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Abstract 
 
This study investigated the feasibility of updating prior uncertain geologic models using Ensemble Kalman 
filter for controlling water coning problems in horizontal wells. Current downhole data acquisition technol-
ogy allows continuous updating of the reservoir models and real-time control of well operations. Ensemble 
Kalman Filter is a model updating algorithm that permits rapid assimilation of production response for res-
ervoir model updating and uncertainty assessment. The effect of the type and amount of production data on 
the updated geologic models was investigated first through a synthetic reservoir model, and then imple-
mented on a laboratory experiment that simulated the production of a horizontal well affected by water con-
ing. The worth of periodic model updating for optimized production and oil recovery is demonstrated. 
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1. Introduction 
 
The productive life of a well completed over an active 
aquifer is strongly affected by water coning. The evolu-
tion of the water cone is driven by non-uniform draw-
down pressure near the wellbore. The irreversibility of 
water coning mandates its early detection, modeling and 
control before and/or during water breakthrough. Recent 
development in technologies for in-situ monitoring using 
pressure and temperature distributed sensors allow ac-
quisition of real-time production data that carry valuable 
information about reservoir properties and the water 
conning process in the vicinity of the well. The acquired 
data can be used to maximize oil-water ratio through 
model based dynamic optimal control of pressure draw-
down along a production well and/or inflow allocation 
among the wells draining the same reservoir.  

Water coning is a local phenomenon governed by the 
gradient of the flow potential in the vicinity of the well. 
Since the flux variations in the far-field have a relatively 
insignificant influence on the characteristics of coning, a 
full reservoir model is not required to control this local 
phenomenon. Muskat [1] presented an analytical solution 
for the critical flow rate of a well in a homogeneous and 
isotropic reservoir below which a stable water cone is 
formed. The velocity of cone propagation is partially 
determined by reservoir permeability as shown in (1). 
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h is Cone height from original water-oil contact, ΔP is 
the pressure difference from the tip of the cone to the 
wellbore, µ is the oil viscosity, k the average permeabil-
ity, b is the distance from the well to original water-oil 
contact, Δρ is the oil-water density difference, g is the 
gravity force, and Pc is the capillary pressure. 

Several analytical and numerical correlations that pre-
dict water coning performance accounting for more 
complex geometries and heterogeneity have been devel-
oped. A comprehensive literature survey on water coning 
was published by Alikhan and Ali [2]. Despite the exten-
sive work done on water coning modeling, most of the 
existing models for this process are deterministic in the 
sense that the reservoir properties (such as permeability k 
in (1)) are assumed to be known. However, in most cases, 
the knowledge of reservoir properties is limited, and un-
certainty in model parameters causes deviations in the 
prediction of these physical quantities. Updating of res-
ervoir properties based on acquired dynamic data is cru-
cial. Conventional history matching techniques may not 
be appropriate for this purpose since they are computa-
tionally expensive and time-consuming for real-time 
integration of data. Ensemble Kalman filter has demon-
strated to be a rapid tool for subsurface process identifi-
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cation and control. Ensemble Kalman filter (EnKF) has 
been applied for water flooding optimization ([3,4]), un-
certainty assessment in reservoir description [5], history 
matching [6], seismic incorporation [7], and other areas. 

In this paper, we present an iterative form of EnKF 
used in conjunction with dynamic process optimization. 
The effect of data type and its diversity on the adequacy 
of EnKF is first investigated through a synthetic case of 
water coning, and then demonstrated on a laboratory 
flow model. The results from this study provide a guide-
line for development of an effective monitoring system 
for real-time system characterization. The integration of 
such a monitoring system into an optimal process control 
system is also demonstrated through the lab-scale water 
conning problem. 

A schematic flow chart summarizing the system model 
updating procedure is presented in Figure 1. This pro-
cedure is connected to an optimization module as part of 
a closed-loop feedback control system. The system, 
which is composed of the reservoir, wells and surface 
facilities is modeled using a reservoir simulator. Conven-
tionally, the geologic model is constructed using petro-
physical data such as permeability and porosity obtained 
from well logs and/or well tests. However, the inherent 
uncertainty in the distribution of these properties 
throughout the reservoir results in uncertain predictions 
of reservoir performance. EnKF enables a rapid geologic 
model updating for short-term or local problems such as 
water coning, and thus allow real-time optimal control of 
operating conditions. 

A brief description of ensemble Kalman Filter is pre-
sented here; a detailed derivation of EnKF is presented 
by Gu and Oliver [4]. Denote NR as the numbers of 
equally probable realizations of the distribution of an 
uncertain reservoir property (i.e. permeability k in this 
study) and NB as the number of gridblocks in the reser-
voir model. The ensemble of NR realizations is generated 
from the prior information of the reservoir using sequen-
tial Gaussian simulation. Each realization is input into 
the reservoir simulator and run for one time step (ti), 
producing a set of NRes production data, denoted by the 
vector d (including oil, water, gas rates, etc.). The co-
variance between the NRes responses and the NB grid 
block permeability can be calculated using the NR reali-
zations. This covariance matrix forms the basis for the 
Kalman Gain matrix KG. The model represented by the 
vector K is updated using the following linear model: 

i i   new old
refK K KG d d      (2) 

where dref is the vector containing the set of production 
data of the real or reference reservoir, Knew is the vector 
with the updated variable corresponding to the ith realiza-
tion, Kold

i is the vector with the prior variable of the ith 
realization, di is the vector with the set of production data 
of the ith realization. The covariance matrix between the 
permeability values at each location and the production 
responses from the ensemble responses is formed. Then, 
each element of the covariance matrix is standardized by 
the variance of the production responses of the ensemble 
to compute the Kalman Gain matrix. 
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Figure 1. Model Updating flow chart. 

Copyright © 2011 SciRes.                                                                                 ENG 



C. A. MANTILLA  ET  AL. 540
 

 

 
It is expected that the ensemble of updated models 

matches better with the true data. However, in practice 
when the updated models are again processed through 
the flow simulator, the corresponding responses continue 
to exhibit deviation from the measurements. This mis-
match reflects the inadequacy of the covariance-driven 
updating scheme for capturing the non-linearity of the 
transfer function (simulator) model. In order to achieve a 
better match, the updating procedure is continued itera-
tively until a tolerable deviation is obtained. The whole 
process is then repeated for the next time step (tk+1). 
Once the deviation of updated model responses from the 
measured data is acceptable, it is transferred to the opti-
mization module, and the well settings are re-evaluated 
to maximize the production for the remaining time. The 
wells are operated with the new operating conditions and 
the monitoring/data acquisition step is continued. 

The type and amount of data included in the responses 
(d) plays an important role in the update of the uncertain 
variable (K). More data assimilated not necessarily im-
prove the estimation. If the responses are highly corre-
lated to each other, as in the case of two downhole pres-
sure sensors located too close to each other, they can 
bring redundant information with the natural noise asso-
ciated to a measurement without improving the estima-
tion. On the other hand, if few data are used, it becomes 
difficult to update the model properly. This type of sensi-
tivity analysis would be useful to choose the best loca-
tion of the sensors that improves the updating process 
without being redundant. 

In this case, the types of data used are oil and water 
rates. Intuitively, each type of data carries information 
from different parts of the reservoir, for example water 
rates are correlated to properties of an associated aquifer. 
In other cases, data can be uncorrelated to the spatial 
variations in reservoir properties and hence model up-
dated including such data will not necessarily improve 
the predictability of the model. A sensitivity analysis on 
the type of data is recommended to select the responses 
according to the model updating objectives. 
 
2. Synthetic Flow Model with a Horizontal 

Well 
 
2.1. System Description 

A three dimensional rectangular synthetic reservoir was 
created to run sensitivity cases on the type and amount of 
data to be used for updating. Since water coning is a lo-
cal phenomenon unaffected by the pressure conditions in 
the remaining reservoir, the near wellbore area is as-
sumed surrounded by a constant pressure boundary con-
dition. This is simulated by placing a set of oil injectors 

replenishing the oil produced by the producers. The grid 
is composed of 25 × 20 × 20 blocks in x, y and z direc-
tions respectively. Local grid refinement is performed 
near the well. A constant porosity value equal to 0.1 is 
set. A horizontal well is completed in the middle of the 
layer and spans a length of six grid blocks in the x direc-
tion for a total length of 240 ft. The dimensionless well 
length (Lwell/Lreservoir) is 0.1. 

The well has 3 segments whose center points are 
regularly spaced 80 ft apart. The well production is con-
strained by the bottomhole pressure in the toe (P1), and 
the bottomhole pressure at the other two segments (P2 
and P3) is calculated from frictional pressure gradient. 

An active aquifer is beneath the oil reservoir, and the 
oil and water rate data for each segment are used for up-
dating the prior geological model. The reservoir property 
to be updated is the permeability value in all grid-blocks 
which is spatially distributed using a semi-variogram 
with a range of 15 grid-blocks in x. The average perme-
ability of the reference reservoir is 100 mD.  

An initial suite of 40 realizations was generated using 
sequential Gaussian simulation sampling from a log- 
normal distribution with mean 180 mD and standard de-
viation 50 mD. The permeability field was updated in the 
normal (log-transformed) space, so that it is guaranteed 
to be positive after back-transformation to the original 
space. As shown by Evensen [8], the distribution of the 
variable of interest in Ensemble Kalman Filter should be 
Normal for the updating equation to work properly. 
 
2.2. Results and Discussion Synthetic Flow 

Model 
 
Water broke in the well after 726 days of net oil produc-
tion, initially through segment P2. Water arrives first to 
the central perforation because the apex of the cone is 
centered within the well path, as observed on the satura-
tion map shown in Figure 2. Once water breaks into P2, 
the oil rate decreases as consequence of the reduction in 
the relative permeability to oil in that grid-block (Figure 
3); the other two segments maintain the oil rate for a 
short time until water makes its way to those grid blocks.  
The total duration of the simulation was 1500 days. Al-
though the reservoir simulator reports data every week, 
for simplicity only 5 time steps of 300 days each were 
used to update the model. Before water breakthrough the 
model was updated by only using oil rates. Subsequently 
water rates were also included as part of the sensitivity 
analysis. 

Effect of data type. Oil and water rates are the two 
types of data available to update the model. The objec-
tive is to select the best data wo cases were to update. T
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Figure 2. Profile of the water cone resulting in breakthrough at 726 days.s 
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Figure 3. Oil production rates corresponding to the reference reservoir. Water breaks through initially in the well segment P2 
and later in P1 and P3. Note that the reduction in the oil rate in P1 and P3 is less severe. 

 
analyzed: in Case 1, water and oil rates from the 3 per-
forations were included in the objective function; and 
Case 2 only the oil rate from the 3 perforations were in-
cluded, the water rate was excluded from the objective 
function. Oil and water rates from each well segment 
enter in the updating equation independently, and the 
model is updated until each segment rate (water and oil) 
satisfies the specified tolerance. In order to have a fair 
comparison, the total oil and water rates from the well 
(adding the three production points) are compared re-
gardless whether they are used to update the model or 
not. The ultimate goal is to predict the total production of 
the well, not partial rates. 

Predictability. The accuracy of the updated models in 
terms of the predictability of oil and water rates from 
Cases 1 and 2 are compared in Figure 4. Figure 4(a) 
shows the predicted oil rates for time step 3 (900 days), 

at this time both cases had the same predicted oil and 
water rates since in time steps 1 and 2 previous time 
steps they both used only oil rates to update because wa-
ter had not breakthrough yet. After updating at 900 days, 
Case 2 resulted with oil rates closer to the reference be-
cause its objective was only to reduce the mismatch the 
oil rates as opposed to Case 1, where the objective was to 
simultaneously reduce the mismatch in both oil and wa-
ter rates. In Case 1, the minimization of mismatch of 
total (oil + water) rates causes some compromise to be 
made in honoring the oil rates alone. 

Although Case 2 matched closer the oil rate, the mis-
match in predicted water rate was higher than in Case 1 
as shown in Figure 4(b). This is because Case 2 did not 
included water rates in the updating equation. In sum-
mary, Case 2 predicts better oil rates while Case 1 pre- 
dicts water rates. However, Figure 5(a) shows that the 
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(a)                                                            (b) 

Figure 4. Prediction of (a) oil and (b) water rates with a model updated using both oil and water rates as compared to that 
using only oil rate. 
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(a)                                                              (b) 

Figure 5. The match in (a) oil and (b) water rates over the entire simulation duration using a model updated using only the oil 
rate data as compared to that using total fluid rate data. 

 
overall performance of both cases in terms of predicting 
the oil rate was not significantly different over the entire 
simulation duration. On the other hand, Figure 5(b) also 
indicates that the mismatch in terms of water rate be-
comes progressively worst for Case 2. This has drastic 
consequences in terms of deriving and implementing an 
optimum control scheme. 

Estimation of Permeability. The estimated permeabil-
ity from Cases 1 and 2 is then compared to identify res-
ervoir regions where the water rate improves the model 
updating. Figure 6 compares the deviation of updated 
model corresponding to Case 2 against the reference and 
indicates that the highest error in permeability prediction 
occurs in the aquifer and the water invaded zone because 
these directly affect the flow of water. On the other hand, 
Case 1 yields a better estimation of permeability in the 
water zone as shown in Figure 6(b). 

Geological consistency in the updated models. The 

experimental variogram is a representation of the spatial 
variability and geological consistency exhibited by the 
updated model. Figure 7 compares the updated experi-
mental variogram from Cases 1, 2 and the reference; the 
range of the variogram in x for the reference permeability 
distribution was 15 gridblocks. For each case, the per-
meability values of all realizations were averaged, and 
the variogram of the averaged ensemble was compared 
with the reference variogram. In Case 1, where water 
rates improved the estimation of permeability in the wa-
ter zone, and the variogram is similar to the reference 
variogram. In comparison, the updated model for Case 2 
exhibits a variogram that did not reach a sill. This lack of 
variogram reproduction and the associated difference in 
spatial characteristics of the models is what is responsi-
ble for the poor predictive capability of the models, es-
pecially in the Case 2 where the permeability in the wa-
ter zone was poorly estimated. 
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(a)                                                        (b) 

Figure 6. (a) Error map computed as model minus the reference for Case 1 . (b) Error map for Case 2. Results show that the 
permeability water zone was better estimated in Case 1. 
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Figure 7. Variogram reproduction of the updated model 
indicates that Case 1 had similar characteristics as the ref-
erence, while the variogram for Case 2 is non-stationary. 
 
3. Laboratory 2D-Flow Model 
 
3.1. Description of the Experiments 
 
A sand pack with glass beads and two layers of different 
grain sizes, and consequently two permeability layers 
was created. The top layer was packed with 0.3 to 0.43 
mm beads corresponding to the low permeability layer 
and the bottom layer with 1.4 - 1.7 mm beads, corre-
sponding to the high permeability layer. The total poros-
ity was measured while the initial filling and assumed 
constant (25.9%) after packing and shaking the apparatus. 
The main elements of the laboratory model are indicated 
in Figure 8. Oil was replenished from 6 injection points 
at the top of the reservoir at constant pressure maintained 
with air in a tank with decane (oil phase). These injection  

 

Figure 8. The laboratory 2D-flow model prior to packing 
the second layer of glass beads. A horizontal well spans 
through the center of the porous medium with two seg-
ments independently operated. 
 
points provided a constant pressure boundary. Red dyed 
water was injected laterally to simulate an active aquifer 
at approximately the same constant pressure as the oil 
injection pressure. Oil flows through the low permeabil-
ity layer whereas water flows through the high perme-
ability layer, this was designed to promote water coning 
in the laboratory. A horizontal well, located inside the 
high permeable layer close to the interface with the low 
permeability layer, spans through the center of the res-
ervoir with two independently segments controlled using 
electronically actuated inflow control valves 

The main characteristics of a two-layer 2D reservoir 
with an active aquifer and a horizontal well at the center 
were simulated. Before conducting the experiments, the 
average permeability of each layer was estimated with a 
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steady-state experiment. The estimated average perme-
ability was 1100 and 6700 mD for the top and the bottom 
layer respectively. The permeability of each layer was 
also calculated using Carman-Kozeny’s equation result-
ing in 700 mD and 10,700 mD. Though this estimation is 
not accurate because values for porosity and tortuosity 
were assumed, they are in the same range of the experi-
mental measurement. With this prior information the 
initial ensemble of realizations was generated using se-
quential Gaussian simulation in each layer separately. 
The glass pack was modeled in CMG’s IMEX using the 
same dimensions as the laboratory prototype. The 
boundary conditions were (1) constant pressure oil injec-
tion at the top, (2) constant pressure water injection from 
the bottom left side and (3) the producers were pressure 
constrained according to the data recorded by the pres-
sure transducers (Figure 9). Nine measurements of oil 
and water rates were collected over a 35-minute period 
for each well segment (Table 1). Pressure data recorded 
by the transducers from each segment at the times listed 
in Table 1 were used as the pressure constraints for the 
horizontal well in the simulation. Oil and water rates 
were measured by recording the weight and volume of 
the total liquids produced from each well segment. 

In the laboratory prototype, oil production generated a 
pressure gradient towards the well, forming a uniform 
water cone with the tip at the center of the porous me-
dium, which eventually broke through close to the center 
of the well. Figure 10(a) shows that water production 
began after seven minutes of clean oil production. The 
water cone invaded the production port P2 more severely 
than P1. After 17 minutes, water and oil rates became 
steady until the end of the experiment. Pressure data re-
corded by the transducers from each segment at the times 
listed in Table 1 were used as the pressure constraints  

Table 1. Measured rate and pressure data during the water 
coning experiment 

Time Oil P1 Oil P2 Wat.P1 Wat.P2 Press.P1 Pres.P2

min cm3/min cm3/min cm3/min cm3/min KPa KPa

7 339 188 1 0 128.06 122.84

10.5 213 302 15 10 127.99 122.54

14 231 225 22 38 127.43 122.16

17.5 245 210 23 43 127.42 121.86

21 240 210 23 46 126.88 121.70

24.5 250 205 26 45 126.77 121.81

28 250 200 26 46 126.49 121.58

31.5 255 205 27 47 126.32 121.42

35 260 205 28 44 126.32 121.35

 
for the horizontal well in the simulation. Oil and water 
rates were measured by recording the weight and volume 
of the total liquids produced from each well segment. 
 
3.2. Updating the Sand-Pack Flow Model 
 
Fifty realizations were generated using sequential Gaus-
sian simulation conditioned to the average permeability 
measured for each layer. Similar to the synthetic example, 
two cases were run. In Case 1 both water and oil rates 
from P1 and P2 were used to update the model, and in 
Case 2 only the oil rates were used. A model was ac-
cepted as updated if the mismatch in the prediction of the 
water and oil rates was less than 3 cm3/min. After the 
ensemble was updated, the simulator predicted the oil 
and water rates of each well segment for the next time 
step. At each time step, the error in the predicted oil rate 
over the set of NR realizations was calculated as: 

 1 2 1

1

1 NR
2P P P

o o o o,i o
i

ˆ ˆ ˆ ˆE q q q q
NR 

    P
,i       (3) 
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Figure 9. Laboratory porous media simulated in CMG. Location of injection and production wells is indicated. 
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(a)                                                          (b) 

Figure 10. Measured (a) swater and (b) oil rates for each well segment P1 and P2. 
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(a)                                                          (b) 

Figure 11. The total (a) oil and (b) water rates were compared with the actual oil rate at each time step.  Updated models 
with only oil rates (Case 2) resulted in better oil rate prediction than Case 2. Better water rate prediction was obtained in 
Case 1 than Case 2. 

 
For total water rate: 

 1 2 1

1

1 NR
2P P P

w w w w,i w
i

ˆ ˆ ˆ ˆE q q q q
NR 
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,i       (4) 

The error in the net rate is: 

net o wE E E                (5) 

Where jq̂  is the measured rate of phase j. Similar to 
the synthetic case, Case 2 showed less error in the pre-
diction of oil rates than Case 1. This is because in Case 1, 
the objective is to reduce the error in both water and oil 
rates at the expense of increased mismatch in oil rates 
(Figure 11). Another comparison was looking at the er-
ror in the net production (5). The net production can be 
weighted according to the price of oil and water treat-
ment and included as an objective function for optimiza-
tion. Figure 12 shows similar errors in the prediction at 
initial times, but at later times the first case seems to re-
duce the error systematically while the mismatch for the 

second case continues deviated. This is because the sec-
ond case does not explicitly consider the water produc- 
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Figure 12. The overall error in the prediction of the net 
production is similar for both cases at early times. How-
ever, at later times the first case gives better predictions in 
the net production than the second one. 
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tion rate as an objective function component. 
The permeability maps obtained after updating Cases 

1 and 2 are compared in Figure 13. As in the synthetic 
case, the water rates carried information about the region 
invaded by water. The permeability distribution in the 
water leg is therefore updated in the first case where the 
water rate was included as an objective function compo-
nent. In Case 2, no major changes occurred in that zone. 

The streaks of permeability observed in the map for 
the first case can be interpreted as local heterogeneities 
created due to compaction/settling of the coarse glass 
beads. The resulting permeability map from Case 2 indi-
cates that either the zone invaded by water was very ho-
mogeneous (contrary to the Case 1 result) or the oil rate 
does not contain enough information for updating the 
model in that region. The synthetic example indicated 
that the latter explanation is more probable. However, 
the prediction of streaks of high permeability close to the 
well needs further investigation and visualization schemes. 
 
4. Optimal Control from Updated Model 
 
Once all the permeability realizations are updated using 
(2), the most probable permeability field or the mean of 
all realizations is computed. The optimum control set-
tings are developed for this most probable realization. 
This can be posed as an optimization problem as follows: 
Find the set of controls (u) that maximizes the cumula-
tive oil production minus the cumulative water produc-
tion from the current time to the terminal time subject to 
the water coning equations as constraints. Denoting the 
objective function as J: 

   
Tbt T

t t t
o o o o w w

t Tbt

J q t q q         t     (6) 

qo is the oil rate, qw is the water rate, T is the final time, 
and Tbt is the breakthrough time. ωo and ωw are weights 
assigned to the oil and water production rates respec-
tively, according the revenue or cost associated to them. 
The breakthrough time Tbt can be obtained by integrating 

the velocity equation found in [9], which requires 
knowledge of the updated average permeability k around 
the well. The water oil ratio after breakthrough can be 
obtained from correlations from literature such as Bour-
nazel and Jeansen’s [10] correlation. For water conning 
problem in the laboratory 2D-flow model, the specified 
values of ωo and ωw are 0.1 and 1, respectively. These 
values are arbitrary. The objective function integrates the 
time discrete oil and water rates from initial time to a 
pre-set terminal time. This function can be rapidly evalu-
ated without using the flow simulator by calculating the 
integral from time zero to the breakthrough time and 
from that time to the terminal time. The breakthrough 
time is the numerical integral of the velocity expression 
given by Farmen et al. [9]: 
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Every time step, after the model is updated, the objec-
tive function is evaluated and maximized for the remain-
ing time using Newton-Raphson method. The average 
permeability required for the correlations is calculated 
using the most probable permeability field and the con-
trol flow rate qo is assumed constant for the remaining 
time. Iterative methods require multiple function evalua-
tions, for that reason is convenient to have an analytical 
solution that can be evaluated without running the reser-
voir simulator. 
 
4.1. Model Based Optimization of Production  

System 
 
The value of the data assimilation and model updating is 
capitalized only when the well operating conditions are 
adjusted to maximize the production of clean oil. This 
implementation assess the importance of reservoir model 
updating for establishing optimum control of well pro-
duction and to demonstrate the complete feedback loop. 
In this example the flow rate of a vertical well in a 2D 

 

  
Figure 13. (a) Permeability model obtained constrained only to oil rate (left), and (b) final permeability map of one realiza-
tion obtained constrained to the measured oil and water rates (right). 
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Figure 14. Cost Function plot. The initial flow rate was ad-
justed such that the cost function was maximized 
 
laboratory size reservoir is optimized as the model is 
updated. The porous medium is divided into 50x100 
gridblocks (0.5 cm × 1 cm). The reference permeability 
values were drawn from a log-normal pdf with 340 mD 
as mean, and then distributed in the gridblocks using 
sequential Gaussian simulation forming thin layers. Two 
water injector wells maintain a constant pressure bound-
ary at the left-hand side of the box; an oil injector is per-
forated in the top 4 gridblocks part of the model, and a 
water injector is perforated in the bottom zone. These 
injectors are placed to mimic constant pressure condi-
tions at the far boundary. On the right edge of the model, 
a producer well is perforated in the top oil saturated in-
terval and produces at a constant liquid rate. This flow 
rate constraint is the controllable variable used to opti-
mize the cost function. The initial saturation and pressure 
distribution is assumed to be known. The reference pro-
duction data are the bottom-hole pressure, and the water 
cut of the producer over a pre-determined time interval. 
The well is assumed to be under constant oil rate control. 

After breakthrough, water cut increases until it reaches 
a plateau at steady state. The correlation for water cut 
prediction after breakthrough proposed by Bournazel and 
Jeanson [10] was employed here to evaluate it as func-
tion of time. Both breakthrough time and water cut cor-
relations facilitated the fast calculation of the cost func-
tion without using the reservoir simulator. A gradient 
based optimization routine can be easily implemented to 
find the optimum liquid rate that maximizes the cost 
function J. The initial liquid rate for the reference case is 
set as the optimum one, based on the initial guess of the 
permeability distribution. 

The cost function plot shown in Figure 14 was con-
structed by directly running the flow simulator to the 
final time using different constant flow rates. The initial 
flow rate (10.47 cm3/min) was calculated to maximize 

 

Figure 15. The total liquid rate control was dynamically 
updated after each time step was assimilated. The final cost 
function was maximized. 
 
the objective function using the breakthrough time and 
water-oil ratio correlations according to the initial aver-
age permeability, as indicated in Figures 14 and 15. 
However, since the permeability of the model was up-
dated after each time step, a new optimal flow rate was 
recalculated. After time step 2, the flow rate was recal-
culated and corrected towards the true optimal. After 
water breakthrough at time step 3, the rate was moved 
closer to the true optimal rate. The rate correction at the 
last time step was minimal because the average perme-
ability of the updated model did not change significantly. 
This dynamic rate control resulted in a maximization of 
the objective function as shown in Figure 15. The devia-
tion from the optimum flow rate is due to two reasons: 
first, the approximations made for calculating the break-
through time and water cut evolution using correlations 
and second because of the residual uncertainty in the 
average permeability. Nevertheless, the flow rate was 
effectively guided towards the real optimum rate 
 
5. Conclusions and Further Research 
 
Oil wells affected by water coning can be managed ef-
fectively with the aid of rapid model updating scheme 
such as Ensemble Kalman Filter in combination with 
optimal control. The sensitivity analysis on the type and 
amount of data used to update models shows that models 
are better updated when both oil and water rates are as-
similated using Ensemble Kalman Filter, especially in 
the aquifer zone. This approach was implemented in a 
laboratory experiment, confirming the important role of 
the water rates to update the model in the water invaded 
zone. Finally, the value added by this feedback control 
scheme was capitalized when the operating conditions of 
a vertical well affected by water coning were re-evalu-
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ated after updating prior geological models, using ana-
lytical correlations of breakthrough time and water-oil 
ratio for a fast evaluation and optimization of the objec-
tive function. 
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