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Abstract 
Motivated by the lack of a suitable constructive framework for analyzing popular stochastic mod-
els of Systems Biology, we devise conditions for existence and uniqueness of solutions to certain 
jump stochastic differential equations (SDEs). Working from simple examples we find reasonable 
and explicit assumptions on the driving coefficients for the SDE representation to make sense. By 
“reasonable” we mean that stronger assumptions generally do not hold for systems of practical 
interest. In particular, we argue against the traditional use of global Lipschitz conditions and cer-
tain common growth restrictions. By “explicit”, finally, we like to highlight the fact that the various 
constants occurring among our assumptions all can be determined once the model is fixed. We show 
how basic long time estimates and some limit results for perturbations can be derived in this set-
ting such that these can be contrasted with the corresponding estimates from deterministic dy-
namics. The main complication is that the natural path-wise representation is generated by a 
counting measure with an intensity that depends nonlinearly on the state. 
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1. Introduction 
The observation that detailed modeling of biochemical processes inside living cells is a close to hopeless task is 
a strong argument in favor of stochastic models. Such models are often thought to be more accurate than con-
ventional rate-diffusion laws, yet remain more manageable than, say, descriptions formed at the level of indi-
vidual molecules. Indeed, several studies [1]-[3] have showed that noisy models have the ability to capture rele-
vant phenomena and to explain actual, observed dynamics. 

In this work we shall consider some “flow” properties of a stochastic dynamical system in the form of a quite 
general continuous-time Markov chain. Since the pioneering work of Gillespie [4] [5], in the Systems Biology 
context this type of model is traditionally described in terms of a (chemical) master equation (CME). This is the 
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forward Kolmogorov equation of a certain jump stochastic differential equation (jump SDE for brevity), driven 
by independent point processes with state-dependent intensities. Despite the popularity of the master equation 
approach, little analysis on a per trajectory-basis of actual models has been attempted. 

In the general literature, when discussing existence/uniqueness and various types of perturbation results, dif-
ferent choices of assumptions with different trade-offs have been made. One finds that the treatment often falls 
into one of two categories taking either a “mathematical” or a “physical” viewpoint. Both of the conditions are 
highly general but with subsequently less transparent proofs and resulting in more abstract bounds. Or the con-
ditions are formed out of convenience, say, involving global Lipschitz constants, and classical arguments carry 
through with only minor modifications. 

Protter ([6] Chap. V) offers a nice discussion from the mathematical point of view and in ascending order of 
generality, including the arguably highly unrestrictive assumption of locally Lipschitz continuous coefficients. 
Other authors ([7], Chap. 6, [8], Chap. 3-5) also treat the evolution of general jump-diffusion SDEs in conti- 
nuous state spaces. 

A study of the flow properties of jump SDEs is found in [9], where the setting is scalar and the state is conti-
nuous. In [10] jump stochastic partial differential equations are treated, and existence/uniqueness results as well 
as ergodic results for the case of a multiplicative noise, are found in [11] [12]. Numerical aspects in a similar 
setting are discussed in [13]. 

In a more applied context, stability is often thought of as implied from physical premises and the solution is 
tactically assumed to be confined inside some bounded region ([14], Chap. V). The fundamental issue here is 
that for open systems in a stochastic setting, there is a non-zero probability of reaching any finite state and glob-
al assumptions must be formed with great care. The analysis of open networks under an a priori assumption of 
boundedness is therefore quite difficult to interpret other than in a qualitative sense. Notable examples in this 
setting include time discretization strategies [15] [16], time-parallel simulation techniques [17], and parameter 
perturbations [18]. 

Evidently, essentially no systems of interest satisfy global Lipschitz assumptions since the fundamental inte- 
raction almost always takes the form of a quadratic term. Interestingly, for ordinary differential equations, it has 
been shown [19] that Lipschitz continuous coefficients imply a computationally polynomial-space complete so-
lution; thus providing a kind of explanation for the convenience with this weak feedback assumption. It is also 
known [20], that with SDEs, superlinearly growing coefficients may in fact cause the forward Euler method to 
diverge.  

1.1. Agenda  
Besides its expository material, the purpose of this paper is to devise simple conditions that imply stability for 
finite and, in certain cases, infinite times, and that, when applied to systems of practical interest, yield explicit 
expressions for the associated stability estimates. As a result the framework developed herein applies in a con-
structive way to any chemical network, of arbitrary size and topology, formed by any combination of the ele-
mentary reactions (2.3) to be presented in Section 2. Additionally, it will be clear how to encompass also other 
types of nonlinear reactions that typically result from adiabatic simplifications. 

As an argument in favor of this bottom-up approach one can note that, for evolutionary reasons, biochemical 
systems tend to operate close to critical points in phase-space where the efficiency is the highest. Clearly, for 
such dynamical systems, an analysis by analogy might be highly misleading. 

We also like to argue that our results are of interest from the modeling point of view. Due to the type of phe-
nomenological arguments often involved, judging the relative effect of the (non-probabilistic) epistemic uncer- 
tainty is a fundamental issue which has so far not rendered a consistent analysis.  

1.2. Outline  
The expository material in Section 2 is devoted to formulating the type of processes we are interested in. We 
state the master equation as well as the corresponding jump SDE and we also look at some simple, yet informa-
tive actual examples. Since it is expected that the properties of the stochastic dynamics are somehow similar to 
those of the deterministic version, we search for a set of minimal assumptions in the latter setting in Section 3. 
Techniques for finding explicit values of the constants occurring among our assumptions are also devised. The 
main results of the paper are found in Section 4 where we put our theory together and prove existence and uni-
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queness, as well as long time estimates and limit results for perturbations. A concluding discussion is found in 
Section 5.  

2. Stochastic Jump Kinetics 
In this section we start with the physicist’s traditional viewpoint of pure jump processes and write down the go-
verning master equations. These are evolution equations for the probability densities of continuous-time Markov 
chains over a discrete state space. Although the application considered here is mesoscopic chemical kinetics, 
identical or very similar stochastic models are also used in Epidemiology [21], Genetics [22] and Sociodynamics 
[23], to name just a few. 

We then proceed with discussing a path-wise representation in terms of a stochastic jump differential equation. 
The reason the sample path representation is interesting is the possibility to reason about flow properties and 
thus compare functionals of single trajectories. This is generally not possible with the master equation approach. 

For later use we conclude the section by looking at some prototypical models. A simple analysis shows, 
somewhat surprisingly, that an innocent-looking example produces second moments that grow indefinitely. 

2.1. Reaction Networks and the Master Equation 
We consider a chemical network consisting of D different chemical species interacting according to R prescribed 
reaction pathways. At any given time t, the state of the system is an integer vector ( ) { }0,1,2, DDX t +∈ = Z  
counting the number of individual molecules of each species. A reaction law is a prescribed change of state with 
an intensity defined by a reaction propensity, : D

rw + +→Z R . This is the transition probability per unit of time 
for moving from the state x  to rx − :  

( ) ( ) ( ) ( )d d d .r rX t t x X t x w x t o t + = − = = + P                         (2.1) 

where D
r ∈Z  is the transition step and is the rth column in the stoichiometric matrix D R×∈Z . Informally, 

for states ( ) Dx t +∈R , we can picture (2.1) as a stochastic version of the time-homogeneous ordinary differential 
equation  

( ) ( ) ( ) ( )
1

: ,
R

r r
r

x t w x w x F x
=

′ = − = − =∑                             (2.2) 

where ( ) ( ) ( ) T
1 , , Rw x w x w x≡     is the column vector of reaction propensities. 

The physical premises leading to a description in the form of discrete transition laws (2.1) often imply the ex-
istence of a system size V  (e.g. physical volume or total number of individuals). For instance, in a given vo-
lume V  the elementary chemical reactions can be written using the state vector [ ]T,x a b= ,  

[ ]
[ ]

( ) [ ]
[ ]

1
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4
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1

T
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A
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A B

−

∅→ = −

→∅ =

+ →∅ =

+ →∅ =









                           (2.3) 

with the names of the species in capitals. These propensities are generally scaled such that ( ) ( )r rw x Vu x V=  
for some dimensionless function ru . Intensities of this form are called density dependent and arise naturally in 
a number of situations ([24], Chap. 11). For the rest of this paper, we conveniently take 1V =  and defer sys-
tem’s size analysis to another occasion. 

The models we consider here all have states in the positive integer lattice and the assumption that no transi-
tion can yield a state outside D

+Z  is therefore natural. We make this formal as follows ([25], Chap. 8.2.2, Defi-
nition 2.4):  

Assumption 2.1 (Conservation and stability). For all propensities, ( ) 0rw x =  for any Dx +∈Z  such that 
D

rx +− ∈/ Z , and we also restrict initial data to D
+Z . Furthermore, : D

rw + +→Z R  such that ( )rw x  is finite 
for all finite arguments x .  

To state the chemical master equation (CME), let for brevity ( ) ( ) ( )( )0, 0p x t X t x X x= = =P  be the prob-
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ability that a certain number x  of molecules is present at time t  conditioned upon an initial state 0x . The 
CME is then given by ([14], Chap. V)  

( ) ( ) ( ) ( ) ( ) ( )T

1

,
, , : , .

R

r r r r
r

p x t
w x p x t w x p x t p x t

t =

∂
= + + − =

∂ ∑                     (2.4) 

The convention of the transpose of the operator to the right of (2.4) is the standard mathematical formulation 
of Kolmogorov’s forward differential system ([25], Chap. 8.3) in terms of which   is the infinitesimal gene-
rator of the associated Markov process. This is also the adjoint of the master operator T  in the sense that 
( ) ( )T , ,p q p q=   in the Euclidean inner product over the state space. An explicit representation is  

( ) ( ) ( ) ( )
1

,
R

r r
r

q x w x q x q x
=

= − −  ∑                               (2.5) 

such that the propensities in (2.1) can be retrieved, 

( ) ( ), .r rx x w x− =                                     (2.6) 

Under assumptions to be prescribed in Section 4.1 it holds that the dynamics of the expected value of some 
time-independent unknown function f , conditioned upon the initial state 0x , can be written  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )( )

0

0

T

1

,d , ,
d

.

D

x
t

x Z

R
x

r t t r t
r

p x t
E f X f x p f p f

t t

E w X f X f X

+∈

=

∂
  = = =  ∂

 = − − 

∑

∑

 


                    (2.7) 

We now consider a path-wise representation for the stochastic process tX . 

2.2. The Sample Path Representation  
In the present context of analyzing models in stochastic chemical kinetics, the path-wise jump SDE representa-
tion seems to have been first put to use in [26], and it was later further detailed in [16]. It should be noted, how-
ever, that an equivalent representation was used much earlier by Kurtz (see the monograph [24]). 

We thus assume the existence of a probability space ( ), ,Ω P  with the filtration 0t≥  containing R - 
dimensional Poisson processes. The state of the system ( ) DX t +∈Z  will be constructed from a stochastic 
integral with respect to suitably chosen Poisson random measures. 

The transition probability (2.1) defines a counting process ( )r tπ  counting at time t  the number of reac-
tions of type r  that has occurred since 0t = . It follows that these processes fully determine the state ( )X t ,  

( )0
1

.
R

t r r
r

X X tπ
=

= −∑                                    (2.8) 

The counting processes are obtained from the transition intensities (cf. (2.1))  

( ) ( ) ( ) ( )d 1 d d ,r r t r tt t t w X t o tπ π − + − = = + P                         (2.9) 

where by ( )X t −  we mean the value of the process prior to any transitions occurring at time t , and where the 
little-o notation is understood uniformly with respect to the state variable. Alternatively, using Kurtz’s random 
time change representation ([24], Chap. 6.2), we can produce the counting process from a standard unit-rate 
Poisson process rΠ ,  

( ) ( )( )0
d .

t
r r r st w X sπ −= Π ∫                                (2.10) 

The marked counting measure ([27], Chap. VIII) ( )d d ;r t zµ ω×  with ω∈Ω  defines an increasing sequence 
of arrival times iτ +∈R  with corresponding “marks” [ ]: 0,1iz I∈ =  according to some probability distribution 
which we will take to be uniform. The intensity ( )d drm t z×  of ( )d dr t zµ ×  is the Lebesgue measure scaled 
by the corresponding propensity, ( ) ( )d d d dr r tm t z w X t z−× = × . Using this formalism, (2.8) and (2.10) can be 
written in the jump SDE form  
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( )d d d ,t I
X t z= − ×∫µ                                 (2.11) 

where [ ]T1, , Rµ µ= µ . Here, the time tτ −  to the arrival of the next reaction of type r  is exponentially 
distributed with intensity ( )r tw X − . Note that, by virtue of the nature of the propensities, the intensities of the 
counting processes therefore depend nonlinearly on the state ([27], Chap. II.3). 

Using that the point processes are independent and therefore have no common jump times ([25], Chap. 8.1.3), 
we can obtain a sometimes more transparent notation in terms of a scalar counting measure. Define for this 
purpose and for any state x  the cumulative intensities  

( ) ( )
1

,
r

r s
s

W x w x
=

= ∑                                   (2.12) 

such that the total intensity is given by ( ) ( )RW x W x≡ . Let the marks iz  be uniformly distributed on I . 
Then the frequency of each reaction can be controlled through a set of indicator functions { }ˆ : 0,1D

rw I+ × →Z  
defined according to  

( ) ( ) ( ) ( )11 if ,ˆ ;
0 otherwise.

r r
r

W x zW x W x
w x z − < ≤

= 


                          (2.13) 

Put ( ) ( ) ( ) T
1ˆ ˆ ˆ; , , ;Rw x w x z w x z≡     and define also for later use the indicator form  

( ) ( )ˆ ˆ; ; ,F x z w x z= −                                  (2.14) 

such that 

( ) ( )ˆ( ) ; d ,
I

F x F x z W x z= ∫                                 (2.15) 

where ( )F x  is defined in (2.2). 
The jump SDE (2.11) can now be written in terms of a scalar counting random measure µ  through a state- 

dependent thinning procedure ([28], Chap. 7.5),  

( ) ( )ˆd ; d d .t tI
X w X z t zµ−= − ×∫                               (2.16) 

Equation (2.16) expresses exponentially distributed reaction times that arrive according to a point process of 
intensity ( ) ( )d d d dtm t z W X t z−× = ×  carrying a mark which is uniformly distributed in I . This mark implies 
the ignition of one of the reaction channels according to the acceptance-rejection rule (2.13). 

One frequently decomposes (2.16) into its “drift” and “jump” parts,  

( ) ( )( )( )ˆd d ; d d .t t tI
X w X t w X z m t zµ−= − − − ×∫                           (2.17) 

The second term in (2.17) is driven by the compensated measure ( )mµ −  and is a local martingale provided 
in essence that the path is absolutely integrable (see [27], Chap. VIII.1, Corollary C4 for details). 

2.2.1. Localization: Itô’s and Dynkin’s Formulas 
In analytic work it is often necessary to “tame” the process by deriving results under a stopping time  

{ }0: infP t tX Pτ ≥= >  in some norm. Results for the stopped process 
PtX τ∧  can then be transferred to the 

original process by letting P →∞  under suitable conditions. 
Although there are many general versions of Itô’s change of variables formula available in the setting of semi- 

martingales (see for example [8], Chap. 2.7 and [6], Chap. II.7), we shall get around with the following simple 
version ([7], Chap. 4.4.2). By the properties of the semi-martingale pure jump process we have for ˆ

Pt t τ= ∧   

( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆ

ˆ 0 0ˆ0
d d ,

t
s s s st I

s t
f X f X f X f X f X f X s zµ− −

< ≤

− = − = − ×∑ ∫ ∫                 (2.18) 

where the sum is over jump times ( ˆ0,s t ∈  . Using that ( )ˆ ;s s sX X w X z− −= −  we can write this in differen-
tial form as  

( ) ( )( ) ( ) ( )ˆd ; d d .t t t tI
f X f X w X z f X t zµ− − −= − − ×∫                      (2.19) 
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Alternatively, decomposing (2.18) into drift- and jump parts and taking expectation values we get, since the 
compensated measure is a local martingale,  

( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

( ) ( )( ) ( )

ˆ

ˆ 0 0
ˆ

0

ˆ

0
1

ˆ ; d

ˆ ; d d

d .

t
s s st I

t
s s s sI

Rt
s r s r s

r

Ef X Ef X E f X w X z f X m ds z

E f X w X z f X W X s z

E f X f X w X s

− − −

− − − −

=

− = − − ×

 = − − × 

 = − − 

∫ ∫

∫ ∫

∑∫







             (18) 

This is Dynkin’s formula ([25], Chap. 9.2.2) for the stopped process and we note that (2.7) is just a differential 
version. 

2.2.2. Coupled Processes 
When considering stability properties we will need to compare different trajectories with respect to the same 
noise. The details of this coupling are not defined in either (2.11) or (2.16) and must in fact be chosen explicitly. 
Since this equality is easy to inspect for a unit-rate Poisson process, the viewpoint of local time expressed in 
(2.10) provides an answer; two processes tX  and tY  may be regarded as coupled if and only if they are 
evolved using identical Poisson processes rΠ , 1, ,r R=   in (2.8) and (2.10). This approach was first used by 
Kurtz [29] in the context of the random time change representation. Algorithmically it implies the Common 
Reaction Path (CRP) method for simulating coupled processes [30] (see also [17]). 

A refinement of this construction was devised, also by Kurtz, in ([31], see Equations (2.2), (2.3)). In turn, this 
approach implies the Coupled Finite Difference method [18] (but see also [16] [26]), and is more amenable to 
analysis. This is also the construction formalized below under our current framework. 

To obtain such a coupled version of (2.16) we will have to make the thinning dependent on both trajectories. 
This is achieved by firstly replacing the cumulative intensities in (2.12) with the base (or minimal) intensities  

( ) ( ) ( ) ( )0

1
, ,

r

r s s
s

W x y w x w y
=

= ∧∑                              (2.21) 

and use the new total base intensity ( ) ( ) ( ) ( )0 0, ,RW x y W x y≡  as the intensity of the counting measure 0µ ; 
( ) ( ) ( )0

0 d d , d dt tm t z W X Y t z− −× = × . We also modify (2.13) accordingly,  

( )
( ) ( ) ( ) ( ) ( ) ( )0 0 0

0 11 if , , , ,ˆ , ;
0 otherwise.

r r
r

W x y zW x y W x yw x y z −
 < ≤= 


                (2.22) 

Secondly, we also define the remainder intensity,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0

1 1
, , .

r r

r s s r s s
s s

W x y w x w y W x y w x w yδ

= =

= ∨ − = −∑ ∑                 (2.23) 

In analogy with the previous construction we have the associated total intensity ( ) ( ) ( ) ( ), ,RW x y W x yδ δ≡  and 
counting measure δµ ; ( ) ( ) ( )d d , d dt tm t z W X Y t zδ

δ − −× = × . This time the thinning procedure is non-symmetric 
in its two first arguments,  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )1 11 if , , , , ,ˆ , ;

0 otherwise,
r r

r
W x y zW x y W x y d x yw x y z

δ δ δ
δ − −

 < ≤ += 


              (2.24) 

with the non-symmetricity due to 

( ) ( ) ( ) ( ), .r r rd x y w x w x w y= − ∧                              (2.25) 

As a concrete example of how this comparative thinning might be used, consider the following variant of 
(2.19),  

( ) ( ) ( )( ) ( ) ( )ˆ ˆd , ; , ; d d .t t t t t t t t t tI
f X Y f X w X Y z Y w Y X z f X Y t zδ δ

δµ− − − − − − − −− = − − + − − ×∫       (2.26) 

For this specific example, the terms governed by the base counting measure 0µ  cancel out altogether. 
We mention also that an equivalent construction, but one that leads to different algorithms, can be obtained 
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via a thinning of a single measure [16] [26]. Defining instead  

( ) ( ) ( ) ( )
1

, ,
r

r s s
s

W x y w x w y+

=

= ∨∑                              (2.27) 

implying the total intensity ( ) ( ) ( ) ( ), ,RW x y W x y+ +≡  and associated counting measure µ+ ;  
( ) ( ) ( )d d , d dt tm t z W X Y t z+

+ − −× = × . By construction the indicator functions are now non-symmetric in their 
first two arguments,  

( )
( ) ( ) ( ) ( ) ( ) ( ) ( )1 11 if , , , ,ˆ , ;

0 otherwise.
r r r

r
W x y zW x y W x y w xw x y z

+ + +
+ − −

 < ≤ += 


             (2.28) 

In analogy to (2.26) we get  

( ) ( ) ( )( ) ( ) ( )ˆ ˆd , ; , ; d d .t t t t t t t t t tI
f X Y f X w X Y z Y w Y X z f X Y t zµ+ +

− − − − − − − − +− = − − + − − ×∫       (2.29) 

This time, however, the intensity of the counting measure is generally larger and the equivalence is obtained 
as a result of the thinning procedure. 

2.2.3. The Validity of the Master Equation 
With this much formalism developed, we may conveniently quote the following result:  

Theorem 2.1 ([25], Chap. 8.3.2, Theorem 3.3). Under Assumption 2.1, and if additionally, for [ ]0,t T∈  it 
holds that  

( ) ,tEW X < ∞                                   (2.30) 

then (2.7) is valid for [ ]0,t T∈ .  
Since the governing Equation (2.7) for the expected value of ( )tf X  is a direct consequence of (2.4), we can 

similarly conclude the following:  
Corollary 2.2 Under the assumptions of Theorem 2.1, and if, moreover, in an arbitrary norm ⋅ ,  

( ) [ ], 0, ,tE f X t T< ∞ ∈                              (2.31) 

then (2.7) is valid for [ ]0,t T∈ .  
In stating these results we have suppressed the conditional dependency on the initial state which we for sim-

plicity consider to be some non-random state 0x . 

2.3. Concrete Examples  
Consider the bi-molecular birth-death system,  

1

1

2

,

k

k

k ab

A

B

A B

∅→
∅→ 
+ →∅

                                (2.32) 

that is, the system is in contact with a large reservoir such that A - and B -molecules are emitted at a constant 
rate 1k . Additionally, a decay reaction happens with probability 2k  per unit of time whenever two molecules 
meet. For this example we have the stoichiometric matrix  

1 0 1
0 1 1
− 

=  − 
  

and the vector propensity function  

( ) [ ]T1 1 2, , ,w x k k k ab=  

where [ ] [ ]T T
1 2, ,x x x a b= = . 

For a state [ ]T,t t tX A B= , define t t tU A B= − ∈Z . Itô’s formula (2.19) with ( ) 1 2f x x x= −  yields  
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( ) [ ] ( ) ( )ˆd d 1,1,0 ; d d ,t t tI
U f X w X z t zµ−= = − − ×∫                    (2.33) 

which upon a moments consideration is just the same thing as the model  
1

1
,

k

k
U∅                                       (2.34) 

that is, a constant intensity discrete random walk process. An explicit solution is the difference between two in-
dependent Poisson distributions,  

( ) ( ) ( )0 1 1 2 1 0 1, 2 , as ,tU U k t k t U k t t= +Π −Π →∞                   (2.35) 

where   is a normally distributed random variable of the indicated mean and variance. Hence tU  fluctuates 
between arbitrarily large and small values as t →∞ . 

Reversible Versions  
From time to time below we shall be concerned with the following closed version of (2.32), consisting of a sin-
gle reversible reaction,  

1

2

k ab

k c
A B C+                                     (2.36a) 

This is clearly a finite system since the number 2a b c+ +  is always preserved. An open version of the same 
system is  

31

2 4
,

k ck ab

k c k
A B C+ ∅                                   (2.36b) 

and will prove to be a useful example in the stochastic setting since formally, all states in 3
+Z  are reachable. 

For (2.36a) we have  

( ) [ ]T1 2

1 1
1 1 , , ,
1 1

w x k ab k c
− 

 ≡ − ≡ 
 − 

                         (2.37) 

while (2.36b) is represented by 

( ) [ ]T1 2 3 4

1 1 0 0
1 1 0 0 , , , , .
1 1 1 1

w x k ab k c k c k
− 

 ≡ − ≡ 
 − − 

                   (2.38) 

These examples, while very simple to deal with, will provide good counterexamples in both Sections 3 and 4. 

3. Deterministic Stability 
In this section we shall be concerned with the deterministic drift part of the dynamics (2.17). We are interested in 
techniques for judging the stability of the time-homogeneous ODE (2.2), the so-called reaction rate equations 
implied by the rates (2.1). Stability and continuity with respect to initial data are considered in Sections 3.1 and 
3.2. The main motivation for this discussion stems from the observation that assumptions that do not hold in this 
very basic setting are unlikely to hold in the stochastic case. In Section 3.3, techniques for explicitly obtaining 
all our postulated constants are discussed. A good point in favor of taking the time to describe these techniques 
is that we have not found such a discussion elsewhere. 

Initially we will consider states Dx∈R , but we will soon find it convenient to restrict the treatment to 
Dx +∈R . In order to remain valid also in the discrete stochastic setting, however, constructed counterexamples 

will remain relevant also when restricted to D
+Z . 

3.1. Stability 
Many stability proofs can be thought of as comparisons with relevant linear cases. This is the motivation for the 
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well-known Grönwall’s inequality which we state in the following two versions.  
Lemma 3.1. Suppose that ( ) ( )u t A u tα′ ≤ +  for 0t ≥ . Then  

( ) ( ) ( )0 e e 1 .t tAu t u α α

α
≤ + −                                 (3.1) 

The same conclusion holds irrespective of the differentiability of u  but with 0α ≥  and under the weaker 
integral condition 

( ) ( ) ( )
0

0 d .
t

u t u A u s sα≤ + +∫                                (3.2) 

The most immediate way of comparing the growth of solutions to the ODE (2.2) to those of a linear ODE is to 
require that the norm of the driving function is bounded in terms of its argument;  

( ) ,F x A xα≤ +                                    (3.3) 

since then by the triangle inequality, 

( ) ( ) ( )0 00 0
d d ,

t t
x t x F x t x A x t tα≤ + ≤ + +∫ ∫                       (3.4) 

where Grönwall’s inequality applies. Unfortunately, (3.3) is a too strict requirement for our applications. 
Proposition 3.2 The bi-molecular birth-death system (2.32) does not satisfy (3.3).  
Proof. We compute ( ) ( ) 1 22F x w x k k ab= − = −  for a state [ ]T,x a b= . Hence for a = b = N = 0, 

1,··· we have for N  large enough that ( ) 2
2 12 2F x k N k= ⋅ − , which can clearly never be bounded li-

nearly in 2x N= .   
The problem with the simple condition (3.3) is that it does not take the direction of growth into account; the 

offending quadratic propensity in (2.32) actually decreases the number of molecules. To deal with this, let 
Dx∈R  be an arbitrary vector defining an “outward” direction. The length of the component of the driving 

function along this direction is ( )( ),x F x  and in order not to have x  driven too strongly out along this ray we 
may, in view of Grönwall’s inequality, naturally require that ( )( ), constantx x F x x≤ ×  for x  sufficiently 
large. Equivalently, for any x,  

( )( ) 2, ,x F x A xα≤ +                                 (3.5) 

from which one deduces 

( )( )
2

2d , ,
d 2

x
x F x A x

t
α= ≤ +                            (3.6) 

where Grönwall’s inequality applies anew. The assumption (3.5) is weaker than (3.3) since the former implies 
the latter by the Cauchy-Schwarz inequality. Indeed, as in the proof of Proposition 3.2 it is readily checked that 
for the bi-molecular birth-death system (2.32), we get ( )( ) ( ) ( )1 2,x F x k a b k a b ab= + − +  which this time 
readily can be bounded linearly in terms of 2 2 2x a b= + . 

Unfortunately, in the case of an infinite state space and strong dependencies between the species the 
assumption (3.5) is also often unrealistic. 

Proposition 3.3 Neither (2.36a) nor (2.36b) admits a bound of the kind (3.5).  
Proof. As in the proof of Proposition 3.2 we look at a ray ( ) ( )T , , , ,3x a b c N N N= =  parametrized by a non- 

negative integer N . For (2.36a) we compute ( )( ) ( )( ) ( )( ) 3 2
2 1 1 2, , 3x F x x w x a b c k c k ab k N k N= − = + − − = − , 

which clearly cannot be bounded linearly in 2 211x N= . The same argument applies also to (2.36b).   
This negative result can perhaps best be appreciated as a kind of loss of information about the dependencies 

between the species in the functional form of the condition (3.5). The number of A - and B -molecules is 
strongly correlated with the number of C -molecules such that, in fact, in (2.36a) 2a b c+ +  is a preserved 
quantity. By contrast, in (3.5) the growth of 2x  is estimated from the sum of the growth of the individual 
elements of x as if they where independent. 

A way around this limitation can be found provided that we leave the general case Dx∈R . We therefore 
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specify the discussion to the positive quadrant Dx +∈R  and assume from now on that it can be shown a priori 
that the initial data 0x  belongs to this set and that the subsequent trajectory ( )x t  never leaves it (compare 
Assumption 2.1). 

It then follows that ( ) T
1 ,x x x= =1 1 , where 1  is the vector of length D  containing all ones. This vector 

also defines a suitable “outward” vector for states Dx +∈R  since solutions to the ODE (2.2) cannot grow 
without simultaneously growing also in the direction of 1 . 

Again, in view of Grönwall’s inequality Lemma 3.1, we tentatively require that ( )( ) 1, constantF x x≤ ×1  
for 

1x  sufficiently large. Equivalently, for any x ,  

( )( ) 1, ,F x A xα≤ +1                                (3.7) 

implying the bounded dynamics 

( )( )1 1

d , .
d

x F x A x
t

α= ≤ +1                            (3.8) 

We remark in passing that the criterion (3.7) is sharp in the sense that if the reversed inequality can be shown 
to be true, then the growth of solutions can be estimated from below. 

Example 3.1 As a point in favor of this approach we compute for the bi-molecular birth-death system (2.32), 
( )( ) ( )( ) 1 2, , 2 2F x w x k k ab= − = −1 1   which evidently falls under the assumption (3.7) with ( ) ( )1, 2 ,0A kα = . 

For the reversible case (2.36a) we similarly get ( )( ) 1 2, F x k ab k c= − +1  such that (3.7) applies with 
( ) ( )2, 0,A kα = . Finally, and in the same fashion, the open case (2.36b) is seen to be covered by letting 
( ) ( )( )4 2 3, , 0A k k kα = − ∨ .  

The chosen “outward” vector 1  is by no means special. Clearly, any strictly positive vector l  may be used 
in its place since 

1x  and T:x x=l l  are equivalent norms over D
+R . This is a general and useful observation 

as it may be used to discard parts of a system that are closed without any restrictions on the associated 
propensities. 

Example 3.2 For the reversible system (2.36a), we have already noted that 2a b c+ +  is a conserved 
quantity such that the choice [ ]T1,1,2=l  yields d d 0t x =l

. The open case (2.36b) also benefits from this 
weighted norm in that we get 4d d 2t x k≤l

.  
Example 3.3 A slightly more involved model reads as follows:  

1 2

31

3k k ab

k ck

A A B C

B C

∅→ + → 


∅→ →∅ 
 

This example has been constructed such that the quadratic reaction increases 
1x  and hence (3.7) does not 

apply. However, taking [ ]T3,3,2=l  we get  

1 3 1
d 6 2 6 .
d tx k k c k

t
= − ≤l  

This example hints at a general technique for obtaining suitable candidates for the weight vector l . Simply 
form the matrix 2  consisting of the columns of   that are affected by superlinear propensities. If a vector 

0>l  annihilating these propensities exists, it can be found in the null-space of T
2− , readily available by 

linear algebra techniques. We omit the details. 

3.2. Continuity 
For well-posedness of the ODE (2.2) we also need continuity with respect to the initial data. We cannot ask for 
uniform Lipschitz continuity since ( ) ( )F x F y L x y− ≤ −  clearly implies (3.3) which we have already re-
futed. For the same reason, a uniform one-sided Lipschitz condition ( ) ( )( ) 2,x y F x F y x yλ− − ≤ −  cannot 
be assumed to hold since it implies (3.5). The problem here is the global nature of the estimate and it therefore 
seems to be reasonable to localize this assumption. For instance, one might ask for  

( ) ( )( ) 2, whenever , ,Rx y F x F y x y x y Rλ− − ≤ − ≤                     (3.9) 

presumably with some growth restrictions on Rλ . Although very general, such an analysis is likely to be less 
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informative when it comes to estimating actual constants in later results. We shall therefore consider the follow-
ing simpler version, 

( ) ( )( ) ( ) 2

1, ,x y F x F y M x y x yµ− − ≤ + + −                        (3.10) 

where the form of Rλ  has been restricted to better suit the present purposes. Trivially, the norms 
1⋅  and ⋅  

are equivalent and hence the specific choice made in (3.10) is just a matter of convenience. Since the idea here is 
to use a priori bounds on x  and y  when deriving perturbation bounds, using 

1⋅  (or ⋅ l ) is natural. 
Theorem 3.4 Suppose that the ODE (2.2) satisfies (3.7) and (3.10) and that initial data 0

Dx +∈R  implies a 
solution ( ) Dx t +∈R . Then for any [ ]0,t T∈  there is a unique such solution ( )x t . Moreover, define 
( )0 0 1

; , t tC t x y M x yµ≡ + + , where tx  and ty  are two trajectories associated with initial data 0 0, Dx y +∈R , 
respectively. Then  

( ) ( ) ( )( )
( )( ) ( )

0 0 0 00

2
0 0 0 0 1

exp ; , d

1 .

t
x t y t x y C s x y s

x y M x y t tµ

− ≤ −

 = − + + + + 

∫


                (3.11) 

Proof. Combining (3.7) with Grönwall’s inequality we get the a priori estimate  

( ) ( ) ( )( )0 0 0 01 11
2 e 1 .tx t y t x y x y A αα α+ ≤ + + + + −  

Hence the (bounded) solution to  

( ) ( )( ) ( )2 2
0 0

d 2 , 2 ; , .
d

x y x y F x F y C t x y x y
t

− = − − ≤ −  

is readily found through its integrating factor. The order estimate is a consequence of the fact that  

( )2
01 10

d ,
t

sx x s t− =∫   

since the trajectory is continuous.   

3.3. Bounds for Elementary Reactions 
As briefly discussed by the end of Section 3.1, finding bounds on A and α  in (3.7) as well as a suitable 
weight-vector l  amounts to basic inequalities and some fairly straightforward linear algebra manipulations. In 
this section we therefore consider precise bounds in (3.10) for the elementary propensities (2.3). Since (3.10) is 
linear in F , a reasonable approach is to consider linear and quadratic propensities separate (constant propensi-
ties trivially satisfy (3.10) with 0M µ= = ). 

Proposition 3.5 (linear case) Write a set of R  linear propensities as ( ) T
r rw x q x= , 1, ,r R=  , each with 

the corresponding stoichiometric vector r . Then ( ) ( ): r rrF x w x= −∑   satisfies  
( ) ( )( ) 2,x y F x F y M x y− − ≤ −  with T

2M Qµ  = −   in terms of the Euclidean logarithmic norm [ ]2µ ⋅   

and the matrix Q  containing the vectors rq  as columns. In particular, in the case of a single linear 
propensity and, if as is usually the case, j jnq kδ=  is all-zero except for a single rate constant k  in the nth 
position, then this reduces to ( ), 2r n rM k= − +  .  

Proof. The first assertion is immediate since the smallest such constant M  by definition is the logarithmic 
norm (see e.g. [32]). To compute T

2 r rqµ  −   when q  has the form indicated, we determine the extremal ei-
genvalue of ( )T T 2r r r rq q− +  . By the (signed) scaling invariance of the logarithmic norm we may without 
loss of generality take 1k ≡ . The spectral relation for an eigenpair ( ), zλ  can be written as  

,
1 , 1, 2, , , ,
2 r j n jz z j D j nλ− = = ≠  

T
,

1 1 .
2 2r n n r nz z zλ− − =   

For non-zero λ  the first relation can be solved for jz . When inserted into the second relation, using that 
0nz ≠  (or otherwise 0z = ), we get a quadratic equation for λ  with a single extremal root.   

Example 3.4 The simple special case in Proposition 3.5 is generally sharp except for when there are linear 
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reactions affecting all species considered in the model. For example, in a one-dimensional state space, the single 
decay A →∅  with propensity ( )1w a ka=  allows the optimal value M k= − . In general D -dimensional 
space, a chain with unit rate constants of the form 1 2 DA A A→ → → →∅ , or a closed loop in which the last 
transition is replaced with 1DA A→ , both admit bounds 0M ≤  as an inspection of the Gershgorin-discs of 
( )T 2− +   shows. 
Other than for those special examples, for the most important linear cases, Table 1 summarizes the bounds as 

obtained from the special case in Proposition 3.5 (with all reaction constants normalized to unity). 
Proposition 3.6 (quadratic case). Write a general quadratic propensity as ( ) T

rw x x Sx=  with S  a 
symmetric matrix. Then ( ) ( )r r rF x w x= −  satisfies (3.10) with 0M =  and  

( )1 T
21 r rx y x y S Sµ µ−  = + − + ≤   . For the special case that ( ) 2ij im jn jm inS k δ δ δ δ= +  there holds 

{ } ( ),,max 4r j rj m nkµ ∈≤ − +  .  

Proof. Since S  is symmetric we have ( ) ( )TT Tx Sx y Sy x y S x y− = + − . Hence an explicit expression for 
µ  is obtained as follows:  

( ) ( )( )
( )

1

1 2 T
1

,

1 2 T T
21

0
1

sup ,

sup sup , sup .

D

D D

r
x y

r r
uw v
u

x y x y x y x y S x y

w v v w Sv u S

µ

µ
+

+

− −

∈

− −

≥∈ ∈
≤

≤ + − − − + −

 = − ≤ − 

Z

Z Z



 
 

The indicated upper bound is derived from the fact that [ ]2µ ⋅ ≤ ⋅  [32]. For the useful special case, define 
first the vector 1 2q q q= +  in terms of ( )1, 2j jm n nq k x yδ= + , and ( )2, 2j jn m mq k x yδ= + . Using the fact 
that the logarithmic norm is sub-additive we can reuse the calculation in the proof of Proposition 3.5,  

( )

( ) ( ) ( ) ( )

T T T T
2 2 2 1 2 2

, ,4 4.

r r r r

n n r m r m m r n r

x y S q q q

x y k x y k

µ µ µ µ       − + = − ≤ − + −      
= + − + + + − +

   

   
   

Example 3.5 The most important quadratic cases are summarized in Table 2. For the dimerizations in the 
lower half of the table there is also a linear part M  in (3.10). 

Example 3.6 The bi-molecular birth-death model (2.32) admits the constants ( ) ( )( )2, 0, 2 1 4M kµ = −  in 
(3.10). Similarly, the reversible cases (2.36a) and (2.36b) both obeys (3.10) with  
( ) ( ) ( )2 1, 3 1 2 , 2M k kµ = − × . All these results are sharp except for the open case (2.36b) for which one can  

obtain a slightly smaller constant M  by using the general formula stated in Proposition 3.5.  
Example 3.7 As a highly prototypical example we consider the following natural extension of the bi- 

molecular birth-death model (2.32),  
1 1

3 3

2

,

k V k V

k a k b

k ab V

A B

A B


∅ ∅ 


+ →∅

 

 

where in this example it is informative to consider the dependence on the system’s size V . It is straightforward 
to show the bounds ( ) ( )1 3, 2 ,A k V kα ≤ −  in (3.7) and hence that the system is effectively bounded despite being 
of open character. This is seen from the fact that, for states 1 31 2x k k V≥ ⋅ , the dynamics is dissipative in the 

1⋅ -norm. Furthermore, from Proposition 3.5 and 3.6 we get the sharp bounds  
( ) ( )( )1 2, , 2 1 4M k V k Vµ ≤ − ⋅ −  in (3.10). It follows that for states { },x y  such that 2

1 21 9.7x y k k V+ ⋅ , 
the dynamics is contractive in the Euclidean norm. For density dependent propensities we expect that x V  
in any norm as V  grows, and hence the region of contractivity grows in a relative sense. Intuitively one expects 
that these results offer an insight into the evolution of the process that is relevant also in the stochastic setting.  

4. Stochastic Stability 
We now consider the properties of the stochastic jump SDE (2.16). For convenience we start by collecting all 
assumptions in Section 4.1. In the stochastic setting the requirements for existence and uniqueness are slightly 
stronger than in the deterministic case such that the one-sided bound (3.10) needs to be augmented with an  
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Table 1. Linear propensities and bounds of M in (3.10).            

Reaction Bound on M  

A→∅  0 

A B→  ( )2 1 2−  

A B C→ +  ( )3 1 2−  

 
Table 2. Quadratic propensities and bounds of M, μ in (3.10).    

Reaction Bound on µ  M  

A B+ →∅  ( )2 1 4−   

A B C+ →  ( )3 1 4−   

A B A+ →  1 4   

A B A C+ → +  2 4   

A A+ →∅  0 2 

A A B+ →  5 2 1−  5 2 1+  

 
unsigned version, implying essentially the assumption of at most quadratically growing propensities. We dem-
onstrate that this assumption is reasonable by constructing a model involving cubic propensities and with un-
bounded second moments. On the positive side we show in Section 4.2 that the assumptions are strong enough 
to guarantee finite moments of any order during finite time intervals. 

We prove existence and uniqueness of solutions to the jump SDE (2.16) in Section 4.3. A sufficient condition 
for the existence of asymptotic bounds of the pth order moment is given in Section 4.4 where we also derive 
some stability estimates. 

4.1. Working Assumptions 
We state formally the set of assumptions on the jump SDE (14) as follows.  

Assumption 4.9 For arguments x , Dy +∈Z , ( ) ( ):F x w x= − , and weighted norm T:x x=l l  we assume 
that  

(1) ( )T w x A xα− ≤ + ll   (“bounded growth”), 

(2) ( ) ( )
2 2T

1 22w x B x xβ β− ≤ + +l ll   (“absolutely bounded growth”), 

(3) ( ) ( ) ( ) ( )T 2
11w x w y L x y x y− ≤ + + −1  ,  

(4) ( ) ( )( ) ( ) 2

1,x y F x F y M x y x yµ− − ≤ + + − .  

The parameters { }1 2, , , ,A B Lβ β  are assumed to be positive (with 2β  possibly zero) but we allow also neg-
ative values of { }, ,Mα µ . The vector l  is normalized such that min 1i i =l ; hence the bound 

1x x≤ l
 is 

sharp.  
After the original draft of the current paper was finished, the author became aware of two other papers dis-

cussing very similar conditions [33] [34]. In particular, Assumption 4.1 (1), (2) are also found in ([33], Condi-
tion (1). In fact, these very conditions can be shown to be exactly what is needed to apply the earlier and quite 
general theory found in ([35], Theorem 7.1). 

In Assumption 4.9 (2) the case 2 0β =  will merit special attention. For well-posedness it turns out that we 
will need to require a higher regularity of the initial data when 2 0β >  (see Theorem 4.7) and the condition for 
ergodicity becomes more restrictive (see Theorem 4.9). In practice, 2 0β =  implies that opposing quadratic 
reactions of the type  
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( )

( )

1

1

2 3
,

2

x x

x x

X X

X X

−

−

→ 


→ 
                                 (4.1) 

are impossible. Similarly, when 1 0β =  reactions of the type  

2xX X→                                     (4.2) 
are excluded. 

Note that (2) and (4) are redundant in the sense that they are both implied by (3). However, as we saw in Sec-
tion 3.3, in (4) it is often possible to find sharper constants M  and µ  by considering this bound in isolation. 
Also, although (3) is stronger than (4), it is in particular valid for quadratic propensities as can be seen from the 
representation used in the proof of Proposition 3.6,  

( ) ( ) ( ) ( )T
1 .r rw x w y x y S x y S x y x y− = + − ≤ + −                 (4.3) 

The Danger with Cubic Propensities  
Assumption 4.1 (2) specifies the discussion to propensities with at most quadratic growth, at least when meas-
ured in the direction of the weight vector l . To show that this is natural we now demonstrate that additional 
care should be taken when considering cubic propensities. 

Example 4.2 Consider the model  
( )( )

( )( )

1 2 2

1 2

3
,

3 4

x x x

x x x

X X

X X

− −

− −

→ 


→ 
 

such that the stoichiometric vector is given by [ ]2,1= − , and hence that the drift ( ) 0w x− = .  
Proposition 4.1 For the model in Example 4.2, if 0 3X ≥ , then the second moment explodes in finite time.  
Proof. Assume that both the second and the third moment are bounded for [ )0,t T∈  with 0T > . From (2.7) 

we get the governing equation  

( )( )2d 3 1 2 ,
d t t t tEX E X X X
t

 = − −   

such that the growth of the second moment remains bounded only provided that the third moment remains finite. 
It is convenient to look at the cumulative third order moment. From (2.7),  

( ) ( )( ) ( )( )3 3
d d: 1 2 9 2 3 .
d dt t t t t tEC X EX X X E C X X

t t
 = − − = −   

By the arithmetic-geometric mean inequality, ( )( ) 1 3
2 3 1 1 2x x x x x− ≥ − ≥ − −   , such that by Jensen’s in-

equality,  

( ) ( ) ( ) 4 34 3
3 3 3

d 9 9 .
d t t tEC X E C X EC X
t

   ≥ ≥     

We put ( )3
3 tu EC X=  and get the differential inequality  

( )d 1
3,

d
u

t
≤ −  

which can be integrated and rearranged to produce the bound  

( )( ) ( )( )
( )( )

0 0 0

0 0 0

1 2
1 2 .

1 3 1 2t t t

X X X
E X X X

t X X X
− −

 − − ≥  − − −
                    (4.4) 

Hence the third, and consequently also the second moment explode for some finite t  whenever 0 3X ≥ .   
Interestingly, we note that if 0 3X = , then the probability that the cubic decay transition occurs first is 1 3 , 

and if this happens the state of the system will be stuck with a single molecule indefinitely. 
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4.2. Moment Bounds 
In this section we consider general moment bounds derived from (2.20) using localization. To get some guidance, 
let us first assume that the differential form of Dynkin’s formula (2.7) is valid. Since any trajectory ( ) 0t t

X
≥

 by 
the basic Assumption 2.1 will belong to D

+Z , we may use that ( ),t tX X=l l . Hence from (2.7) with 
( ) ( ),f x x= l  we get that  

( )( )d , ,
d t t tE X F X A X
t

α= ≤ +l ll                           (4.5) 

by Assumption 4.1 (1). Clearly, the differential form of Grönwall’s inequality in Lemma 3.1 applies here. A cor-
rect version of this argument unfortunately looses the sign of α . 

Proposition 4.2 If Assumption 4.1 (1) is true, then  

( ) ( )( )0 exp exp 1 ,tE X X t A tα α α+ + +≤ + −l l  

where 0α α+ = ∨ .  
Here and below we shall make use of the stopping time { }0infP t tX Pτ ≥= >l  and define ˆ

Pt t τ= ∧ . 

Proof. From (2.20) with ( ) ( ),f x x= l  we get that  

( )( )ˆ

ˆ ˆ0 00 0
, d d ,

t t
s stE X X E F X s X E A X sα+= + ≤ + +∫ ∫l l ll

l                (4.6) 

By the integral form of Grönwall’s inequality in Lemma 3.1 we deduce in terms of :
Pt tY X τ∧=  that  

( ) ( )( )0 exp exp 1tE Y X t A tα α α+ + +≤ + −l l                       (4.7) 

such that the same bound holds for tX  by letting P →∞ .   
We attempt a similar treatment for obtaining bounds in mean square. Assuming tactically that (2.7) is valid, 

writing 2 Tx x x=  we get after some work that  

( ) ( )2 T 2 Td 2
d t t t tE X E w X X w X
t

 = − 1                          (4.8) 

where ( )22 .ij ij≡   We expect from Grönwall’s inequality that 2
tE X  grows at most exponentially with 

tα  whenever 

( ) ( ) 2T 2 T2 .w x x w x A xα− ≤ +1                             (4.9) 

However, this tentative condition is often violated in practice since the second term ( ) ( )( )T ,x w x x F x− = , 
and since we already know from Proposition 3.3 that this quantity does not admit bounds in terms of 2x  even 
for very simple problems. 

More realistic conditions arise when seeking to bound 2
tX l  instead. 

Proposition 4.3 If for some constants γ  and C ,  

( ) ( ) ( )
2 2T T2 ,w x w x x C xγ− ≤ +l ll l                         (4.10) 

( )2Tl   understood elementwise), then ( ) ( )( )2 2
0 exp exp 1tE X X t C tγ γ γ+ + +≤ + −l l .  

The proof of Proposition 4.3 follows the same pattern as for Proposition 4.2, but using this time  
( ) ( )2 2,f x x x= =l l  in (2.20). The condition (4.10) is typically more realistic than (4.9) since we recognize the 

term ( ) ( )( )T ,w x x F x x− =l ll l , which under the evidently reasonable Assumption 4.1 (1) is 

( )A x xα≤ + l l . It follows that if ( ) ( )
2T w xl   grows at most quadratically with x l , then this assumption 

is sufficient to yield bounds in mean square. Stated formally,  
Proposition 4.4 Under Assumption 4.1 (1) and (2) the condition (4.10) of Proposition 4.3 is true with 

22 2 2γ β α= + +  and 2 2
12C B Aβ= + + .  

Proof. This is straightforward: we get by the assumptions and Hölder’s inequality,  
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( ) ( ) ( ) ( )2 2T T
1 22 2 2 2 2 ,w x w x x B x x A x xβ β α− ≤ + + + +l l l l ll l   

where an application of Young’s inequality yields the indicated bounds.   
As a strong point in favor of our running assumptions we now demonstrate that the above reasoning can be 

generalized: these two conditions implies finite time stability in any order moment. We note that in a recent ma-
nuscript [34], related conditions for the same results are proposed. 

Theorem 4.5 (Moment estimate). Under Assumption 4.1 (1) and (2), for any integer 1p ≥ ,  

( ) ( )0 1 exp 1,p p
tE X X Ct≤ + −l l                             (4.11) 

where 0C >  is a constant depending on the assumptions and on p .  
The proof of Theorem 4.5 and some later results will simplify using the following bound. 
Lemma 4.6 Let ( ) ( ) p pH x x y x≡ + −  with x +∈R  and y∈R . Then for integer 1p ≥  we have the 

bounds  

( ) ( ) 21 4 2 22 1 ,pp p pH x pyx p p y x y −− − − ≤ + − +                       (4.12) 

( ) 12 12 .pp pH x p y x y −− − ≤ +                              (4.13) 

Proof. Both results follow from Taylor expansions;  

( ) ( ) [ ] 21 2
1

1
,

2
pp p p

H x pyx y x yθ −− −
= + +  

( ) 1
2 ,pH x p y x yθ −= +  

respectively, where [ ]1,2 0,1θ ∈ . Using the triangle inequality and the elementary inequality  
( ) ( )12p p p pa b a b−+ ≤ +  the lemma is proved.   

Proof of Theorem 4.5. Using (2.20) with ( ) T p

t tf X X ≡  l  we get  

( ) ( )
( )

ˆ T T
ˆ 0 0

1

:

d .

s

R p ptp p
r s s r st

r

G X

E X X E w X X X s
=

=

    = + − −     ∑∫


ll
l l                 (4.14) 

Using Lemma 4.6 (4.12) and Assumption 4.1 (1) and (2) we obtain  

( ) ( ) ( )( )( )1 2 23 2
1 22 1 ,p pp pG x p A x x p p B x x xα β β− −− −≤ + + − + + + ∆l l l l l  

where T:
∞

∆ = l  . Expanding and using Young’s inequality with exponents ( ) ( ){ }1 , 2p p p p− −  and con-
jugate exponents { }, 2p p ,  

( )ˆ ˆ0 0
1 d ,

tp p p
stE X X C E X s≤ + +∫l ll

 

for some constant C  which thus depends on the assumptions. Applying Grönwall’s inequality and letting 
P →∞  we obtain the stated result.  

4.3. Existence and Uniqueness 
We shall now prove that the jump SDE (2.16) under Assumption 4.1 has a uniquely defined and locally bounded 
solution. To this end and following ([8], Section 3.1.2), we introduce the following spaces of path-wise locally 
bounded processes:  

( ) ( )

[ ]
( )

,loc

10,

, : is -adapted and -valued such that

, for .sup

p D D
t

p

t T

S X t X

E X t T

ω

ω

+ +

∈

= 



< ∞ ∀ < ∞



Z Z 

              (4.15) 
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Theorem 4.7 (Existence). Let tX  be a solution to (2.16) under Assumption 4.1 (1) and (2) with 2 0β = .  
Then if 0

pX < ∞l , { } ( ),loc
0

p D
t t

X S +≥
∈ Z . If 2 0β >  then the conclusion remains under the additional  

requirement that 1
0

pX + < ∞l .  
Proof. Below we let C  denote a positive constant which may be different on each occasion used. As before 

we use the stopping time { }0infP t tX Pτ ≥= >l  and put ˆ
Pt t τ= ∧ . We get from Itô’s formula (with G defined 

in (4.14))  

( ) ( ) ( ) ( )( )
ˆ ˆ T T

ˆ 0 0 0
1
ˆd ; d d .

R p pt tp p
s r s s r st I

r
X X G X s w X z X X m s zµ− − −

=

    = + + − − − ×     ∑∫ ∫ ∫ll
l l  

Since the propensities are bounded for bounded arguments (Assumption 2.1), using the stopping time we find 
that the jump part is absolutely integrable and hence a local martingale t̂M . We estimate its quadratic variation 
under Assumption 4.1 (2),  

[ ] ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

ˆ1 2 T T
ˆ 0

1

ˆ T T
0

1

ˆ T T
0

1

ˆ ; d d

ˆ ; d d

d

R p pt
r s s r st I

r

R p pt
r s s s r sI

r

R p pt
r s s r s

r

E M E w X z X X s z

E w X z W X X X s z

E w X X X s

µ
=

=

=

    ≤ − − ×     
    = − − ×     
    = − −     

∑∫ ∫

∑∫ ∫

∑∫

l l

l l

l l







 

( )
ˆ 112 T

0
1

2 d
R pt pT p

r r s s r
r

E p w X X s
−−−

=

  ≤ +    
∑∫ ll l                     (4.16) 

( )ˆ 2 1 1
1 20

d
t p p

s s sE C B X X X sβ β − −  ≤ + + + ∆   ∫ l l l                    (4.17) 

( )ˆ 1
20

1 d
t p p

s sE C X X sβ +≤ + +∫ l l
                                   (4.18) 

where T

∞
∆ = l  . In (4.16) Lemma 4.6 (4.13) was applied and Assumption 4.1 (2) entered in (4.17). Assume  

first that 2 0β = . Then for the drift part we have already constructed a suitable bound in Theorem 4.5 such that  

( )ˆ

ˆ ˆ0 0
1 d .

tp p p
st tX X C X s M≤ + + +∫l ll

 

Taking supremum and expectation values we get from Burkholder’s inequality ([6], Chap. IV.4) that  

[ ]

ˆ

0 0ˆ 0,0,
1 d .sup sup

tp p p
s s

s ss t
E X X C E X s′

′∈ ∈ 

 
≤ + + 

 
∫l l l  

Writing ( ) [ ]0,sup pp
ss tX t X∈≡l l  we conclude that  

( ) ( )( )0 0
1 d .

tpp p
P PE X t X C E X s sτ τ∧ ≤ + + ∧∫l ll  

By Grönwall’s inequality we have thus shown that ( )p
PE X t τ∧l  can be bounded in terms of the initial da-

ta and time t . The result now follows by letting P →∞  and using Fatou’s lemma. 
Next assume that 2 0β > . Then we have to rely more directly on Theorem 4.5 in (4.18),  

[ ] ( ) ( )( )ˆ1 2 1 1ˆ
0ˆ 0

1 d e 1 1 ,
t p pCt

stE M C E X s X+ +≤ + ≤ − +∫ l l
 

where, although there is now a dependency on 1
0

pX + , the rest of the argument carries through.  
For the case that the initial data 0X  is non-deterministic we see that the general quadratic case Assumption 

4.1 (2) with 2 0β >  requires a one order higher moment of the initial data in order for a solution in ( ),locp DS +Z  
to exist. 

Theorem 4.8 (Uniqueness) Let Assumption 4.1 (1)-(4) hold true. Then any two paths tX  and tY  coupled 



S. Engblom 
 

 
3234 

according to the description in Section 2.2.2 with 0 0X Y=  are equal.  
We shall be using the observation that, for Dx +∈Z , we have that 2

1x x≤  (referred below to as the “in-
teger inequality”). 

Proof. Under the same stopping time as before we get from Itô’s formula using the coupling described in Sec-
tion 2.2.2 that  

( ) ( )( ) ( ) ( ) ( )

( ) ( )

ˆ2 T 2
ˆ ˆ 0

ˆ 2 T 2
1 10

2 , d

2 1 d .

t
s s s s s st t

t
s s s s s s s s

E X Y E X Y F X F Y w X w Y s

E M X Y X Y L X Y X Y sµ
∞

− = − − + −

≤ + + − + + + −

∫

∫

1

1




 

From the integer inequality we find that there is a constant 0C ≥  depending on P  such that 

( )( ) ( )( )2 22

0 0
d d .Pt t

P s s PE X Y t CE X Y s CE X Y s s
τ

τ τ
∧

− ∧ ≤ − ≤ − ∧∫ ∫  

Using that 2
0 0 0E X Y− =  and Grönwall’s inequality we conclude that the only solution is the zero solution. 

Letting P →∞  and using Fatou’s lemma the statement is therefore proved.   
In a certain sense the previous result is trivial; from the Poisson representation (2.8) we see that up to the first 

explosion, a path is uniquely determined from an initial state and a series of Poisson distributed events. However, 
and as we shall see below, the above proof is prototypical for more involved situations. An example would be 
when devising hybrid approximations in continuous state space. Indeed, in the above proof, note that if the in-
teger inequality did not hold we would naturally have to rely on the Cauchy-Schwartz inequality instead. With 
( ) 22

t tu t E X Y= −  this leads to bounds of the typical kind  

( ) ( ) ( )( )2 2

0
d ,

t
u t C u s u s s≤ +∫                             (4.20) 

for which ( ) ( )exp 2 1u t Ct= −  is an admissible solution. This observation shows that the integer inequality as 
used in the proof is crucial; without it the integral inequality (4.19) admits growing solutions. 

4.4. Stability 
Although Theorem 4.5 shows that any moments are bounded in finite time, a relevant question from the model-
ing point of view is whether the first few moments remain bounded indefinitely. We give a result to this effect 
which relies on the existence of solutions in ( ),locp DS +Z  which implies that the differential form (2.7) of Dyn-
kin’s formula may be used (cf. Corollary 2.2) such that in turn the differential Grönwall inequality applies. We 
mention anew that a very similar result has recently appeared in ([33], Theorem 2). 

Theorem 4.9 (Ergodicity) Under Assumption 4.1 (1), (2), suppose that  

( )2 1 0.ppα β κ+ − ≤ − <                                (4.21) 

Then for integer 1p ≥ , p
tE X l  remains bounded as t →∞ .  

Proof. The case 2 0β >  is slightly more complicated to obtain so we shall concentrate on this. We omit the 
case 1p =  since it follows from (4.5) under the present assumptions. The idea of the proof is to asymptotically  
bound ( ) p

tE C X+ l
 with a certain positive constant ( )C C p=  to be decided upon below. By (2.7) we get 

with t tZ C X= + l
,  

( )

( )
( )

( )( )

T

1

2T
2T 1 T

1

d
d

1 ,
2

p R p pt
r t t r t

r

R prp
r t r t t r r

r

EZ
E w X Z Z

t

E w X pZ p p Z θ

=

−−

=

  = − −   

 − = − + − −
 
  

∑

∑

l

l
l l




 

             (4.22) 

by Taylor’s formula for some [ ]0,1rθ ∈ . Using the assumptions we get the bound  

( ) ( )( )( ) 221 T
1 2

d
1 .

d

p p
pt

t t t t t
EZ

pE A X Z p B X X Z
t

α β β
−

−

∞

 ≤ + + − + + +  l l l l            (4.23) 
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For the first term in (4.23) we get from the scaled Young’s inequality with exponent ( )1p p −  and conjugate 
exponent p  that  

( ) ( ) ( ) 1
1 1 1

,
p

pp p p p p
t t t t t t

p
A X Z Z A C Z Z Z A C

p p
ε εα α α α α

−
− − −

+ = + − ≤ + + −
l  

for some 0ε > . As for the second term in (4.23) we first estimate for 2 0β >   

( )( )2
1 2 2 1 1 2 .t t t tB X X X B Xβ β β β β β+ + ≤ + +l l l l  

Next by the arithmetic-geometric mean inequality we get  

( )( )( )

( )

2
T

1 1 2

T1

1 2

2 ,

p

t t t

p
p

t t

X B X Z

B p C X Z
p p p

β β β

β
β β

−

∞

∞

+ + +

 −
≤ + + + + = 
 

l l

l

l

l




 

provided that we choose C  as the solution to the equation  

( )T1

1 2

2 .B p C C
p p p

β
β β ∞

−
+ + + =l                             (4.24) 

Taken together we thus have  

( ) 11d
.

d

p
pp pt

p t

pEZ
p EZ A C

t p
κ α−− 

≤ − + + − 
 


  

Since 0pκ >  we may pick a small enough   such that the bracketed expression remains negative. By 
Grönwall’s inequality this then proves the result with 2 0β > . To prove the case 2 0β =  the same idea of proof 
applies and results in  

( ) ( ) ( )( )
2

1
1 1

1 1d
1 ,

d

p
pp pt

p t

p pEZ
p EZ A C p

t p p
κ β α β−

 − −
 ≤ − + + + − + −
 
 

 
  

for a certain new constant C  satisfying an equation similar to (4.24).   
We next aim at deriving some stability estimates with respect to perturbations in the reaction coefficients. An 

early account of this was given by Kurtz in [31], see also [18] for a recent discussion in a bounded setting. Given 
the linear dependence on the coefficients rk , 1, , 4r =   in the elementary reactions (2.3) a suitable model 
seems to be that a perturbation r r rk k δ→ +  in a propensity ( )rw x  spreads linearly in a relative sense,  

( ) ( ) ( ), , constant , .r r r r r r r rw x k w x k w x kδ δ− + ≤ ×                      (4.25) 

We make this formal by requiring that 

( ) ( ) ( ) ( ) ( )2T 2
11

1 ,w x w x w x C xδ δ δ− ≤ ≤ +1                       (4.26) 

where δ  is a suitable measure of the total perturbation vector and where the perturbed propensity vector func-
tion is given by 

( ) ( ) ( ) T
1 1 1, , , , .R R Rw x w x k w x kδ δ δ≡ + +                          (4.27) 

The existence of an absolute constant C  in (4.26) follows from Assumption 4.1 (3). We further conveniently 
assume that the entire statement of Assumption 4.1 carries over to the perturbed system, and for convenience we 
shall also assume that all constants are the same. By the triangle inequality and Assumption 4.1 (3) we obtain 
from (4.26) the bound  

( ) ( ) ( ) ( ) ( ) ( )2 2T 2
1 11 1 ,w x w y L x y x y C y C x yδ δ δ− ≤ + + − + + ≤ + −1          (4.28) 

with C  some constant and where the simplification in (4.28) assumes an a priori bound (e.g. stopping time) 
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1x y P+ ≤  and additionally requires the integer inequality. 
The starting point for the analysis will be Itô’s formula under the coupling described in Section 2.2.2. The 

techniques used below generalize well to pth order moment estimates, but for ease of exposition we let 2p = . 
Hence under the model for coefficient perturbations (4.26)-(4.27) we have that  

( ) ( )( ) ( ) ( ) ( )

( ) ( )( )( )
( ) ( )( ) ( )( )

2 T 2
0

0

2

2 , d

ˆ ˆ2 , , ; , ;

ˆ ˆ, ; , ; d d .

t
t t s s s s s s

t
s s s s s sI

s s s s

X Y X Y F X F Y w X w Y s

X Y w X Y z w Y X z

w X Y z w Y X z m s z

δ δ

δ δ

δ δ
δ δµ

− − − − − −

− − − −

− = − − + −

+ − − −

+ − − − ×

∫

∫ ∫

1 





             (4.29) 

Theorem 4.10 (Continuity). Let two trajectories tX  and tY  be given, with the same initial data and 
coupled according to the discussion in Section 2.2.2. Let the propensities for tY  be perturbed by δ  as indi- 
cated in (4.26), (4.27). Then  

2

0
lim 0.t tE X Y
δ→ +

− =                                 (4.30) 

Proof. We use the stopping time { }0 1
infP t t tX Y Pτ ≥= + >  and put ˆ

Pt t τ= ∧ . From (4.29) we get  

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

ˆ2 T 2
ˆ ˆ 0

ˆ 1 22 2T 2
10

2 , d

2 2 d ,

t
s s s s s st t

t
s s s s s s s s s s

E X Y E X Y F X F Y w X w Y s

E M X Y X Y w Y w Y X Y C X Y s

δ δ

δµ δ δ

 − = − − + − 
 ≤ + + − + − − + + −  

∫

∫

1

1




 (4.31) 

where (4.28) was used. Simplifying further for a bounded δ  we get 

( )( ) ( )
( )( )( )

2 2

0

2

0

d

d .

Pt
P s s

t
P

E X Y t C E X Y s

C E X Y s s

τ
τ δ

δ τ

∧
− ∧ ≤ + −

≤ + − ∧

∫

∫
 

Using that 0 0X Y=  and Grönwall’s inequality we conclude that  

( )( )2
ˆ ˆ exp 1 .t tE X Y Ctδ− ≤ −  

To get rid of the stopping time we write in terms of indicator functions,  

[ ] [ ]

( ) [ ]( )

2 2 2

1 2 1 22 4
ˆ ˆ .

t t t t P t t P

t t Pt t

E X Y E X Y t X Y t

E X Y E X Y t

τ τ

τ

 − = − < + − ≥ 

≤ − + − ≥P
                   (4.32) 

Using [ ] [ ]0, 1
supP s ss tt X Y Pτ ∈
 ≥ = + > P P  we get from Markov’s inequality and the previous estimate 

( )( ) ( )
[ ]

1 2
1 22 4 1 2

1
0,

exp 1 .supt t t t s s
s t

E X Y Ct E X Y P E X Yδ −

∈

 
− ≤ − + − + 

 
            (4.33) 

Relying on the existence result in Theorem 4.7 we find that for any given 0ε >  we can select P  (and 
hence also C ) such that the right term is 2ε< . We can next find 0 0δ >  such that for all 0δ δ≤ , also the 
left term is 2ε< . Hence for all 0δ δ≤ , 2

t tE X Y ε− <  as claimed.   
As a by-product of the proof we see that if the process is bounded, then for P  large enough the probability 

in (4.32) is zero. 
Corollary 4.11 (Perturbation estimate, bounded version) If in Theorem 4.10, the processes tX  and tY  are 

bounded, then for a constant 0C > ,  

( )( )2 exp 1 .t tE X Y Ctδ− ≤ −                             (4.34) 

The constant C  in (4.34) can be bounded explicitly by inspection of (4.28) and (4.31). 
For an unbounded system it is apparently much more difficult to obtain explicit estimates. However, by con-

trolling also the martingale part we can strengthen Theorem 4.10 in another direction. 
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Theorem 4.12 (Continuity/sup) Under the same assumptions as Theorem 4.10 we have that  

[ ]

2

0 0,
lim 0.sup s s

s t
E X Y

δ→ + ∈
− =                               (4.35) 

Proof. The quadratic variation of the martingale part in (4.29) can be bounded as  

[ ] ( ) ( )( )( )
( ) ( )( ) ( )

( ) ( )( )

( ) ( )( ) ( )
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ˆ
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ˆ 1 2T 2 T 2
0
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s s s s s st I

s s s s

t
s s s s s sI

s s s s s s

t
s s

E M E X Y w X Y z w Y X z

w X Y z w Y X z s z

E X Y w X Y z w Y X z

w X Y z w Y X z W X Y s z

E X Y w X

δ δ

δ δ
δ

δ δ

δ δ δ

µ

− − − − − −

− − − −

≤ − − −
+ − × 

 ≤ − − 
+ − ×  

= − +
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∫ ∫

∫ l 1









  ( ) ( )
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0

d

d ,

s s

t
s s

w Y s

C E X Y s

δ

δ

 −  

≤ + −∫

 

after using (4.28) and the integer inequality anew. For the drift part we may use the corresponding bound devel-
oped in the proof of Theorem 4.10. After taking supremum and expectation values of (4.29) and using Burk-
holder's inequality we therefore arrive at  

( ) ( )( ) ( )( ) ( )( )ˆ2 2 2

0 0
d d exp 1

t t
P PE X Y t C E X Y s s C E X Y s s Ctτ δ δ τ δ− ∧ ≤ + − ≤ + − ∧ ≤ −∫ ∫  

by Grönwall’s inequality and using the notation ( ) [ ]0,sup ts tX t X∈≡ . We now rely on the same strategy as in 
the proof of Theorem 4.10 to similarly arrive at  

( ) ( )( ) ( )( ) ( )( )
1 2 1 22 4 1 2

1
exp 1 ,E X Y t Ct E X Y t P E X Y tδ −− ≤ − + − +  

and the conclusion follows as before.  

5. Conclusions 
We have proposed a theoretical framework consisting of a priori assumptions and estimates for problems in 
stochastic chemical kinetics. The assumptions are strong enough to guarantee well-posedness for a large and 
physically relevant class of problems. Long time estimates and limit results for perturbations in rate constants 
have been studied to exemplify the theory. The assumptions are constructive in the sense that explicit techniques 
for obtaining all postulated constants have either been worked out in detail or at least indicated. We have seen 
that the case 2 0β =  in Assumption 4.1 (2) is particularly promising from the analysis point of view in that the 
conditions for existence in Theorem 4.7 and the ergodicity in Theorem 4.9 both can be formulated naturally. 

In the course of motivating our setup we have seen that most problems do not admit global Lipschitz con-
stants and that one-sided versions do not provide a better alternative. Another conclusion worth highlighting is 
that it pays off to consider jump SDEs in a fully discrete setting in that there are potential complications in 
proving uniqueness in continuous state space. A practical implication is that care should be exercised when 
forming continuous approximations to these types of jump SDEs. 

For future work we intend to re-visit certain classical results from the perspective of the framework developed 
herein; for example, thermodynamic limit results, time discretization strategies, and quasi-steady state approxi-
mations―all of which have a practical impact in a range of applications. 
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