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Abstract 
 
Predicting the performance of intelligent multi-robot systems is advantageous because running physical ex-
periments with teams of robots can be costly and time consuming. Controlling for every factor can be diffi-
cult in the presence of minor disparities (i.e. battery charge). Access to a variety of environmental configura-
tions and hardware choices is prohibitive in many cases. With the eminent need for dependable robot con-
trollers and algorithms, it is essential to understand when real robot performance can be accurately predicted. 
New prediction methods must account for the effects of digital and physical interaction between the robots 
that are more complex than just collision detection of 2D or physics-based 3D models. In this paper, we 
identify issues in predicting multi-robot performance and present examples of statistical and model-based 
simulation methods and their applicability to multi-robot systems. Even when sensor noise, latency and en-
vironmental configuration are modeled in some complexity, multi-robot systems interject interference and 
messaging latency, causing many prediction systems to fail to correlate to absolute or relative performance. 
We support this supposition by comparing results from 3D physics-based simulations to identical experi-
ments with a physical robot team for a coverage task. 
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1. Introduction 
 
Simulations are an important component of software 
validation. Robot controllers are tested within a simu-
lated environment to verify properly coded semantics. 
Simulation is often used to predict controller perform-
ance under a set of constraints. Specifically, the envi-
ronment (placement of obstacles, walls, etc.) is varied 
along with the robot configuration to quantify perform-
ance under a more generalized set of parameters. Predic-
tion is then generated by gathering average case per-
formance data from simulation experiments. Simulations 
can provide both quantitative and qualitative data which 
are used to model robot performance in the real world.  

Getting simulations to predict performance in single 
robot experiments is challenging. Models do not always 
capture important factors such as sensor to environment 
interactions [1,2] and hardware inconsistencies [3,4], 
causing simulations to perform better or worse than in 
the real world. This effect is magnified when using more 
than one robot in a team. Prediction of multi-robot per-
formance in simulation is particularly important because 

of the time and cost involved in acquiring, maintaining, 
and running multiple robots. If simulations are to be pre-
dictive, it is important to understand when simulations 
accurately predict multi-robot performance. 

There is a renewed interest in prediction through 
simulations which is evident by the emergence of new 
conferences such as Simulation, Modeling, and Pro-
gramming for Autonomous Robots (SIMPAR). SIMPAR 
was first introduced in 2008 to “identify and solve the 
key issues necessary to ease the development of increas-
ingly complex robot software and to boost a smooth 
shifting of results from simulated to real applications” 
[5]. It is rare that there is a seamless migration of code 
from simulators to real world systems because of the 
complexity of modeling mechanics (sensors) and interac-
tions with real environments. 

In this article, we investigate the factors that affect the 
ability of statistical and model-based simulation to pre-
dict multi-robot performance. Specifically, we survey the 
factors that affect the accuracy of multi-robot simulations 
(Section 2). We discuss both statistical and model-based 
methods of predicting performance in multi-robot teams 
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(Section 3). In Section 4, we examine validation tech-
niques in a recent robotics conference. A comparison 
between robotics experiments and physics-based simula-
tions is presented in Section 5. The article concludes 
with Section 6. 
 
2. Using Simulations to Predict Performance 
 
Many researchers use a behavior-based decomposition [6] 
that layers task achieving behaviors such as obstacle 
avoidance and wander. A behavior-based robot is de-
signed to operate in dynamic environments because its 
reactions are determined by what is sensed without nec-
essarily modeling the environment structure that pro-
vides the sensor readings. As it senses the environment, 
it computes what it senses, and acts on what is computed 
(see Figure 1). This structure often includes higher-level 
behaviors that are not purely reactive that model and 
hold states such as mapping and path planning. 

Uncertainty is introduced in the behavior-based model 
in several ways: sensor noise, latency, and the environ-
ment. Sensor noise is a random error that causes sensor 
readings to vary against the expected values. Since the 

robot uses sensor data directly to calculate actions, sen-
sor noise can affect the choice of appropriate behaviors.  

Latency is the delay between sensing and acting. In a 
mobile robot system, latency is injected because of the 
delay between sensing, computation time, and execution 
time. Latency can affect performance if robot behaviors 
are not executed in a timely manner. In addition, as the 
environment’s lighting and surfaces change, sensors in-
teract differently, often in unmodeled ways. Melhuish et 
al. [1] performed a patch sorting study in both simulation 
and a real multi-robot system using minimalist robots. 
Simulation produced better performance than real robot 
experiments, primarily because the actual infrared sen-
sors encountered difficulties in changing lighting condi-
tions. 

Multi-robot experiments include additional factors 
such as interference, message loads and communication 
bandwidth that affect performance. Interference occurs 
when multiple robots try to occupy the same space caus-
ing robots to expend time and energy maneuvering 
around each other. Message passing (via a network) can 
also affect performance by requiring computational re-
sources to produce and process data. 

 

 

Figure 1. Intelligent mobile robots are traditionally structured using a behavior-based approach. When multiple robots in-
teract, new sources of discrepancy, such as message production and processing, can cause simulations to vary from experi-

ents. m 

Copyright © 2011 SciRes.                                                                                  ICA 



S. DAWSON  ET  AL. 

Copyright © 2011 SciRes.                                                                                  ICA 

135
  
2.1. Sensor Noise 
 
Prior work indicates that researchers are concerned with 
how sensor noise affects the correlation between simula-
tion and physical experiments. This is because sensor 
data is noisy and the range, reflectance, and other pa-
rameters of real sensors are limited [7]. For instance, 
Balch and Arkin [8] conducted experiments in formation 
control of multiple robots in simulation and with real 
robots. They determined that the differences between the 
experiments were primarily due to sensor noise and posi-
tional inaccuracies. 

In a task allocation experiment [9], Mataric found that 
the exact behavior in a nondeterministic world is impos-
sible to predict exactly because it is subject to real error 
and noise. In other studies [10,11], experiments were 
performed using multiple coordinating robots using dif-
ferent task allocation strategies focusing on noise and 
uncertainty. They showed that no single strategy pro-
duces the best performance in all cases and that the best 
strategy changes as a function of noise in the system. 
Other researchers found that too little, too much, or in-
accurate noise in simulation creates unrealistic or non-
transferable systems [12,13].  

In some instances, sensors are dependent upon each 
other. In [14], Meeden found that there is a correlation 
between certain sensors. A hybrid model was developed 
that combined both independent and dependent sensor 
noise to account for different amounts of correlation. 
They used a Khepera robot with light sensors to test their 
model. They found that real world noise is not inde-
pendently random for certain sensors but displays syn-
chrony. Their results imply that the hybrid noise model 
transfers better from simulation to the real world than an 
independent noise model.  

In [15,16], a description and evaluation of mobile ro-
bot motion in simulation was presented. It was found that 
problems in robot motion arise due to unexpected uncer-
tainty of motion and sensor error. It was noted that some 
simulators pay little attention to the fact that uncertainty 
is inevitable. 
 
2.2. Latency 
 
Latency is another factor that many researchers neglect 
when modeling. In one study, Balch and Arkin [8] pre-
sent reactive behaviors using formations in robot teams 
in simulation, on real robots, and Unmanned Ground 
Vehicles (UGVs). They determine that latency and posi-
tion error in transmission of positional information can 
negatively impact performance. They show that in simu-
lation there was no position error or communication la-
tency, while experiments on real robots and UGVs ex-

perienced 1 s and 7 s communication latency, respec-
tively. 

Go et al. [17] present a simulation framework for vi-
sion-centric robots and conjecture that a key element of 
simulation is latency modeling. However, they state that 
the effects of latency are often ignored in simulations. 
They go on to state that unaccounted latency in simula-
tion sensing and actuation leads to differences in simu-
lated and real results. Likewise, in a recent paper, Seo et 
al. [16] mention that simulators do not consider uncer-
tainties in latency. 
 
2.3. Environment 
 
The environment and robot-environment interaction are 
hard to accurately model in simulation. Brooks [18] 
states that there is a vast difference between simulated 
and real robots and their interaction with the environ-
ment. It is also noted that programs that work on simu-
lated robots may fail on real robots because of differ-
ences in real world sensing and actuation because it is 
hard to simulate dynamics of the real world. 

Gat [19] states that there is an inadequate basis for 
predicting the reliability and behavior of robots operating 
in unengineered environments. Interaction with complex 
environments is difficult to model because of independ-
ent variables which are often ignored. In addition, design 
of control systems for robots operating in complex, dy-
namic, uncertain environments will become more diffi-
cult as the complexity of behaviors increases [20]. 

In an experiment on tracking targets [21], it was dis-
covered that the characteristics of the environment affect 
system performance. For instance, the shape of the envi-
ronment and how obstructed it is shown to be significant. 
Furthermore, Smith [22] stated that robot interaction 
with walls in an environment is extremely hard to model 
accurately. This may be a result of different surface 
properties of walls. 

Rosenfeld et al. [23] determined that the physical en-
vironment where robot teams operate pose challenges for 
robots to perform properly. They created adaptive coor-
dination techniques and found that techniques should be 
adjusted to match different environmental conditions. 

In experiments on cooperation strategies [24], it was 
determined that the environmental configuration had the 
greatest impact on the speed and success of robot search. 
Balaguer et al. [25] state that robots are complicated sys-
tems composed of interacting units, each characterized 
by its own behaviors and errors and that robots' observed 
behaviors depend on the environment along with the 
software and hardware.  

Balakirsky et al. [26] determined that a combination of 
robot parameters, diverse terrain, and high variability in 
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sensor readings and error rates create dynamic environ-
ments that are hard to accurately replicate in simulation. 
They state that the inherent complexities of robotic en-
vironments may introduce significant differences be-
tween real and simulated environments. They go on to 
say that algorithm development on a simulation assumes 
that information about the environment is accurate, but 
the complexity of the operating environment can be 
daunting and variables about terrain characteristics may 
be omitted or ignored. 
 
2.4. Interference 
 
In multi-robot experiments, robot interference has a ma-
jor impact on performance. Gerkey and Mataric [27] 
suggest that a common externality in multi-robot systems 
is physical interference. They state that interference is 
often ignored or crudely modeled when estimating utili-
ties, but have complex and unpredictable effects that may 
easily dominate performance. Other researchers [28,29] 
also determined that the number of robots has an impor-
tant impact on system performance due to physical in-
terference. 

In a discussion on collective agents [9], it was found 
that interference increases as the size of the group grows 
which causes a decline in global performance. They state 
that the global consequence of local interaction between 
robots is difficult to predict.  

Martinoli and Mondada [30] performed parametric 
simulations and real experiments for a clustering task 
using multiple robots. They found that the main differ-
ence is that the performance of a team of three real ro-
bots is less rapidly saturated than in simulation. In ex-
periments with more robots, there was a substantial sub-
linearity because of interference and team fitness be-
comes saturated because of interference. 

Rosenfeld et al. [31] studied how the productivity of 
robots scales with group size in a foraging experiment. 
They found a negative correlation between group pro-
ductivity and interference using 1 to 30 robots in simula-
tions. They show that various coordination methods af-
fect the productivity of team performance. 

An investigation on multiple robots in odor source lo-
calization in simulation was performed by Lochmatter 
and Martinoli [32]. In their study, they compare per-
formance of a single robot to that of a group of 2 or 5 
non-cooperating robots. While they expected the multi- 
robot experiments to perform significantly better than the 
single robot experiments, they found some of the results 
comparable. In addition, they found a significant differ-
ence in one algorithm where performance decreased as 
the number of robots increased. They conclude that the 
loss in performance result from interference amongst 

robots. 
 
2.5. Message Passing and Communication  

Bandwidth 
 
When multiple robots cooperate, message passing and 
communication bandwidth may impact system perform-
ance. Since robot cooperation often requires communica-
tion, the bandwidth can grow with the number of robots 
[9]. Rybski et al. [33] show that limited communication 
bandwidth constricts the effective team size in a surveil-
lance task using real miniature robots. They state that 
performance depends on the number of robots that share 
the bandwidth and that the system degrades under in-
creased loads.  

Lerman et al. [34] determined that as the size of a 
multi-robot system grows, the complexity of design ap-
proaches also increases. This increase is due to increased 
communication bandwidth and computational abilities of 
robots. 

In [24], coordination strategies were examined using 
simulation and physical experiments. They show that 
explicit coordination methods decrease performance as 
the number of robots increase because of the limited 
communication bandwidth and computational require-
ments when dealing with multiple robots. They also de-
termined that message exchange affects performance and 
scales with team size. They suggest that methods that 
rely on reliable network connections have limited appli-
cability in the real world. 
 
3. Predictive Models of Behavior-Based 

Controllers 
 
There are two kinds of predictive models in use: statisti-
cal analysis and simulated. Statistical models consider 
the transitions between states. Simulated models use 
representations of robots and the environment to trace 
execution of particular controllers. Simulations can be 
numerical or can use a specialized package. 
 
3.1. Statistical Models 
 
Lerman and Galstyan [29] presented a mathematical 
model of a group of robots in a foraging task. Robots 
searched an enclosed obstacle-free area to retrieve pucks. 
The foraging task consists of five states (see Figure 2): 
search for pucks, collect pucks, go home, reverse homing, 
and avoid collisions. For analysis, the behavior is simpli-
fied to two states: searching (including searching and 
collecting pucks) and avoiding. 

Using the rates of detecting a puck, αp, or another robot, 
αr, the number of robots in ea h state could be calculated  c 
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Figure 2. Lerman and Galstyan simplify the behavior-based puck collection to two states for analysis. 
 

3.2. Model-Based Simulation Packages and the collection of pucks could be predicted. Interfer-
ence, modeled as  
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Specialized packages either rely upon kinematics or 
physics-based simulations. A kinematics simulation fo-
cuses on motion without reference to the force or mass 
that causes it. Kinematics simulators are usually fast be-
cause they use ray tracing for collision detection and 
sensor modeling [36]. The simulation is rendered into a 
grid and collisions between blocks in the grid and the 
sensor data are computed using ray tracking. Ray tracing 
involves using a line-drawing algorithm to determine if a 
ray intersects a block in the grid. 

describes robots that detect another robot in searching 
state or in the avoid state and begin the avoiding maneu-
ver where τ is the avoiding time period if they detect an 
obstacle. Ns(t) is the number of robots in the search state 
at time t, Na(t) is the number of robots in the avoid state 
at time t, and N0 is the total number of robots. The col-
lection of pucks is modeled by 

Physics-based simulations take force and mass into 
consideration and produce higher fidelity simulations. 
They often use a physics engine, such as Open Dynamics 
Engine (ODE) [37] that consists of a rigid body dynam-
ics simulation engine and a collision detection engine. 
The physics engine allows the simulation of properties 
such as friction, velocity, and mass. While kinematics 
simulators are faster, an advantage of physics-based 
simulations is that they are thought of as more accurate 
and may prevent physically inaccurate situations due to 
inconsistencies between the real and simulated world 
[38]. However, physics-based simulations still include 
minor differences that can accrue over time and result in 
different behaviors from the real world [39]. 

     p s

dM t
N t M t

dt
             (2) 

where M(t) is number of uncollected pucks at time t. 
From these equations, both efficiency (the time it takes 

to collect 80% of the pucks) and interference (amount of 
time spent avoiding) is calculated. They validate their 
model by comparing its predictions to results from 
Player/Stage [35]. They showed that while increasing 
group sizes reduces task completion time, the improve-
ment is only sub-linear and the individual robot’s per-
formance is a monotonically decreasing function of 
group size. They found that interference can significantly 
affect group performance and that there was an optimal 
group size that maximizes team performance.  

Robot and sensor models are crucial to accurate simu-
lation because they provide the basis for robot perception. 
Robot models detail many aspects of the physical robot 
that it is modeling, such as specifications about the robot 
(mass, friction, size, etc.). Since sensor output includes 
some amount of error, sensor models often include un-
certainty and are adjusted to different levels of noise [16]. 
Figure 3 shows how a Pioneer robot is modeled in differ- 
ent simulators. We present representative (not exhaustive)  

Lerman and Galstyan state that their model agrees 
with the simulations. However, they used probabilities 
for situational events specific to the environment which 
are best identified empirically. They note that the model 
depends only on present state and not past states and 
cannot take into account complex decision making. 
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Figure 3. Images of a pioneer robot model in reality (top 
left), stage (top right), stage from top view (bottom left), 
and webots (bottom right). 
 
set of packaged simulators and discuss their approach to 
modeling interaction. 
 
3.3. Stage 
 
Stage [36] is a 2.5D, kinematics simulator that runs on 
UNIX-like platforms. It is an open source, community 
free software that simulates large populations of robots. 
As of January 2010, Stage has been downloaded 60,337 
times. Stage also interfaces with Player [35], a robot de-
vice server, to allow for easy transfer to real robots. It is 
aimed at being efficient and configurable rather than 
highly accurate. So, it provides simple, computationally 
cheap models of robots (modeled as polygon blocks) and 
devices, such as various sensors and actuators, that are 
more general than actual hardware.  

Stage provides fairly coarse-grained sensor models. 
For instance, odometry (used to measure position based 
on integrating wheel movements over time) models error, 
E, for x, y, and Θ by choosing a value from –E/2 to E/2 at 
startup for use during the lifetime of the simulation. For 
collision detection, ray tracing is used to compute colli-
sions between blocks and the range sensor data. It uses 
the velocity of a moving object and compares its current 
position to its next position using the updatePose func-
tion. It then reports a collision if ray tracing determines 
an intersection with another object in that range using the 
TestCollision and Raytrace functions. However, it does 
not detect collisions on the z-axis. Collision detection is 
reported to be accurate to 0.02 m which is the spatial 
resolution of the ray tracing engine. 
 
3.4. Gazebo 
 
Gazebo [40] is a 3D multiple robot simulator with dy-

namics that runs on UNIX-like platforms. Gazebo is also 
Player compatible. It is free software designed for out-
door environments and is capable of simulating a small 
population of robots with high fidelity. As of January 
2010, Gazebo has been downloaded 22,329 times. It at-
tempts to generate realistic sensor feedback based on 
provided parameters on lighting, surface reflectance, and 
friction. Rigid body physics allow robots to interact with 
objects based on provided robot/sensor models. 

Movement error is modeled by friction and slip noise, 
adjusting through the mu1 and slip parameters. Gazebo 
uses ODE to simulate collision detection. The RaySensor 
and RayGeom classes are used to cast rays, test for inter-
section, and report the range to an object. Geoms (types 
of geometries) are associated with objects to get the po-
sition and orientation from the geom to the object. 
 
3.5. USARSim 
 
USARSim [41] is an open source, high fidelity simulator 
intended for research in human-robot interaction and 
multi-robot coordination. It is platform independent and 
runs on Windows, Linux, and Mac OS. USARSim builds 
upon the widely used game engine, Unreal Engine. It 
provides 3D rendering and physical simulation. It fea-
tures the simulation of multiple sensors and actuators. 

USARSim uses the Karma physics engine for collision 
detection. Like other physics-based simulators, it uses 
mass, friction and linear and angular damping to actuate 
objects against external and internal forces. Karma phys-
ics engine does not document any specific parameters for 
interjecting error into a simulation. 
 
3.6. Webots 
 
Webots [42] is a 3D, physics-based mobile robot simu-
lator that is both kinematics and physics-based. Webots 
is a commercial product that can run on multiple operat-
ing systems such as Windows, Linux, or Mac OS X. 
Webots is used by more than 700 universities and re-
search centers worldwide. Webots allows users to define 
and modify robotics setup and define properties (texture, 
friction, mass, etc.) to objects. It also allows users to im-
port their own 3D models and create complex environ-
ments using OpenGL technology.  

The ODE library is utilized to create accurate physics 
simulations. The differential wheel model in Webots is 
used to represent any robot with two wheel differential 
steering. The model include encoderNoise which adds 
noise to the incremental encoders (counters that incre-
ment each time a wheel turns) and encoderResolution 
which defines the number of encoder increments per 
radian. The actual speed is computed from the angular 
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speed of each wheel, the wheel radius, and the noise. 
Webots uses ODE for collision detection where compo-
nents of a robot are associated with a bounding object. 
The bounding object defines the shape used for collision 
detection. A ray casting algorithm is used to detect colli-
sions between a sensor ray and a Solid node (a group of 
shapes) where the intersection between two bounding 
objects is calculated. Force is then generated upon con-
tact on the solids. 
 
4. Experiments in Robotics 
 
In order to better understand the type of experiments that 
are being implemented, an examination of experimental 
methods used in papers from the 2010 IEEE Interna-
tional Conference on Robotics and Automation was per-
formed. The methodology for counting the experiments 
consisted of examining the papers in the conference pro-
ceedings to determine the type of experiments the re-
searchers performed. The findings from this inquiry are 
presented in Figures 4 and 5. 

The experiments were broken into four categories: real, 
simulation, dataset, and combination. The real experi-
ments were those implemented with actual hardware or 
robot platforms, which included real robots, manipula-
tors, etc. The simulation category consisted of experi-
ments conducted with a simulator or theoretical or 
mathematical modeling. In addition, some cases used a 
combination of both real and simulated experiments. The 
last category is where datasets of real or simulated data 
obtained from data set repositories were used. 

While there are many known issues with simulations, 
we found that they are still a primary means of validation. 
Approximately 29% of researchers still rely on only 
simulated results. However, more than 50% of multi- 
robot experiments were conducted in simulation. 
 
5. Using Simulations to Predict  

Experimental Performance in an  
Exploration Task 

 
Our research focuses on exploring predictive models 
based on simulation results within multi-robot experi-
ments. Certainly sensor error, latency and environment 
all affect team performance since team performance is an 
aggregation of individual performance in some ways. 
However, we conjecture that there are important factors 
specific to multi-robot systems that affect performance in 
real robots differently than in simulation.  

The predictability of physics-based simulations for 
multi-robot coverage tasks was summarized in [43] and 
[44]. In this article, we expand the presentation of results 
and analysis. To understand the impact of each factor, we  

 

Figure 4. Validation approach in a 2010 robotics conference 
for all papers. 
 

 

Figure 5. Validation approach in a 2010 robotics conference 
for multi-robot papers. 
 
compared performance in simulations and real experi-
ments using different environmental configurations and 
cooperation paradigms in a coverage task. Robots each 
perform frontier exploration [45] where none of the ro-
bots know the topology of the environment a priori. 
Teams can either communicate progress in the form of 
areas that have been explored, Direct Comm, or perform 
the exploration without knowledge of the actions or 
findings of other robots, No Comm. The control program, 
written in the C, was essentially the same for both the 
simulated and real experiments. 

K-team Koala robots were used for the physical ex-
periments. The robots were equipped with a Hokuyo 
URG laser range finder with a range of 2 m. Also, a 
Hagisonic StarGazer Localization System was used to 
mitigate sensor error. The robots were also equipped 
with a Dual Core 1.6 GHz machine running Ubuntu with 
2 GB of RAM.  

The simulation environment used was Webots [42], a 
3-D physics-based mobile robot simulator. The robots 
used global positioning sensor (GPS) for localization as 
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well as a laser range finder with a 2 m range. The simu-
lations were performed on a Dual Core 2.33 GHz Linux 
machine with 2 GB of RAM. A wheel encoder noise 
(based on a Gaussian distribution) was added in simula-
tion to compensate for error in the real world. 

Average coverage times over five runs for the real ex-
periments and 20 runs for simulation are presented for a 
three robot team (see Table 1) in six environments (see 
Figure 6). The environments were chosen to represent 
different types of outdoor areas. The robot speeds, envi-
ronmental configuration and controller programs were 
identical between simulation and experiments. We mod-
eled sensor latency (based on empirical testing) and sen-
sor error (percentage determined by empirical testing). 

In terms of prediction, ideally the simulations would 
predict the amount of time needed for coverage. The 
simulations completed on average 1.5 times faster than 
the experiments. However, prediction can be useful if we 
can deduce relative performance in comparisons. Unfor-
tunately, relative performance is different between simu-
lation and experiments. For example, in environment 2 
the simulations show that the cooperation paradigm has 
little effect on the time-to-cover. However, in experi-
ments, the lack of cooperation paradigm causes the 
time-to-cover to increase by 50%. In addition, after per-
forming a t-test, we found that there was a statistical dif-
ference (p = 0.041) between the time-to-cover results 
from the simulation and experiments in the No Comm 
experiments. So, to really understand the predictive abil-
ity of physics-based simulations in this multi-robot task, 
we must consider interference and message processing 
individually. 
 
5.1. Interference 
 
A summary of interference results are in Tables 2 and 3. 
Interference in real experiments occurs more frequently 
and lasts longer than in simulation. No Comm experi-
ments resulted in more interference than Direct Comm 
experiments. Moreover, the time-to-cover difference 
between real and simulation experiments correlates to 
total time interfering (r = 0.77). In Direct Comm experi-
ments, interference within real experiments is reduced, 
although simulated interference is not considerably dif-
ferent between the two paradigms. The difference be-
tween the time-to-cover for the real and simulated results 
is uncorrelated to total time interfering (r = 0.0645) when 
interference is managed with communications based co-
operation. These findings suggest that unmodeled inter-
ference can affect how well simulations approximate 
performance of multi-robot experiments. If we consider 
environmental configuration, simulation in open envi-
ronments was found to be less predictive than in more  

 

Figure 6. Six 6 m × 6 m environmental configurations used 
in a coverage task. 
 

Table 1. Average time to complete 90% coverage (in sec). 

No Comm Direct Comm 
Env 

Real Sim Diff Real Sim Diff 

1 213.8 107.5 106.3 220.3 99.5 120.8

2 185.8 93.5 92.3 121.8 80.5 41.3 

3 230.1 182.5 47.6 149.1 86.2 62.9 

4 261.8 202.5 59.3 212.1 188.0 24.1 

5 132.6 86.5 46.1 64.3 40.5 23.8 

6 220.1 180.0 40.1 133.6 88.0 45.6 

 
cluttered environments which has implications for ex-
periments of outdoor environments. 
 
5.2. Message Passing 
 
Interference can be reduced through a cooperation para-
digm that reduces the likelihood that robots will attempt 
to occupy the same space. However, even if interference 
is low (Direct Comm in environments 2 and 3), phys-
ics-based simulations are still not predictive of experi-
mental results. An additional factor to consider is the 
inconsistency of message latency. Table 4 shows the 
latency between two sets of experiments. Low Message 
Volume communicates information between robots only 
when no previous communication has addressed the 
newly found area. High Message Volume updates infor-
mation on an area whenever that area is encountered, 
producing more messages that should adversely affect 
latency. Although average latency is not drastically dif-
ferent, the variance in latency is much larger for real ex-
periments. Simulation does a poor job of reproducing the 
inconsistency in latency that can affect performance in 
real robots. Table 5 shows that time-to-cover in the real 
robot experiments is longer and all the real experiments 
xperience much higher variance. e 

Copyright © 2011 SciRes.                                                                                  ICA 
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Table 2. Average number of times the robots interfered with one another and the average duration of 
each occurrence for No Comm (in sec). 

Number of Occurrences Time per Occurrence Interference Time 

Sim Real Sim Real Sim Real Env 

µ σ µ σ µ σ µ σ   

1 2.1 1.21 5.2 1.79 6.63 3.97 16.87 8.61 15.4 78.4 

2 1.7 1.26 3.6 1.82 6.53 6.15 13.33 9.11 12.8 46.2 

3 1.8 1.28 2.0 1.00 7.25 8.54 11.57 2.59 14.0 24.0 

4 1.5 1.79 3.8 3.77 3.54 3.93 12.38 8.93 9.9 63.0 

5 1.4 1.35 5.4 3.44 8.74 15.88 8.06 6.03 13.2 28.8 

6 1.3 1.16 1.6 1.95 15.25 17.95 6.48 7.34 22.6 10.0 

 
Table 3. Average number of times the robots interfered with one another and the average duration of 
each occurrence for Direct Comm (in sec). 

Number of Occurrences Time per Occurrence Interference Time 

Sim Real Sim Real Sim Real Env 

µ σ µ σ µ σ µ σ   

1 0.15 0.37 0.6 0.55 0.9 2.99 6.6 11.52 0.9 6.6 

2 0.20 0.41 0.2 0.45 0.7 2.30 0.6 1.34 0.7 0.6 

3 0.90 0.97 0.6 0.89 3.9 4.45 0.5 0.71 6.3 0.8 

4 0.05 0.22 0.4 0.55 0.3 1.34 7.8 11.63 0.3 7.8 

5 0.45 0.51 0.4 0.55 1.8 2.44 1.4 2.19 1.8 1.4 

6 0.35 0.59 0.4 0.55 0.9 3.21 18.8 28.72 0.9 18.8 

 
Table 4. Comparision of message latency (in sec). 

 Low Message Volume σ High Message Volume σ 

Sim 1.45 0.15 3.25 0.07 

Real 1.79 2.02 3.62 2.72 

 
Table 5. Comparison of average 50% and 90% coverage times for low and high message volumes (in sec). 

Sim Real 
Message Volume 

50% σ 90% σ 50% σ 90% σ 

LOW  12.32 2.54 24.52 7.75 48.58 22.77 168.05 77.61 

HIGH  11.97 2.26 26.07 8.57 89.64 17.28 202.06 31.26 

 
6. Conclusions/Future Work 
 
This paper identifies issues related to predicting multi- 
robot performance as well as methods for predicting ro-
bot performance using both statistical analysis and simu-
lators. Although simulations are advantageous because 
they are a fast and cost efficient way of performing robot 

experiments, we show that simulations can be affected 
by both interference and message passing in ways that 
cause simulation results to fail to predict either absolute 
or relative performance in physical robot teams. 

For future work, we plan to propose a model that ac-
counts for and mitigates some of the issues illustrated in 
this paper. In particular, we plan to better model robot 
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interaction in simulation. We will explore the idea that 
significant discrepancy between simulated and real cov-
erage experiments results from physical interference be-
tween robots. The methodology for this research is to use 
a frontier-based algorithm for coverage where a team of 
robots recursively explores an unknown area while 
building a cellular representation.  

We anticipate that the exploration algorithm might 
create different forms of interaction between robots. 
Since each robot maintains its own individual list of 
frontiers to explore, robots may choose to explore the 
same frontier thus competing for long durations of time. 
Conversely, robots may choose to search adjacent areas 
and only interact with other robots in passing for a 
shorter length of time. Robots may also encounter other 
robots directly and try to avoid each other if they are on 
the same path but headed in different directions. 

Therefore, we are more precisely modeling different 
forms of physical robot interaction. Interaction can be 
categorized as competing and passing. We define com-
peting interaction as robots trying to occupy the same 
space when they have proximal goals. Passing interac-
tion is when robots briefly interact with each other when 
trying to approach different goals. We also plan to quan-
tify how obstacles either assist with cooperative coverage 
(Environment 6) or hinder cooperative coverage (Envi-
ronment 4). Specifically, we plan to focus on three types 
of environments: open areas, convex environments, and 
concave environments. 
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