
1

* *
2, 0 0, 0a bD M V v v H          

     
   

* * *
1 2 1 1 2 2

1 2

, ,   

for ,

M V L v v L v L v

V v v D M

 

 
 

One has to prove that *M L  and    *D M D L . 

From Green’s formula, it follows that    *D M D L . 

To show the opposite inclusion, it remains to verify that 

       *
1 2 1 2 1 2 1 2, , , , , ,L u u v v u u L v v  

for all        *
1 2 1 2, , ,u u D L v v D L  . From (9) this 

is true if one proves that 
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If we choose    1 2,u u D L  verifying  1u a  

 2 0u b  , then we get 

        *

1 1 1 2 2
0

1 2 2
0

lim lim 0
x x

x x
 



 
 C v A uvu CA  

Now from Green’s formula, we obtain 

   * *
2 1 0b ab au u    

An appropriate choice of    1 2,u u D L , implies 
* * 0b a    and  * 0 0  . This yields  
   * MD L D  hence the proof is achieved. 

 
4. m -Dissipativity of   ,L D L  
 
Recall first the definition due to Pazy [3]. 

Definition 4.1 A linear closed densely defined opera-
tor   ,M D M  on a complex Hilbert space is called 
m -dissipative if 

 
 

for all ,  , 0 

and  is surjective for some 0.

u D M Mu u

M 

  

 

e
 

It is our aim to show, under certain assumptions on the 
coefficients of ,  1,2,kL k   that the mixed operator is 
m-dissipative. The next technical lemma may be found in 
[9]. 

Lemma 4.1 Let ,f g  two numerical functions of 
class 1C  on  ,  such that f  is real then 

  

           2 2 2

2 d
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f gg x x

f g f f x g xxg








   

 

 





e
(11) 

In what follows, consider the following function ma-
trices   *

2 on  , 1,2k kM I k CT  given by 

0
k k k

k
k

b a a
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T  

Theorem 4.1 Assume that the matrices ,  1,2k k A  
satisfy the condition 

       
* *1 1

1
1 1

1 1 2 2 2
0 0

lim lim
x x

x x
 

 

 

  A TA AA T   (12) 

Then there exists a real 0   such that the operator 
    ,L D L  is m -dissipative. 
Proof. Let    1 2,U u u D L  , we have 
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Then, by using Lemma 4.1, we get, 

1 2 3,LU U S S S     e  

where 
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For 1,2k   and 0  , we have, 
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For sufficiently small  , such that  22 0k ka m  , 

we obtain, 
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Thus, we have shown that  L   is dissipative. For 
showing that  L   is m -dissipative, we have to 
show that  L    is also dissipative. The interface 
term vanishes, since  1 2,v v  verifies the condition, 

       1 1 1
1 2 2 2 2

1
1 1 1

0 0
lim lim 0,
x x

x x
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which itself is a consequence of (12). So, using same 
techniques as above, for all    *

1 2,V v v D L  , we 
get, 
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Then one has,   
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      2 22 dk k km x m x v x x   


 

   2

22 2 2

1 1 2,v v v Vv     

This implies that both  L   and  L    are 
dissipative, thus  L   is m -dissipative and hence 
the theorem is proved. 
 
5. Analyticity of the Semigroup Generated 

by   ,L D L  
 
The purpose of this section is to prove the analyticity of 
the semigroup generated by   ,L D L . For This goal 
we impose some additional conditions on the matrices 

, 1,2kA k  . In the following we recall a theorem due to 
Fattorini [11]. 

Theorem 5.1 Let   ,A D A  be a densely defined 
operator in a Hilbert space such that for any  u D A : 

, , for so 0me0,e Au u m Au u          Then  ,A  
 D A  generates an analytic semigroup of contrac-

tions. 
With the help of Theorem 5.1, we will establish our 

main result. 
Theorem 5.2 Assume that the matrices kB  and 
, 1, 2k k T  defined respectively in sections 3 and 4, sat-

isfy the conditions 
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Then the operator   ,L D L  generates an analytic 
semigroup of contractions. 

Proof. Since the operator   ,L D L  is densely de-
fined, then from Theorem 5.1, to show that it generates 
an analytic semigroup, it suffices to verify that 
Re ,Au u  Im , 0,Au u    for A L I   and for 
some 0 and 0   . 

This is equivalent to show that ,e Lu u    
,m Lu u   

2
u .  

Holds for all  u D L . Using the identity 
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Using the relation    2      m m  for all 
,   we deduce the expression 
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Under the assumption (13) and the interface condition, 
we get 
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We have also, for sufficiently small  , 
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It follows that, for 0  , we have 
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Thus the proof is achieved and the result of the Theo-
rem is obtained. 

Corollary 5.1 The operator   ,L B D L  gener-
ates an analytic semigroup for all L -Bounded opera-
tors B . In particular the result remains true if we choose 

 1 2,B R R  defined on H  by , 1, 2,k k k kR u c u k   
where kc  is a piecewise continuous function on kI . 

For more detail in perturbation theory of linear opera-
tors we refer to [7] and [13].  

In the following an example is given to demonstrate 
the effectiveness of our results. 

Example 5.1 Let  1 1,0I    and  2 0,1I  , and 
consider the following differential system 
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where , , 1, 2k ka b k   are real functions verifying the 
previous assumptions 1 2andh h .  

The interface condition at 0x   is such that 
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The end points conditions are taken to be 
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for some real constants 1, , ,a b c   and 2 . 

The operator   ,S D S  is as follows 

 1 2, , , 1,2k k k k k kS S S S u a u b u k      

and 
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Then it is easily to verify that the conditions of Theo-
rem 5.2 are fulfilled for the operator   ,S D S  if 

 0 0ka   for 1,2k  ,    1 1
0

lim
x

b a x


  2 2
0
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 x  and    1 20 0 0ba aa   

Then for all 0u H , the above evolution partial dif-
ferential system has a unique solution which is analytic 
in time for 0t  .  

The following functions are a concrete example for the 
above system.  

   2
1 1 1 10

1 1
sin d , ,

3

x
a x t t b x x

t
      

   

   22
2 2 2 2

1
1 log , ,

2
a x x x b a       

with 1 0b a   . 
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