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Abstract 
We review the nature of some well-known phenomena such as volatility smiles, convexity adjust-
ments and parallel derivative markets. We propose that the market is incomplete and postulate 
the existence of intrinsic risks in every contingent claim as a basis for understanding these phe-
nomena. In a continuous time framework, we bring together the notion of intrinsic risk and the 
theory of change of measures to derive a probability measure, namely risk-subjective measure, for 
evaluating contingent claims. This paper is a modest attempt to prove that measure of intrinsic 
risk is a crucial ingredient for explaining these phenomena, and in consequence proposes a new 
approach to pricing and hedging financial derivatives. By adapting theoretical knowledge to prac-
tical applications, we show that our approach is consistent and robust, compared with the stan-
dard risk-neutral approach. 

 
Keywords 
Implied Volatility, Convexity Adjustment, Primary and Parallel Markets, Incomplete Markets,  
Intrinsic Risk, Risk-Neutral Measure, Risk-Subjective Measure, Fair Valuation, Delta-Hedging 

 
 

1. Introduction 
In this section we review some well-known phenomena in order to motivate subsequent developments and 
provide a background of the phenomena and terminology. 

Volatility smiles. In a nutshell, vanilla options with different maturities and strikes have different volatilities 
implied by the well-known formula of [1]. Implied volatility is quoted as the market expectation about the 
average future volatility of the underlying asset over the remaining life of the option. Thus compared to 
historical volatility it is the forward looking approach. 

For many years, practitioners and academics have tried to analyse the volatility smile phenomenon and under- 
stand its implications for derivatives pricing and risk management. In [2], their link between the real-world and 
risk-neutral processes of the underlying would be complete by non-traded sources of risk. [3] found that the 
dynamics of the risk premium, when volatility is stochastic, is not a traded security. A number of models and 
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extensions of, or alternatives to, the Black-Scholes model, have been proposed in the literature: the local 
volatility models of [4] [5]; a jump-diffusion model of [6]; stochastic volatility models of [7] [8] and others; 
mixed stochastic jump-diffusion models of [9] and others; universal volatility models of [10]-[13] and others; 
regime switching models, etc. 

From a hedging perspective, traders who use the Black-Scholes model must continuously change the volatility 
assumption in order to match market prices. Their hedge ratios change accordingly in an uncontrolled way: the 
models listed above bring some order into this chaos. In the course of time, the general consensus, as advocated 
by practitioners and academics, is to choose a model that produces hedging strategies for both vanilla and exotic 
options resulting in profit and loss distributions that are sharply peaked at zero. We argue that a model recovered 
from option prices by no means explains the phenomenon. 

Convexity adjustments. One of many well-known adjustments is the convexity adjustment; the implied yield 
of a futures and the equivalent forward rate agreement contracts are different. This phenomenon implies that 
market participants need to be paid more (or less) premium. 

The common approach, as used by most practitioners and academics, is to adjust futures quotes such that they 
can be used as forward rates. Naturally, this approach depends on an model that is used for this purpose. For the 
extended Vasicek known as [14] and [15] model, explicit formulae can be derived. The situation is different for 
models whose continuous description gives the short rate a log-normal distribution such as the [16] and [17] 
models: for these, in their analytical form of continuous evolution, futures prices can be shown to be positively 
infinite [18] and [19]. In subsequent developments, we shall offer a different approach to this phenomenon. 

Parallel derivative markets. In an economic system, a financial market consists of a risk-free money account, 
primary and parallel markets. Examples of primary markets are stocks and bonds, and examples of parallel 
markets are derivatives such as forward, futures, vanilla options whose values are derived from the same 
primary asset. Market makers can trade and make prices for derivatives in a parallel market without references 
to another. 

The framework is as follows: a complete probability space ( ), ,Ω    with a filtration ( )t=   satisfying 
the usual conditions of right-continuity and completeness. T ∈  denotes a fixed and finite time horizon; 
furthermore, we assume that ( )0  is trivial and that ( )T =  . Let ( )X X t=  be a continuous semi-  
martingale representing the price process of a risky asset. 

The absence of arbitrage opportunities implies the existence of a probability measure   equivalent to the 
probability measure   (the real world probability), such that X  is a  -martingale. Denote by   the set of 
coexistent equivalent measures  . A financial market is considered such that ≠ ∅ . Uniqueness of the 
equivalent probability measure   implies that the market is complete. The fundamental theorem of asset 
pricing establishes the relationship between the absence of arbitrage opportunities and the existence of an 
equivalent martingale measure and in a basic framework is proved by [20]-[22]. The modern version of this 
theorem, established by [23], states that the absence of arbitrage opportunities is “essentially” equivalent to the 
existence of an equivalent martingale measure under which the discounted (primary asset) price process is a 
martingale. 

For simplicity, we consider only one horizon of uncertainty [ ]0,T . A contingent claim, or a derivative, 

( )H H ω=  is a payoff at time T , contingent on the scenario ω∈Ω . The derivative has the special form 

( )( )H h X T=  for some function h . Here, X  is referred to as the primary (or the “underlying”). More  

generally, H  depends on the whole evolution of X  up to time T  and is a random variable  

( )2 , , .H ∈ Ω                                          (1) 

In financial terms, every contingent claim can be replicated by means of a trading strategy (or inter- 
changeably known as hedging strategy or a replication portfolio) which is a portfolio consisting of the primary 
asset X  and a risk-free money account ( )D D t= . Let ( )tα α=  and ( )tβ β=  be a predictable process  
and an adapted process, respectively. ( )tα  and ( )tβ  are the amounts of asset and money account, respec-  
tively, held at time t . In this section, for ease of exposition, we assume that ( ) 1D t =  for all 0 t T≤ ≤ . The 
value of the portfolio at time t  is given by  
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( ) ( ) ( ) ( ) ( )V t t X t t D tα β= +                                 (2) 

for 0 t T≤ ≤ . It can be shown that the trading strategy ( ),α β  is admissible such that the value process 
( )V V t=  is square-integrable and has right-continuous paths and is defined by  

( ) ( ) ( )0 0
: d

t
V t V s X sα= + ∫                                  (3) 

for 0 t T≤ ≤ . For  -almost surely, every contingent claim H  is attainable and admits the following 
representation  

( ) ( ) ( )0 0
d

T
V T H V s X sα= = + ∫                               (4) 

where [ ]0V E H=


. Moreover, the strategy is self-financing and its cost, namely derivative price, is a constant 
0V .  

( ) ( ) ( ) 00
d .

t
V t s X s Vα− =∫                                   (5) 

The constant value 0V  represents a perfect replication or a perfect hedge. 
Thus far, we have presented the well-known mathematical construction of a hedging strategy in a complete 

market where every contingent claim is attainable. In a complete market, derivative prices are unique—no 
arbitrage opportunities exist. Derivatives cannot be valuated in a parallel market at any price other than 0V . 

From financial and economic point of view, the phenomena imply that the market is incomplete, arbitrage 
opportunities exist and may not be at all eliminated. A derivative can be valued at different prices and hedged by 
mutually exclusively trading in risky assets (or derivatives) in parallel markets where market makers engage in 
market activities: investments, speculative trading, hedging, arbitrage and risk management. In addition, market 
makers expose themselves to market conditions such as liquidity, see for instance [24]. We argue that exposure 
to the variability of market activities, market conditions and generally to uncertain future events constitutes a 
basis of arbitrage opportunity, namely intrinsic risk. 

In general, market incompleteness is a principle under which every contingent claim bears intrinsic risks. Let 
us postulate an assumption as a basis for subsequent reasonings and discussions. 

Assumption. The market is incomplete and there exist intrinsic risks inherent in every contingent claim. 
While the assumption is theoretical, it is rather realistically a proposition with the phenomena as proof. 
In a mathematical context, let Π  be the set of all intrinsic risks; that is the set of all real valued functions on 

Ω . Denote by ( )πG  the measure of an intrinsic risk ( )π π ω=  on the scenario ω∈Ω . As a measure of 
intrinsic risk, G  is a mapping from Π  into  . As a basic object of our study, G  shall therefore be the 
random variable on the set of states of nature at a future date T . Generally, G  depends on the evolution of the 
primary asset up to time T  and may also depend on the contingent claim:  

( )2 , , .HG ∈ Ω                                        (6) 

The superscript indicates the dependence of a particular contingent claim H . This leads to a new 
representation of H   

( ) ( )0 0
d .

T HH V s X s Gα= + +∫                                 (7) 

We now introduce the Kunita-Watanabe decomposition  

( ) ( ) ( )0 0
d

TH HG G s X s N Tα= + +∫                              (8) 

where ( )N N t=  is a square-integrable martingale orthogonal to X . Thus, we have  

( ) ( ) ( )0 0
d

T
H V s X s N Tα∗ ∗= + +∫                               (9) 

where 0 0 0V V G∗ = +  and Hα α α∗ = + . This representation of H  has been extensively dealt with, see for  
example [25]. By incompleteness, the derivative value 0V ∗  represents a perfect hedge, which manifests an 
initial intrinsic value of risk 0G . In relation to the hedging strategy (7), the measure of intrinsic risk shall be 
considered as the value of all possible future capital which, required to control the risk incurred by the market 
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maker (such as hedger) and invested in the primary asset, makes not only the contingent claim acceptable, but 
also its valuation fair. 

From a mathematical point of view, market incompleteness implies that there exists in the set   an 
equivalent measure, not necessarily a martingale and/or unique measure, and that is assigned to a parallel market. 
Thus, intrinsic risk may depend on the derivative and is not necessarily unique, as such its measure takes many 
forms some of which we shall consider for applications. In the remaining of this paper, we shall not discuss 
further on the abstract representations (7) and (9), but present them in a more descriptive (down to earth) 
framework—the continuous time framework. 

2. Market, Portfolio, Absence of Arbitrage and Intrinsic Price of Risk  
In this section we propose a continuous time financial market consisting of a primary price process X  and a 
risk-free money account D . We shall define a measure of intrinsic risk and show that perfect hedging strategies 
can be constructed. We also show that the existence of intrinsic risk provides an internal consistency in pricing 
and hedging a contingent claim. 

Let ( )B B t=  be a Brownian motion on the complete probability space ( ), ,Ω   . The underlying price 
process of X  satisfies the SDE  

( ) ( ) ( ) ( ) ( ) ( )d d dX t t X t t t X t B tµ σ= +                            (10) 

where ( )tµ µ=  and ( )tσ σ=  are Lipschitz continuous functions so that a solution exists. µ  and σ  can 
be functions of X . The price process of D  is given by  

( ) ( ) ( )d dD t t D t tν=                                    (11) 

where ( )tν ν=  is a Lipschitz continuous function. 
We expand the portfolio value process (2) as follows:  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

d d d

         d d d

         d ( ) d d

         d d d

         d d ,

V t t X t t t D t t

t t X t t t t X t B t t V t t X t t

t V t t t t t X t t t t X t B t

t t
t V t t t t X t t B t

t

t V t t t t X t W t

α ν β

α µ α σ ν α

ν α µ ν α σ

µ ν
ν α σ

σ

ν α σ

= +

= + + −

= + − +

 −
= + + 

  
= +

            (12) 

where ( )W W t=  is a  -Brownian motion and is defined by  

( ) ( ) ( )d d dW t t t B tλ= +                                   (13) 

and  

( ) ( ) ( )
( )

.
t t

t
t

µ ν
λ

σ
−

=  

Here,   is some martingale measure. Indeed, the theory of the Girsanov change of measure, see for 
example [26], shows that there exists such a martingale measure   equivalent to   and which excludes 
arbitrage opportunities. More precisely, there exists a probability measure    such that  

( )2d , ,
d

∈ Ω


  


                                     (14) 

and X  is a  -martingale. Such a martingale measure   is determined by the right-continuous square- 
integrable martingale  

( ) ( )d
d

t E t 
Λ =  

 



 
 

for 0 t T≤ ≤ . And explicitly  
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( ) ( ) ( ) ( )2
0 0

1exp d d
2

T T
T t B t t tλ λ Λ = − − 

 ∫ ∫  

and λ  satisfies Novikov’s condition  

( )2
0

1exp d .
2

T
E t tλ   < ∞    

∫  

It is not hard to see that the price process X  under   is given by  

( ) ( ) ( ) ( ) ( ) ( )d d d .X t t X t t t X t W tν σ= +                           (15) 

Note that the martingale measure   and λ  are, if unique, theoretically and practically well-known as the 
risk-neutral measure and the market price of risk, respectively. The risk-neutral valuation formula is given by  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 1 .V t D t E H t D t E h X T t
D T D T
   

= =   
      

                 (16) 

The expectation is taken under the measure  . 
It is important to note that in the risk-neutral world the essential theoretical assumptions are: 1) the true price 

process (10) is correctly specified and 2) prices of derivatives H  are drawn from this price process, that is 
derivative prices are uniquely determined by Formula (16). These assumptions, if not violated, lead to a com- 
plete market and the trading strategy (12) and the measure   are unique. However, in practice as we argued 
earlier, these assumptions are strongly violated; as a result market completeness and uniqueness of derivative 
prices are no longer valid. That is   is no longer risk-neutral, but only an equivalent measure in the set  . 

We now consider the representation (7) in a continuous time framework where the measure of intrinsic risk (6) 
can be defined, without loss of generality, in terms of changes in values in a future time interval [ ], dt t t+  as 
follows. 

Definition. A measure of intrinsic risk in a time interval dt  is defined by ( ) ( ) ( )d , , dG t T t T X t tζ= , where 

( ),t Tζ ζ=  is a continuous adapted process representing a rate of intrinsic risk. 
As was represented earlier in (7), the evolution of a trading strategy shall be adaptable to adjust for the 

measure of intrinsic risk which can be considered an additional/less capital required in a time interval dt , that is  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

d d d d

         , d d d

         d , d d

,
         d d d

         d d ,

V t t X t G t t t D t t

t t t T X t t t t X t B t t V t t X t t

t V t t t t t T t X t t t t X t B t

t t T t
t V t t t t X t t B t

t

t V t t t t X t Z t

α ν β

α µ ζ α σ ν α

ν α µ ζ ν α σ

µ ζ ν
ν α σ

σ

ν α σ

= + +

= + + + −

= + + − +

 + −
= + + 

  
= +

     (17) 

where ( )Z Z t=  is a  -Brownian motion and is given by  

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )
, ,

d d d d d
t t T t t T

Z t t B t t W t
t t

µ ζ ν ζ
σ σ

+ −
= + = +                   (18) 

and   is a measure equivalent to  . Thus, ∈ . Analogously, ζ σ  is defined as an intrinsic price of 
risk. 

Under   measure, the price process of X  under   is given by  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )d , d d .X t t t T X t t t X t Z tν ζ σ= − +                           (19) 

Consequently the fair value of a contingent claim is given by the formula  

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )1 1 .V t D t E H t D t E h X T t
D T D T
   

= =   
      

                  (20) 
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From a pragmatic standpoint, what is needed in determining prices of derivatives and managing their risks is 
to allow sources of uncertainty that are epistemic (or subjective) rather than aleatory in nature. In theory, the 
value of a derivative can be perfectly replicated by a combination of other derivatives provided that these 
derivatives are uniquely determined by Formula (16). In practice, prices of derivatives (such as futures, vanilla 
options) on the same primary asset are not determined by (16) from statistically or econometrically observed 
model (10), but made by individual market makers who, with little, if not at all, knowledge of the true price 
process, have used their personal perception of the future. We argue further on this point as follows. If we let 

( )Y Y t=  be the price process of a derivative in a derivative market (such as futures in particular,  
( ) ( ) ( ) ( ) ( ),Y t T D t E X T D T t =   , since its contract is not necessarily connected with a physical primary  

asset), Y  must have an abstract dynamics and is assumed to satisfy a SDE  

( ) ( ) ( ) ( ) ( ) ( )d , , d , , dY t T t Y t T t t T Y t T Z tν σ= +                          (21) 

where T  denotes a fixed time horizon larger than or equal to the maturity of any contingent claim, σ  is a 
Lipschitz continuous function so that a solution exists. We now show that Z  is a  -Brownian motion—the 
source of randomness that drives the derivative price process Y . We introduce a change of time, see for 
example [27]. Let ( )U t  be a positive function such that  

( ) ( )
( )

2

20

,
d

t s T
U t s

s
σ
σ

= ∫  

which is finite for finite time t T≤  and increases almost surely. Define ( ) ( )1t U tτ −= , let Y  be a 

replacement of X , i.e. ( ) ( ) ( )( ),X t Y t Tτ τ=  whose solution is given by  

( ) ( ) ( )
( )

( ) ( ) ( ) ( )
2

2d d d
,

t t
X t X t t t X t Z t

t T
ν σ

σ
σ

= +  

with ( ) ( )0 0X Y= . Rearranging the drift term leads to  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )d , d dX t t t T X t t t X t Z tν ζ σ= − +                        (22) 

where  

( ) ( )
( )

( ) ( )( )2 2
2, , .

,
t

t T t T t
t T

ν
ζ σ σ

σ
= −                               (23) 

Here, we see the concurrence of the SDEs (19) and (22), the source of randomness Z  is the very  - 
Brownian motion (18). We have just shown that the measure   is subjective in the sense that the valuation of a 
contingent claim is not only subjected to the dynamics of the primary asset price, but also subject to an 
exogenous measure of risk ζ . We shall call the measure   the risk-subjective measure. The connection 
between the risk-subjective measure and the risk-neutral measure described by (18) is far more precise than that 
found in [28]. 

An important note here is that the trading strategy (17) is equivalent to the risk-free money account, that is the 
growth of portfolio value (2) is at the risk-free rate ν . In terms of pricing and hedging, the presence of intrinsic 
risk imposes an internal consistency and implies that possible arbitrage exists in the market (the primary market 
and its associated derivative markets). 

3. Applications—Pricing and Hedging 
In this section, we shall first discuss some problems related to asset models in parallel markets so as to provide 
some background for subsequent applications. 

In the light of intrinsic risk, the SDE (21) in practice may represent a risky asset price process in parallel 
markets such as: 1) futures price process, or 2) an implied price process recovered from option prices where σ  
is the implied volatility. Attempts of recovering the implied price process were pioneered, for examples, by 
[29]-[32] and references therein. 
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Market makers indeed have dispensed with the correct specification (10) and directly use an implied price 
process as a tool to prescribe the dynamics of the implied volatility surface. A practice of recovering an implied 
price process from observed derivative prices (such as vanilla option prices) and use it to price derivatives is 
known as instrumental approach, described in [33]. A practical point that is more pertinent to the instrumental 
approach is that the prices of exotic derivatives are given by the price dynamics that can take into account or 
recover the volatility smile. With reference to intrinsic risk, an implied price process is a mis-specification for 
the primary asset, this was discussed in [34] and was shown that successful hedging depends entirely on the 
relationship between the mis-specified volatility σ  and the true local volatility σ , and the total hedging error 
is given by, assuming zero risk-free rate,  

( )( ) ( ) ( ) ( )( )
2

2 2 2
20

1 , d .
2

T VH h X T X t t T t t
x

σ σ∂
− = −

∂∫                      (24) 

Note that this hedge error resembles the term (23). Clearly, the hedging error is an intrinsic price of risk 
presented as traded asset in the hedging strategy (17), but not in (12). 

Before we illustrate a number of applications for pricing and hedging with specific form of the measure of 
intrinsic risk, let us state a general result for derivative valuation. 

3.1. Risk-Subjective Valuation 
We have established the risk-subjective valuation Formula (20) where the risk-subjective price process is given 
by (19).  

Theorem 1. The risk-subjective value V  of a contingent claim ( )( )H h X T=  given by  

( )( ) ( ) ( ) ( )( ) ( )1,V V X t t D t E h X T t
D T
 

= =  
  

                        (25) 

is a unique solution to  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
2

2 2
2

1, , , ,
2

V V Vx t t x t t T x x t t V x t
t xx

σ ν ζ ν∂ ∂ ∂
+ + − =

∂ ∂∂
              (26) 

with ( )X t x=  and ( ) ( ),V x T h x= .  
Proof. The result is obtained by directly applying the Feynman-Kac formula.  
We have shown that the trading strategy (17) yields the risk-free rate of return on the value of a derivative, 

and also the intrinsic risk is perfectly hedged by delta-hedging represented in (9) and (17). 

3.2. Specifying Measure of Intrinsic Risk 
As unpredictable as a market, prices in a parallel market (such as futures and corresponding vanilla options) may 
not be driven by the same source of randomness that drives the primary asset (such as stock and bond). 
Motivated by results (23) and (24), in the present framework it makes sense to formulate ζ  by an abstract 
form  

( ) ( ) ( ) ( )( )2 2, , ,t T t T t T tζ γ σ σ= −                                (27) 

where σ  is the volatility of the underlying asset, σ  the volatility of a risky asset in a parallel market. We 
propose that ζ  takes a general form of an exponential family  

( ) ( ) ( ) ( )e x xξ η θ φ ψ θζ + −=                                       (28) 

the parameter { },θ σ σ=  and ( )X t x= . As a result, (27) is a special case. 
Remark. While the diffusion term σ  accounts for the distributional property of the primary asset price, the 

exogenous term ζ  accounts for a phenomenon such as volatility smile. The existence of intrinsic risk appears 
to undermine the true probability distribution of the underlying, however it emphasises its important role in 
determining the values of derivatives. It ensures maximal consistency in pricing and hedging contingent claims 
that are path-dependent/independent and particularly derivatives on volatility (such as variance swap, volatility 
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swap). It insists on a realistic dynamics for the underlying asset as far as delta-hedge is concerned. 

3.3. Valuation of Forward and Futures Contracts 
In practice, forward contracts are necessarily associated with the primary asset (such as stock and bond) and 
therefore their prices are determined by (16) and hedged by (12). As was illustrated in the previous section, can 
be determined by (20) which includes a measure of intrinsic risk, ζ , as a convexity adjustment. 

3.4. Derivatives on Dividend Paying Assets with Default Risk 
Hedgers holding the primary asset in their hedging portfolio would receive dividends which are assumed to be a 
continuous stream of payments, whereas hedgers holding other hedge instruments (such as futures, vanilla 
options) do not receive dividends. In this case, ζ  can be considered as dividend yield and dX tζ  is the 
amount of dividend received in a time interval dt . ζ  may also be a non-negative function representing the 
hazard rate of default in a time interval dt , this well-known approach was proposed in [35] and references 
therein. 

3.5. Foreign Market Derivatives 
Suppose that fr  is the risk-free rate of return of a foreign money account and vζ  the measure of risk that 
accounts for volatility smile, (26) is then a direct application to foreign market derivatives where f vrζ ζ= + . 
This is indeed the simplest application of risk-subjective valuation. 

3.6. Interest Rate Derivatives 
As an exogenous variable to the risk-subjective price process (19), ζ  of a particular form would become a 
mean of reversion. This is a desirable feature in a number of well-known interest rate models such as extended 
model of [14] [17] model. 

With reference to the liquidity preference theory or the preferred habitat theory of [36], a term premium for a 
bond can be represented as a measure of intrinsic risk.  

4. Concluding Remarks  
It is well-known among both academics and practitioners that the standard complete market framework often 
fails, see for example [37]. Incomplete market framework becomes crucial in understanding and explaining 
well-known market anomalies. In this article we have introduced the notion of intrinsic risk and derived the risk- 
subjective measure   equivalent to the real-world measure  , where ∈ . At a conceptual level, the 
theory of Girsanov change of measure allows us to recognise that the crucial role of   and the expectation  

[ ]E H  are assigned to the price of a derivative (such as futures, vanilla option). In addition, the intrinsic risk as  
a structure is what needed to be imposed on the mutual movements of the primary and derivative markets so that, 
at least, the pricing and hedging derivatives (such as swaps and caplets) can be undertaken on a consistent basis. 
Apart from such conceptual aspect, the measure   does not undermine the role of the measure  , but contains 
a lot of knowledge about the primary market known at any given time t . More precisely, the market’s 
expectation (often identified with prediction) in terms of a measure   at time t  is given by the conditional 
probability distribution  

( ) ( ) on  t t⋅                                          (29) 

where ( )t  is the information available given by the primary market at time t , and ( )t  is the 
information generated by derivatives (such as vanilla options) with maturities T t> . 

In view of the last financial crises, the market has evolved and there is an apparent need, both among 
practitioners and in academia, to comprehend the problems caused by an excessive dependence on a specific 
asset modeling approach, by ambiguous specification of risks and/or by confusions between risks and 
uncertainties. We approach the problems by presenting a continuous time framework. This framework brings 
unity, simplicity and consistency to two important aspects: pricing with a correctly specified model for the 
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primary asset, and risks must be correctly understood and specified. In addition, the framework proposed in this 
article is rigorous in the sense that the true meanings of properties and relationships of intrinsic risk and 
volatility are self-consistent such that their values are not arbitrarily assigned nor should their properties be 
misused by ignorance.  
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