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Abstract 
Phase imaging coupled to micro-tomography acquisition has emerged as a powerful tool to inves-
tigate specimens in a non-destructive manner. While the intensity data can be acquired and rec-
orded, the phase information of the signal has to be “retrieved” from the data modulus only. Phase 
retrieval is an ill-posed non-linear problem and regularization techniques including a priori 
knowledge are necessary to obtain stable solutions. Several linear phase recovery methods have 
been proposed and it is expected that some limitations resulting from the linearization of the di-
rect problem will be overcome by taking into account the non-linearity of the phase problem. To 
achieve this goal, we propose and evaluate a non-linear algorithm for in-line phase micro-tomo- 
graphy based on an iterative Landweber method with an analytic calculation of the Fréchet deriv-
ative of the phase-intensity relationship and of its adjoint. The algorithm was applied in the pro-
jection space using as initialization the linear mixed solution. The efficacy of the regularization 
scheme was evaluated on simulated objects with a slowly and a strongly varying phase. Experi-
mental data were also acquired at ESRF using a propagation-based X-ray imaging technique for 
the given pixel size 0.68 μm. Two regularization scheme were considered: first the initialization 
was obtained without any prior on the ratio of the real and imaginary parts of the complex refrac-
tive index and secondly a constant a priori value was assumed on rδ β . The tomographic central 
slices of the refractive index decrement were compared and numerical evaluation was performed. 
The non-linear method globally decreases the reconstruction errors compared to the linear algo-
rithm and is achieving better reconstruction results if no prior is introduced in the initialization 
solution. For in-line phase micro-tomography, this non-linear approach is a new and interesting 
method in biomedical studies where the exact value of the a priori ratio is not known.  
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1. Introduction 
Hard X-ray imaging with a high spatial resolution is nowadays a powerful tool to investigate specimens in 2D or 
3D in a non-destructive manner. For an object illuminated by partially coherent light sources, a simple and 
effective technique known as propagation-based phase contrast has a particular interest because of its simple 
imaging set-up. Additional optical elements are not required and the phase contrast images can be recorded by 
simply letting the X-ray beam propagate in free space after interaction with the sample [1] [2] (Figure 1).  

Compared with attenuation-based imaging techniques, the main interest in X-ray phase imaging is the pos- 
sibility to study objects with either negligible absorption or dense objects with small density variations. More- 
over, in the hard X-ray region, the phase shift for low-Z elements improves the sensitivity with three orders of 
magnitude [3], which makes this imaging modality attractive for biomedical imaging of soft tissues. The 
phase-contrast images do not yield directly the phase information and requires additional experimental set-ups, 
models and data analysis algorithm. The Fresnel diffraction intensity patterns set an ill-posed non-linear inverse 
problem. Phase retrieval and tomography can be coupled by a two-step process: first, the phase information is 
retrieved for all the projections, and secondly the three-dimensional tomographic reconstruction is performed on 
the retrieved phase images obtained for each angle of view (see Figure 2).  

The most common algorithms for the phase retrieval problem for short propagation distances rely on the 
linearization of the Fresnel diffraction relationship [4]-[11] valid under restrictive assumptions. As far as phase 
tomography is concerned, several methods have been studied extensively. Langer et al. [9] have proposed to 
introduce the prior on the retrieved phase that the phase and the absorption are proportional. A single-distance 
phase retrieval method for a homogeneous object for a given ratio of the imaginary to the real part of the 
refractive index has been developed by Paganin [4]. This type of prior is valid for multi-material objects 
comprised of several homogeneous objects [7] [10]. A new inversion method where a prior phase estimate at 
each projection angle is obtained from a measured absorption index map evaluated with the intensity measured 
for a propagation distance 1 0D =  m is described in [11]. This prior is introduced in the low-frequency range 
only. This method is an extension of the previous linear algorithm [8] including a Tikhonov regularization term 
to the tomographic case. Compressive sensing approaches have been also studied recently but they are restricted 
to small scale problems [12] [13]. The limitations of the approaches based on the linearization of the direct 
problem can be overcome by other methods which take into account the non-linearity of the phase problem. The 
phase retrieval problem is an inverse ill-posed problem, therefore regularization methods are necessary to obtain 
stable solutions less sensitive to noise. The non-linear contributions in the image contrast formation are non- 
negligible since large propagation distances and high spatial resolution are required. Consequently, the non- 
linearity of the phase-intensity relationship is a crucial aspect. New algorithms which take into account the non- 
linearity of the inverse problem for the radiographic case have been proposed recently [14]-[17]. These non- 
linear approaches are very promising and lead to a large decrease of the reconstruction errors. 

 

 
Figure 1. Experimental set-up for propagation-based technique or in-line phase contrast imag- 
ing technique for a parallel X-ray beam. The incident field is assumed to have a degree of par- 
tial coherence and passes through a probed sample. Phase contrast images will be registered 
on the CCD-based detector for different distances nD  in the Fresnel field.                 
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Figure 2. Principles of phase tomography. For each sample-to-detector distance ( 1D  (blue 
dashed line), 2D  (red dashed line), 3D  (green dashed line) and 4D  (purple dashed line)) 
2D phase contrast images for Shepp Logan phantom are acquired. For each projection distance, 
the sample is rotated over minimum 180  and different 2D projection angles are considered 
(three angles are displayed 0 0θ =  , 15nθ =   and 150mθ =  ). For each angle θ , the phase 
map is retrieved using the 4 phase contrast images. Starting from these phase maps, the filter 
back projection is applied and the 3D refractive index decrement reconstruction is obtained.                   

 
In this paper, we consider the case of in-line phase tomography using different propagation distances. We 

extend to the tomographic case a modified non-linear algorithm proposed in [16] which is based on the Fréchet 
derivative of the intensity operator. As detailed in [16] the inverse ill-posed problem of the phase recovery is 
stabilized by a Tikhonov type regularization term with the square of the gradient phase term. In the following,  
the Landweber iterative algorithm is modified by replacing this term 

2

2

Lϕ∇  with the phase term 
2

2

Lϕ . In this  

paper, we first summarize this new multi-image non-linear ( )NL  scheme, and then detail the results obtained 
on simulated images and for a tomographic reconstruction on a real multi-material 3D object. 

2. Non-Linear Phase Retrieval Approach  
2.1. Image Formation—The Direct Problem 
For a parallel, partially coherent, monochromatic X-ray wave with wavelength λ , an object is characterized by 
the 3D complex refractive index [18]:  

( ) ( ) ( ), , 1 , , , ,rn x y z x y z i x y zδ β= − +                                  (1) 

with ( ), ,x y z  the spatial coordinates. The diffraction within the object is neglected due to the weak interaction 
of X-rays with matter and the exit wave can be described by the complex transmission function ( )θ   at each 
projection angle θ  [18]:  

( ) ( ) ( ) ( ) ( )exp expB i a iθ θ θ θ θϕ ϕ= − + =                                    (2) 

where ( ),x y=  is the spatial coordinates in the plane perpendicular to the propagation direction of the X- 

rays z . The absorption ( )Bθ   and phase shift ( )θϕ   induced by the object for each projection angle θ   
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are considered as the projections of the absorption index β  and of the refractive index decrement rδ  respec- 
tively. The linear integral relationships used for the tomographic reconstruction, are given by  

( ) ( ) ( )
,

2π , , dB x y z zθ θ
β

λ
= ∫ 

  and ( ) ( ) ( )
,

2π 1 , , dr x y z zθ θ
ϕ δ

λ
= −  ∫ 

 . 

The intensity distribution ( )( )nD θϕ   for each distance nD  (where { }1;2;3;4n∈ ) and angle θ  can be 

related to ( )θ   by the following expression:  

( )( ) ( ) ( )
2

n nD Dθ θϕ = ∗P                                   (3) 

where   denotes the coordinates in a plane perpendicular to the propagation direction z  and ∗  the 2D con-  
volution of the complex transmission function ( )θ   with the corresponding Fresnel propagator  

( ) 21 πexp
nD

n n

i
i D Dλ λ

 
=  

 
P    at distance nD  and wavelength λ . 

2.2. Non-Linear Inverse Problem-Phase Retrieval 

As detailed in [16] [17] [19], assuming that the phase ( )ϕ   is defined on Ω , an open subset of 2
 , the 

intensity operator ( ) ( )2
2 2:

nDI L LΩ →   (Equation (3)) can be considered as a continuous and non-linear  

function of the phase ( )ϕ  , which is a Fréchet differentiable in its domain [20]. Classical regularization 
algorithms in a Hilbert space can be used to study the non-linear phase retrieval problem [20]. The classical 
Landweber algorithm is based on the minimization of the regularization functional with its gradient [20]. The  
previously proposed Landweber iterative approach [16] is based on the 2L  norm of the phase gradient 

2

2

Lθϕ∇  

as regularization term. In this study, better convergence results were obtained by replacing this term with the 
phase term 

2

2

Lθϕ . 

The aim of this non-linear approach ( )NL  is to minimize for each projection angle θ  the following cost 
functional:  

( ) ( )
( ) ( )22

2 2
,

1
2 2n nD D LL

Jα θ θ θ θ
αϕ ϕ ϕ

ΩΩ
= − +                         (4) 

where ,nD θ  is the measured noisy intensity at distance nD  (see Figure 1) for the projection angle θ  and 
α  is the regularization parameter. This ill-posed problem is stabilized by a Tikhonov type regularization term 
with the square of the phase term θϕ  [17]. The regularization parameter α  is chosen by trial-and-error for 
one projection angle and then fixed for all the projection angles. 

The minimizer of the cost functional is calculated iteratively with a non-linear Landweber type scheme [21]:  

( ) ( ){ }, 1 , , , , , , .
n n nk k k D k D k D kθ θ θ θ θ θ θϕ ϕ τ ϕ ϕ αϕ

∗

+  ′= − − +                     (5) 

The classical Landweber method is modified with a variable step ,kθτ  chosen using a dichotomy strategy. 
The algorithm in this form is a simplified version of the iterative Gauss-Newton method considered in [22] [23]. 
It was shown in [16] that at the point ,kθϕ  the Fréchet derivative of the operator ( ),nD kθϕ  is the linear 
operator defined as:  

( ) ( ) ( ) ( )2
, , ,n nD k D k kG Oθ θ θϕ ε ϕ ε ε+ = + +                         (6) 

that can be obtained using the explicit calculation [16]:  

( ) ( ) ( ){ } ( ){ }( ), , , ,2Real exp exp
n nD k k k D k Dn

G ia i P a i Pθ θ θ θϕ ε ε ϕ ϕ   ′ = = − − ∗ ∗                 (7) 

where ∗  denotes the convolution operator. Moreover, by using the standard definition of the scalar product in 

2L  spaces the adjoint operator ( ), ,nk D kGθ θϕ
∗∗ ′=   is given by [16]:  
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( ) ( ){ } ( ){ }, , ,2Real exp exp .
n nk k D D kG a i P P ia iθ θ θε ε ϕ ϕ

∗∗∗    = −      
                  (8) 

Thanks to the analytical expressions of the Fréchet derivative and of its adjoint, it was possible to decrease the 
computation time and to obtain a better convergence in the radiographic case. In order to take into account the 
intensity maps, better results were obtained when the propagation distances were used in a random way and not 
in a successive way during the iterations. 

2.3. Initialization and Stopping Rules 
It was shown that the non-linear algorithm improves the solution obtained with a linear algorithm in the radio- 
graphic case for simulated data [16] [17]. Yet, an initialization obtained with the mixed linear scheme is ne- 
cessary to obtain convergence of the non-linear method. In this work, for each projection angle, the NL  algo- 
rithm was initialized either with the phase retrieved without any a priori knowledge or with a fixed a priori value 
of the ratio rδ β  [8] [9]. In a second step, the tomographic reconstruction was performed from the whole set 
of phase maps θϕ , with a standard filter back projection (FBP), implemented at ESRF (PyHst) [24]. 

For a projection angle θϕ , the iterations during the NL algorithm are terminated when:  

( ) ( )
( )

( )
( )2 2

, 1 , ,n n nD k D k D kL Lθ θ θϕ ϕ ω ϕ+ Ω Ω
− ≤                        (9) 

where ω  is a parameter that was set at 0.01 by trial-and-error. 
It is well known that the regularization parameter plays a crucial role in the convergence of the iterative 

regularization methods, therefore it has to be chosen carefully. In all the studies of this work, large and small 
values of the parameter leading to poor reconstruction results are first chosen. Then, the optimal value of the re- 
gularization parameter is gradually refined by trial-and-error with a decreasing interval. For a well-chosen para- 
meter, the errors on the intensity maps for all the three propagation distances are decreased. If the convergence 
is not achieved for all the propagation distances, the value of the regularization parameter is refined till the 
convergence is achieved. 

2.4. Simulations and Data Acquisition  
The new non-linear inversion method has been tested on simulated images and on experimental data for a multi- 
material object. 

2.4.1. Simulation of the Image Formation 
Two phantoms were defined in a deterministic fashion [25], one for the absorption coefficient and one for the 
refractive index decrement. Figure 3(a) displays the 3D Shepp-Logan [24], consisting of a series of ellipsoids 
on which the projections are based. Theoretical values for the absorption coefficient rδ  and for the refractive 
index β  of different materials at 24 keV were used ( 0.5166λ = Å ) in different regions (Table 1). Analytical 
projections were calculated in a parallel beam geometry with 20482048×  pixels and the two resulting data 
sets were combined to form a complex representation of the wave exiting the object using Equation (2). Propa- 
gation in free-space was simulated using Equation (3) for three distances D = [0.035; 0.072; 0.222] m. The 
original phase contrast intensity maps were digitized to 512512×  pixels and corrupted with additive Gaussian  

 
Table 1. Values of the absorption coefficient and refractive index at 24 keV for the materials used in the 3D phantom.       

 4πβ/λ (cm−1) 2πδr/λ (×100 cm−1) 

Aluminium 5.130 11.4 

Ethanol 0.305 4.00 

Oil 0.262 4.36 

PMMA 0.425 5.63 

Water 0.482 4.87 

Polymer 0.306 5.00 
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(a)                       (b) 

Figure 3. (a) Ideal phase to be retrieved and (b) absorption image 
with PPSNR = 24 dB for strongly varying phase.                

 
white noise with various peak-to-peak signal to noise ratios (PPSNR) of 24 dB. The peak-to-peak signal to noise 
ratio is defined by:  

max

max

PPSNR 20log
f
n

 
=  

 
                                   (10) 

where maxf  is the maximum signal amplitude and maxn  is the maximum noise amplitude. 
In order to asses the performance of the new regularization scheme, two types of objects were considered for 

short propagation distances and weak absorption, one with a slowly varying phase and another with a strongly 
varying phase. 

2.4.2. Experimental Images 
The experimental set-up used is equivalent to the one for the standard propagation based technique described in 
[9], at the beam line ID19 at the European Synchrotron Radiation Facility (ESRF). The Fresnel diffraction in- 
tensity patterns for 1500  projection angles were recorded using a FRELON CCD camera with 20482048×  
pixels for the energy 22.5  keV at four short distances [ ]2;10;20;45D =  mm. The field of view was 1.4  mm 
for the given pixel size 0.68 μm. The multi-material object used is composed of 125 μm Aluminium ( )Al , 200 
μm Polyethylene Terephthalate ( )PETE  mono-filaments, 20 μm of Alumina ( )2 3Al O  wires and 28 μm 
Polypropylene ( )PP  fibres. Phase retrieval with the mixed approach was applied without any prior on rδ β  
[8] (initialization (A)) and with 367rδ β =  [9] corresponding to aluminium (initialization (B)). 

3. Results 
3.1. Simulated Data 
The efficiency of the proposed new regularization scheme was analysed by comparing the numerical results 
obtained with the NL method with the phases retrieved with the CTF, TIE and mixed linear approach in the 
radiographic case. The four methods were tested for weakly and strongly varying phases, and for noise-free and 
noisy data. 

Since the ideal reconstruction image is available, direct comparisons can be made. The method will be 
quantitatively evaluated by measuring the normalized mean square error (NMSE) using the ( )2L Ω  norm:  

( )

( )

2

2

NMSE 100
k L

L

ϕ ϕ

ϕ
Ω

Ω

−
= ×                                 (11) 

where kϕ  is the phase recovered at iteration k  and ϕ  the ideal phase to be recovered. 
The NMSE (Equation (11)) for all the methods are presented in Table 2. For the strongly varying phase 

without noise, the non-linear approach gives the most accurate results. For the weakly varying phase for noise- 
free data, the TIE method gives the best solution. On the other hand, for noisy simulated data with PPSNR = 24 
dB, TIE yields the worst reconstructions. As shown in Table 2, the errors on the phase have been significantly 
reduced with our non-linear algorithm using as starting point the mixed phase map solution. 

The evolution of the NMSE as a function of the iterations number is displayed in Figure 4 for the various 
cases investigated. In these plots, one iteration corresponds to a random cycle through the intensity images  
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(a)                                   (b) 

    
(c)                                   (d) 

Figure 4. Normalized mean square error for the phase versus iteration number. 
(a) Strongly varying phase without noise; (b) Weakly varying phase without 
noise; (c) Strongly varying phase with PPSNR = 24 dB; (d) Weakly varying phase 
with PPSNR = 24 dB.                                                      

 
Table 2. NMSE (%) values for different algorithms and objects.                                                  

 TIE CTF Mixed Nonlinear 

Strong phase without noise 25.54 42.52 26.81 7.57 

Weak phase without noise 1.5 24.37 3.16 2.35 

Strong phase PPSNR = 24 dB 262.13 56.54 27.78 11.58 

Weak phase PPSNR = 24 dB 459 54.67 12.36 8.69 

 
obtained for the three distances. The initialization of the NL algorithm for these four situations was given by the 
linear mixed solution. These curves show that the proposed algorithm has good convergence properties. Very 
few iterates are necessary to obtain an improved stationary point. 

3.2. Experimental Data for Non-Linear Phase Tomography  
The reconstructed projections for the angle of view 120θ =   retrieved with the mixed algorithms in these two 
cases are displayed in Figure 5(a) and in Figure 5(b), respectively. The non-linear phase map obtained for the 
initialization map given in Figure 5(a) is shown in Figure 5(c). Figure 5(d) displays the phase retrieved with 
NL with the starting point given by the linear solution displayed in Figure 5(b). Starting from these images the 
FBP is applied and the 3D refractive index decrement rδ  is reconstructed.  

The tomographic central slices of the refractive index decrement, in the case of the mixed algorithm with a 
standard Tikhonov regularization without any a priori knowledge on the ratio rδ β , is displayed in Figure 6(a). 
The corresponding central slice obtained with the non-linear approach initialized with this linear phase solution 
is shown in Figure 6(c). In order to have a quantitative estimate of the reconstruction errors, the theoretical 
values for 2π rδ λ  and the values estimated with the linear algorithm or with the non-linear approach are 
summarized in Table 3. In Table 4 the relative standard deviations (RSD[%]) and the normalized errors (NE[%]) 
for the four component materials have been measured for all reconstructions approaches. The RSD and the NE 
values were measured using:  



V. Davidoiu et al. 
 

 
46 

 
Figure 5. Projection images corresponding to the angle of view 120˚ obtained after the phase retrieval step with the mixed 
algorithm (a) without a priori information [8] and (b) with 367rδ β =  (Al) [9]. The projections obtained using NL 
initialized with these mixed solutions are displayed in (c) and (d) respectively. Gray-scale windows in (a), (c) is [ 30 30]−  
and in (b), (d).                                                                                           

 

Table 3. Theoretical and measured values with different algorithms 2π rδ
λ

 
 
 

 (cm−1).                                 

  Al 2 3Al O  PETE PP 

theoretical

rδ
β

 
 
 

 367 570 2203 2930 

theoretical

2π rδ
λ

 
 
 

 1220 1793 701.7 408.5 

measured

2π SDrδ
λ

  ± 
 

 with (A) mixed, no prior 553.43 ± 221.92 934.92 ± 199.45 101.11 ± 74.99 154.61 ± 65.58 

measured

2π SDrδ
λ

  ± 
 

 with NL, initialization (A) 1184.77 ± 470.37 2000.23 ± 431.02 219.28 ± 158.92 333.72 ± 139 

measured

2π SDrδ
λ

  ± 
 

 with (B) mixed 367rδ
β
=  1204.22 ± 61.10 1313 ± 116.33 149.79 ± 56.78 190.79 ± 45.75 

measured

2π SDrδ
λ

  ± 
 

 with NL, initialization (B) 1351.2 ± 69.66 1473.99 ± 131.84 169.83 ± 63.18 215.81 ± 50.85 
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Figure 6. Tomographic central slice reconstructed with the mixed algorithm (a) without a priori information 
[8] and (b) with a priori information 367rδ β =  (corresponding to aluminium) [9]. Corresponding central 
slice obtained with the non-linear algorithm initialized with the linear solution (c) without a priori (ini- 
tialization displayed in (a)) and (d) with a priori information 367rδ β =  (initialization displayed in (b)).                                                              

 
Table 4. Values for relative standard deviation (RSD) and normalized error (NE) obtained with different algorithms.        

 Al Al2O3 PETE PP TOTAL 

 %NE %RSD %NE %RSD %NE %RSD %NE %RSD %NE %RSD 

(A) mixed, no prior −54.63 40.1 −47.85 21.33 −85.59 74.16 −62.14 42.41 62.55 44.5 

NL, initialization (A) −2.88 39.7 11.55 21.54 −68.74 72.47 −18.30 41.65 25.36 43.8 

(B) mixed 367rδ
β
=  −1.29 5.07 −26.75 8.85 −78.65 37.90 −53.29 23.97 39.99 18.95 

NL, initialization (B) 10.75 5.15 −17.79 8.94 −75.79 37.2 −47.17 23.56 37.87 18.7 
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measured

SDRSD 100
2π rδ
λ

= ×
 
 
 

                               (12) 

and  

theoretical measured

theoretical

2π 2π

NE 100
2π

r r

r

δ δ
λ λ

δ
λ

   −   
   = ×

 
 
 

                       (13) 

where SD represents the standard deviation, 
theoretical

2π rδ
λ

 
 
 

 the theoretical value to be obtained and 

measured

2π rδ
λ

 
 
 

 the measurements (given in Table 3). The theoretical values were obtained using the tabulated 

values in the XOP software [26]. If the a priori ratio is not included in the initialization algorithm, the proposed 
approach reduces the total NE by 64% . The reconstructed refractive index decrement obtained with the NL 
algorithm is better estimated for all the components of the sample (Table 3). In the case where the exact value of 
the a priori ratio is not known, which is the case for biomedical samples, this result shows that the non-linear 
algorithm is an interesting extension of the mixed approach. 

The tomographic central slice obtained using the mixed approach with a prior value of the ratio rδ β  
corresponding to aluminium is displayed in Figure 6(b), the corresponding non-linear reconstruction using this 
linear initialization is shown in Figure 6(d). 

Comparing this reconstruction (Figure 6(b)) with the one where the a priori was not introduced (Figure 6(a)) 
in the mixed method, it can be observed that low-frequency noise artefacts are alleviated. The non-linear algo- 
rithm is very efficient to improve the uniformity of the reconstructed image as we can see in Figure 6. The non- 
linear solution retrieved using as starting point the linear solution with 367rδ β =  provides more accurate re- 
constructions (Figure 6(d)). In this case, the NE [%] value corresponding to Al is overestimated, but the NE [%] 
for Al2O3 is reduced with 33.5% (Table 4). The overall reconstruction error is also decreased. The efficiency of 
the non-linear scheme depends thus strongly on the initial linear method used, and the best results are obtained 
when no assumption is made on the ratio rδ β . The total values of the normalized errors (Table 4) have been 
improved by the non-linear algorithm. The proposed approach reduces the global error in the reconstructed 
materials compared to the two linear initialization solutions. For most materials, the lowest error values are 
obtained by the non-linear algorithm. Nevertheless, most materials are underestimated (minus sign of NE in 
Table 4) which can also be related to some imperfection of the detector not taken into account in this study. 

4. Discussion and Conclusion 
In this paper, we have considered a non-linear phase retrieval method for phase tomography. The method has 
been evaluated quantitatively on simulated images and from experimental data acquired at three different 
propagation distances on a synchrotron X-ray micro-CT set-up. The proposed NL algorithm is achieving better 
results if no prior is introduced in the initialization solution. On the other hand, if the approach is initialized with 
the mixed solution including an a prior value, the improvement is not significant in terms of normalized errors. 
The proposed method decreases globally the reconstruction errors compared to the mixed algorithm applied with 
various priors [8] [9]. Then, the results suggest that the refractive index decrement for a non-homogeneous 
object can be retrieved more accurately in terms of global errors if the non-linearity of the phase problem is 
taken into account. Though the linear solution is necessary for the initialization of the algorithm, this approach is 
expected to open new possibilities for biomedical studies with phase tomographic imaging. 
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