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Abstract 
We present a trading execution model that describes the behaviour of a big trader and of a multi-
tude of retail traders operating on the shares of a risky asset. The retail traders are modeled as a 
population of “conservative” investors that: 1) behave in a similar way, 2) try to avoid abrupt 
changes in their trading strategies, 3) want to limit the risk due to the fact of having open positions 
on the asset shares, 4) in the long run want to have a given position on the asset shares. The big 
trader wants to maximize the revenue resulting from the action of buying or selling a (large) block 
of asset shares in a given time interval. The behaviour of the retail traders and of the big trader is 
modeled using respectively a mean field game model and an optimal control problem. These mod-
els are coupled by the asset share price dynamic equation. The trading execution strategy adopted 
by the retail traders is obtained solving the mean field game model. This strategy is used to for-
mulate the optimal control problem that determines the behaviour of the big trader. The previous 
mathematical models are solved using the dynamic programming principle. In some special cases 
explicit solutions of the previous models are found. An extensive numerical study of the trading 
execution model proposed is presented. The interested reader is referred to the website:  
http://www.econ.univpm.it/recchioni/finance/w19 to find material including animations, an in-
teractive application and an app that helps the understanding of the paper. A general reference to 
the work of the authors and of their coauthors in mathematical finance is the website:  
http://www.econ.univpm.it/recchioni/finance.  
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1. Introduction 
In recent years technology innovation, deregulation policies and ubiquitous availability of Internet connections 
have determined the emergence of new forms of trading in the financial markets. These forms of trading give the 
possibility to the investor of operating in the market without the help of traditional brokers and offer the oppor-
tunity of using huge data sets and sophisticated mathematical models to support investment decisions. Auto-
mated trading tools, sometimes called algorithmic trading tools, have been developed to support the investors in 
their decision process and to execute their orders. We restrict our attention to the algorithmic trading tools used 
to determine trading execution strategies. Algorithmic trading tools are available even to retail investors, how-
ever the interest in finding how to execute orders involving large blocks of shares is limited to institutional in-
vestors, such as banks, insurance companies, mutual funds, and to very wealthy individuals. We refer to these 
investors as big traders and to their orders as large orders. The execution of large orders influences market prices, 
while the execution of the orders of a retail trader does not affect market prices. This is due to the limited size of 
these orders. The retail traders influence market prices only through their collective behaviour. Ad hoc algorith-
mic trading tools have been developed to determine the trading execution strategies of large orders. In this paper 
we present a mathematical model that can be used to build one of these tools. 

Many authors have addressed the problem of modeling the behaviour of a big trader and of the asset share 
price during the execution of a large order. Usually it is assumed that the trading execution strategies of large 
orders satisfy the following conditions: 1) maximization of the revenue resulting from the order execution (or 
minimization of the trading cost), 2) minimization of the risk deriving from possible delays in the order execu-
tion. These two goals can be conflicting and in many circumstances it is necessary to find a compromise be-
tween them. Usually the models developed to determine the execution strategies of large orders do not consider 
explicitly the presence in the market of retail traders. The only trading activity studied in these models is the 
trading activity of the big trader. In fact the models synthesize the behaviour of the market (including the beha-
viour of the retail traders) in the asset share price dynamic equation. This last equation describes the “asset share 
price in absence of trading” and the effect on the asset share price of the trading activity of the big trader. The 
expression “asset share price in absence of trading” sounds strange, however it is of common use and means: the 
asset share price determined by the trading activity that is not studied explicitly in the model. Let us discuss 
briefly the scientific literature on this subject. 

In 1998 Bertsimas and Lo [1] presented a discrete time trading model describing a trader that must buy a 
block of asset shares in an assigned time interval minimizing the expected value of the trading cost. The asset 
share price is modeled as a discrete arithmetic random walk that depends linearly from the number of asset 
shares bought/sold by the trader. This linear term models the permanent market impact on the asset share price 
of the trading activity of the big trader. In [1] the problem of determining the order optimal trading execution 
strategy is modeled as a dynamic optimization problem. 

In 2000 Almgren and Chriss [2] introduced a discrete time trading model and considered the situation where a 
trader must liquidate an initial holding of an asset in an assigned time interval. The trading cost is defined as the 
difference between the value of the initial holding at the time when the order execution begins and the final rev-
enue for the trader at the end of the order execution. In [2] it is assumed that the trader acts minimizing the ex-
pected value of the trading cost subject to a constraint on the variance of the trading cost. Moreover it is as-
sumed that the dynamics of the asset share price depends on the number of shares sold by the trader. In fact the 
dynamics of the asset share price is modeled as a discrete arithmetic random walk that depends linearly from the 
average trading rate of the trader. This linear term represents the instantaneous market impact of the trading ac-
tivity of the big trader on the asset share price. The optimal trading execution strategy of the trader is the solu-
tion of a mean variance optimization problem. In [3] Almgren has extended the results presented in [2] to the 
continuous time case and has modeled the instantaneous market impact of the trading activity of the big trader 
on the asset share price as a nonlinear function of the trading rate. Moreover in [3] the asset share price dynam-
ics is modeled as an arithmetic random walk whose variance depends from the trading rate. In some special cases 
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explicit formulae for the resulting optimal trading execution strategies are found. In [4] a stochastic version of 
the problem studied in [3] is considered. 

Gatheral and Schied [5] modified the model discussed in [4] considering as cost functional of the control 
problem studied the expected value of the sum of the trading cost and of a time averaged “value at risk” asso-
ciated to the trading execution strategy. The robustness of the model presented in [5] is established in [6]. 

In [7] Ankirchner, Blanchet Scalliet and Eyraud Loisel proposed a variant of the stochastic trading execution 
model studied in [4] and [5]. They assumed that the Brownian motion that describes the asset share price dy-
namics in absence of trading has a non zero drift and that the trading rate of the big trader is a square integrable 
stochastic process. The drift term of the asset share price dynamics can be interpreted as the directional view of 
the trader about the asset share price (i.e. the bullish or bearish attitude of the trader about the asset share price). 
This drift term is assumed to be a linear function of the asset share price. The optimal trading execution strategy 
solution of the model proposed in [7] is a Gaussian process that becomes a deterministic function of time when 
the drift term of the asset share price dynamics is constant. 

In the papers mentioned above (with the exception of [1]) given the order of buying or selling a certain num-
ber of asset shares in an assigned time interval the problem of determining the corresponding optimal trading 
execution strategy is reduced to a dynamic optimization problem or to an optimal control problem. The control 
variable of these problems is the trading rate of order execution. Sometimes the trading rate is called rhythm of 
the order execution. In the previous models the optimal trading rate is determined without considering explicitly 
the transactions volume on the asset shares during the order execution. However it is easily understood that in 
the reality of the financial markets the impact of a trade on the asset share price depends from the transactions 
volume on the asset share during the trade. Guéant in [8] is the first author that considers the dependence of the 
optimal trading rate from the transactions volume. He assumes that the trading rate of the trader is proportional 
to the transactions volume and that the transactions volume is a continuous deterministic function of time. In this 
case the control variable of the model is the proportionality factor between the trading rate of the trader and the 
transactions volume on the asset share (i.e. the fraction of the transactions volume generated by the trader) as a 
function of time. This proportionality factor is called participation rate of the trader to the (asset shares) market. 
The model studied in [8] considers as utility function the expected value of the Constant Absolute Risk Aversion 
(CARA) function. The CARA function is the exponential of the final revenue minus the final cost of the trade. 
Finally in [9] Guéant introduces a model that can substitute Almgren’s model [3]. In this model the trading ex-
ecution strategy is a Poisson process whose intensity depends from the transactions volume. 

In this paper we study a market consisting of one traded asset where a multitude of retail traders and a big 
trader operate. The big trader executes large orders. The retail traders are investors that belong to a population of 
individuals having the following features: aversion to the risk of holding open positions on the asset shares, de-
sire to behave like the other retail traders, desire to avoid abrupt changes in trading strategies and desire to have 
in the long run a given position on the asset shares. The trading position of a retail trader is the number of asset 
shares held by the retail trader. The behaviour of a retail trader on the market is described by its trading position 
as a function of time. We assume that only the trading position of the entire population of the retail traders con-
tributes with its mean value to determine the asset share price. This is due to the fact that individually the retail 
traders execute orders of limited size that do not influence the asset share price. We adopt a mean field game 
model to describe the behaviour of the retail traders. That is the (time) dynamics of the individual trading posi-
tions of the retail traders is substituted with a “mean dynamics” satisfied by the trading position of a “mean retail 
trader”. This “mean dynamics” is defined by the mean field equation of the mathematical model of the dynamics 
of the individual trading positions of the retail traders. In this way the problem of modeling the behaviour of the 
retail traders is greatly simplified. In fact instead of a multitude of equations necessary to describe the trading 
positions of the retail traders individually in the mean field game model we use only one “mean field equation” 
that describes the trading position of the “mean retail trader”. That is the behaviour of the retail traders is de-
scribed using a mean field game model. The mean field game models have been introduced by Lasry and Lions 
in [10]. These models have been used in many contexts to study populations of interacting rational agents. For 
example pedestrian crowds [11], exhaustible resources productions [12], technical innovation processes [13] and 
supply demand equilibrium prices of assets [14] or of commodities [15] have been studied using mean field 
game models. A wide review of problems that can be approached using this type of models is contained in [16]. 
The mean field game model that describes the behaviour of the retail traders uses as control variable the trading 
rate of the retail traders (in the “mean field” approximation). The utility function of this model is the sum of four 
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terms. The first term expresses the fact that the retail traders want to adopt similar strategies and depends from 
the probability distribution of the trading position of the retail traders (in the “mean field” approximation). The 
second term expresses the fact that the retail traders try to avoid abrupt changes of their trading strategies and 
depends from the trading rate of the retail traders (in the “mean field” approximation). The third term expresses 
the fact that the retail traders try to avoid the risk associated to the fact of having open positions on the asset 
shares and depends from the number of asset shares held by the retail traders as a function of time (in the “mean 
field” approximation). The fourth term expresses the fact that in the long run the retail traders want to have a 
given position on the asset shares and depends from the number of asset shares held by the retail traders at the 
final time of the game (in the “mean field” approximation). The stochastic differential equation that defines the 
dynamics of the trading position of the retail traders (in the “mean field” approximation) and its initial condition 
are the constraints of the mean field game model studied. To simplify the exposition from now on instead of 
specifying retail traders in the “mean field approximation” we will simply say retail traders without specification. 
The mean field game model that describes the behaviour of the retail traders is studied using the dynamic pro-
gramming principle. The first order necessary optimality condition of this model is a system of partial differen-
tial equations made of the Hamilton Jacobi Bellman equation satisfied by the value function of the mean field 
game and of the forward Kolmogorov equation satisfied by the probability density function of the trading posi-
tion of the retail traders. The condition that establishes the relation between the optimal trading rate and the val-
ue function of the game couples these two partial differential equations. This system of partial differential equa-
tions is equipped with an initial and a final condition. The solution of this problem determines the optimal trad-
ing execution strategy of the retail traders. Under some assumptions, following Kalman [17] it is possible to re-
duce the problem of solving the system of partial differential equations mentioned above to the problem of 
solving a constrained two point boundary value problem for a system of six Riccati ordinary differential equa-
tions. Explicit and numerical solutions of this constrained two point boundary value problem are studied. 

Let us turn our attention to the behaviour of the big trader. To fix the ideas we study the liquidation problem, 
that is the problem of executing the order of selling a (large) number of asset shares in a prescribed time interval. 
It is easy to see how to rephrase the solution of the liquidation problem presented later to consider the problem 
of buying a (large) number of shares in a prescribed time interval. The goal pursued by the big trader is to sell a 
given block of asset shares in the time interval assigned maximizing the expected value of the revenue resulting 
from the sale. The big trader pursues this goal choosing its trading rate as a function of time. That is the trading 
rate is the control variable of the optimal control problem that describes the behaviour of the big trader. At any 
given time the instantaneous revenue of the sale is the product of the asset share price times the number of 
shares sold at that time. The revenue of the sale is the integral in time of the instantaneous revenue over the time 
interval assigned to execute the trade. As already said the asset share price is described by the asset share price 
dynamic equation. Let us discuss briefly this last equation. This equation couples the mathematical models that 
describe the retail traders and the big trader. In absence of trading the asset share price dynamics is assumed to 
be an arithmetic Brownian motion. The trading activity generated by the retail traders and/or by the big trader 
influences the asset share price. For example as expected when the big trader and the “majority” of the retail 
traders are buyers the asset share price tends to increase, conversely when the big trader and the “majority” of 
the retail traders are sellers the asset share price tends to decrease. Mathematically these intuitive facts are mod-
eled with a simple generalization of the asset share price dynamic equation introduced by Almgren in [3]. We 
assume that the asset share price is the sum of four terms, that is: the asset share price in absence of trading, the 
instantaneous impact factor of the trading activity of the retail traders, the instantaneous impact factor of the 
trading activity of the big trader and the permanent impact factor of the trading activity of the big trader. The in-
stantaneous impact factor of the trading activity of the retail traders is assumed to be proportional to the ex-
pected value of their trading execution rate. This last term is not present in the asset share price dynamic equa-
tion used in [3]. The remaining three terms of the asset share price dynamic equation of our model are already 
present in the asset price equation used in [3]. Note that the assumption that the asset share price depends from 
the trading execution strategy of the retail traders and the choice made of the big trader objective function imply 
that the behaviour of the big trader depends from the behaviour of the retail traders. That is in order to find the 
optimal trading execution strategy of the big trader it is necessary first to solve the mean field game model asso-
ciated to the retail traders to determine their optimal trading execution strategy. In our model the dependence of 
the behaviour of the retail traders from the trading activity of the big trader is not considered. In fact it is rea-
sonable to assume that in many circumstances the retail traders are not aware of the trading activity of the big 
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trader. The problem of determining the optimal trading execution strategy of the big trader is translated in a li-
near quadratic optimal control problem whose control variable is the trading rate of the big trader and whose 
utility function is the final revenue of the trade. The solution of the Hamilton Jacobi Bellman equation asso-
ciated to this optimal control problem is reduced [17] to the solution of a system of Riccati ordinary differential 
equations with a final condition. Under some hypotheses an explicit formula for the optimal trading execution 
strategy of the big trader is derived. Finally we present an extensive numerical study of the trading execution 
model developed. This numerical study shows several interesting facts. In particular the study shows that the 
mean field game model considered provides a setting where different kinds of retail traders can be represented. 
For example we show that retail traders classified in the jargon of the financial markets as “buy and hold inves-
tors” or as “short term investors” can be represented in the model. For the convenience of the reader let us recall 
the meaning of these expressions. The buy and hold investors are investors that buy and then hold the asset 
bought for a long time period betting on the increment of the asset value due to its fundamentals. These inves-
tors do not like to change their positions in the market regardless of the market fluctuations. Conversely the 
short term investors are investors that open and close their positions within a relatively short time period to ex-
ploit movements of the asset share price. The short term investors do not like the risk associated to the fact of 
having open positions on the asset shares. Their different behaviours determine different effects on the asset 
share price dynamics. It follows that the optimal trading execution strategy of the big trader changes as a conse-
quence of the fact that the retail traders are buy and hold investors or are short term investors. Several numerical 
examples are studied in detail to show the versatility of the model presented. 

The interested reader is referred to the website: http://www.econ.univpm.it/recchioni/finance/w19 to find ma-
terial including animations, an interactive application and an app that helps the understanding of the paper. A 
general reference to the work of the authors and of their coauthors in mathematical finance is the website:  
http://www.econ.univpm.it/recchioni/finance.  

The paper is organized as follows. In Section 2 we define the trading execution model studied, that is we de-
fine the mean field game model associated to the retail traders, the asset share price dynamic equation and the 
optimal control problem associated to the big trader. In Section 3 we solve the mean field game model. In Sec-
tion 4 we solve the optimal control problem. In Section 5 we present a numerical study of the trading execution 
model developed in Sections 2, 3 and 4. 

2. The Trading Execution Model 
Let   be the set of real numbers, t  be a real variable that denotes time and 1T ∈  be a positive number. 
We assume that 1T  is the time horizon of the mean field game model that describes the behaviour of the retail 
traders. This means that the mean field game model is solved for [ ]10,t T∈ . Let us consider a state variable tx , 

[ ]10,t T∈ , that represents the number of asset shares held by the retail traders at time t , [ ]10,t T∈ . The varia-
ble tx  is called trading position of the retail traders at time t , [ ]10,t T∈ , and is a real stochastic process. Pos-
itive values of tx  mean that the retail traders have a long position on the asset shares at time t , negative val-
ues of tx  mean that the retail traders have a short position on the asset shares at time t , [ ]10,t T∈ . Recall that 
when we write retail traders we always mean retail traders in the “mean field approximation”. We assume that 
the stochastic process tx , [ ]10,t T∈ , satisfies the following stochastic differential equation:  

( ) ( ]1d , d d ,     0,t t tx t x t W t Tα σ= + ∈ ,                             (1) 

with initial condition:  

0 0x x=  ,                                         (2) 

where [ ]1: 0,Tα × →   is a continuous function, σ  is a real constant, tW , [ ]10,t T∈ , is a standard Wiener 
process such that 0 0W =  and d tW , [ ]10,t T∈ , is its stochastic differential. The initial condition 0x  is a 
known random variable whose probability density function is denoted with ( )0m x , x∈ . We have  

( )0 0m x ≥ , x∈ , and ( )0 d 1m x x
+∞

−∞
=∫ . We assume that the initial value problem (1), (2) has a unique solution  

when [ ]10,t T∈ . The function α  that appears in (1) is the trading rate of the retail traders and is the control 
variable of the mean field game model considered. Equation (1) is the “mean field equation” announced in the 
Introduction that defines the dynamics of the trading position of the “mean retail trader” that is used to describe 
the multitude of the retail traders in the “mean field approximation”. 

http://www.econ.univpm.it/recchioni/finance/w19
http://www.econ.univpm.it/recchioni/finance
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For [ ]10,t T∈  we denote with ( ),m t x , x∈ , the probability density function of the random variable tx  
solution of (1), (2). The function ( ),m t x , x∈ , [ ]10,t T∈ , satisfies the forward Kolmogorov equation asso-
ciated to (1):  

( ) ( ) ( )( ) ( ) ( ]
2 2

12, , , , 0,     ,     0,
2

m mt x t x m t x t x x t T
t x x

σα∂ ∂ ∂
+ − = ∈ ∈

∂ ∂ ∂
 ,                (3) 

with the initial condition implied by (2):  

( ) ( )00, ,     m x m x x= ∈ .                                 (4) 

Recall that in (3) the function α  is not a known coefficient, α  is the control variable that must be deter-
mined as solution of the mean field game model. The fact that 0m  is a probability density function implies that 
the function m  solution of (3), (4) is a probability density function as a function of x  for [ ]10,t T∈  that  

is implies that: ( ), 0m t x ≥ , x∈ , [ ]10,t T∈ , and ( ) ( )0, d d 1m t x x m x x
+∞ +∞

−∞ −∞
= =∫ ∫ , [ ]10,t T∈ . 

Let ( )⋅  denote the expected value of ,⋅  and 1  be the set of the square integrable processes on [ ]10,T   

This means that the real stochastic process tγ γ= , [ ]10,t T∈ , belongs to 1  if and only if ( )1 2
0

d
T

t tγ < +∞∫   

Let ( ),t tt xα α α= = , [ ]10,t T∈ , be the trading rate of Equation (1) we assume that 1α ∈ . Given the real 
parameters 0λ > , 0θ ≥  and a∈  we consider the following problem:  

( )
1

,maxUλ θα
α

∈
,                                       (5) 

where:  

( ) ( ) ( )1

1

22 2
, 10

1ln , d ,     ,   0,   0,   ,
2

T
t t t TU m t x x t x a aλ θ α α λ θ α λ θ  = − − − − ∈ > ≥ ∈  

  
∫         (6) 

subject to the constraints (1)-(4). The model (5), (6), (1)-(4) is the mean field game model used to describe the 
behaviour of the retail traders. This means that the retail traders adopt the trading execution strategy tx ,

[ ]10,t T∈ , whose rate 1tα α= ∈  is the solution of problem (5), (6), (1)-(4). The parameter λ  is called risk 
aversion parameter. Note that the constraints (3), (4) are consequences of the constraints (1), (2) and that they 
can be omitted when (1), (2) are imposed. However we prefer to mention (3), (4) explicitly in the statement of 
the previous problem in order to emphasize the role of ( ),m t x , x∈ , [ ]10,t T∈ , in the functional ( ),Uλ θ α , 

1α ∈ , 0λ > , 0θ ≥ , a∈ , defined in (6). The functional ( ),Uλ θ α , 1α ∈ , 0λ > , 0θ ≥ , a∈ , is  
called utility function or cost functional of the mean field game model and is the sum of four terms. The first one: 

( )( )1

0
ln , d

T
tm t x t∫  expresses the fact that the retail traders want to behave in a similar way, the second one: 

1 2
0

1 d
2

T
t tα − 

 ∫  expresses the fact that the retail traders try to avoid abrupt changes of their trading strategies, 

the third one: ( )1 2
0

d
T

tx tλ−∫  expresses the fact that the retail traders do not like the risk associated to the fact of 

having open positions on the asset shares, and the fourth one: ( )( )1

2

Tx aθ− −  expresses the fact that in the  

long run (that is at time 1t T= ) the retail traders want to have a given position on the asset shares (that is the 
position a∈). The choice of the term ( )ln , tm t x , [ ]10,t T∈ , in (6) instead of a more general term such as, 
for example, ( )( ), th m t x , [ ]10,t T∈ , with ( )h ξ , ξ ∈ , a suitable (real valued) function, is essential in Sec-
tion 3 to solve elementarily the mean field game model (5), (6), (1)-(4) when ( )0m x , x∈ , is a Gaussian 
probability density function. Note that in the utility function ( ),Uλ θ α , 1α ∈ , 0λ > , 0θ ≥ , a∈ , the  

terms ( )ln , tm t x , 2
tx , [ ]10,t T∈ , and ( )1

2

Tx aθ− −  depend from the control variable 1α ∈  through the  

Equations (1), (3). 
Now let us discuss the mathematical model that describes the behaviour of the big trader. Let 2T ∈  be a 

positive number such that 2 1T T≤  and 0Y >  be a positive integer that represents the number of asset shares 
held by the big trader at time 0t = . We consider the problem of determining the optimal trading execution 
strategy that implements the order of selling Y  asset shares in the time interval [ ]20,T . This order is called 
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liquidation order since consists in the order of liquidating the position on the asset shares held by the big trader 
at time 0t =  in the time interval [ ]20,T . Let ty , [ ]20,t T∈ , be the number of asset shares held by the big 
trader at time t , [ ]20,t T∈ . We assume that ty , [ ]20,t T∈ , is solution of the following differential equation:  

( ) [ ]2d , d ,     0,t ty t y t t Tβ= ∈ ,                                 (7) 

with initial condition:  

0y Y= ,                                          (8) 

and final condition:  

2
0Ty = ,                                          (9) 

where in (7) [ ]2: 0,Tβ × →   is a continuous function that represents the trading rate of the big trader. Note 
that the differential Equation (7), that describes the dynamics of the trading strategy of the big trader, is the equ-
ation used by Almgren [3] in similar circumstances. We assume that the initial value problem (7) (8) has a 
unique solution in the time interval [ ]20,T . The function ( ),t tt yβ β= , [ ]20,t T∈  is the control variable of 
the control problem that defines the behaviour of the big trader. The function ty , [ ]20,t T∈  is the trading ex-
ecution strategy of the big trader. The quantities ( ), tt yβ  and ( ), tt yβ−  are respectively the trading rate and 
the selling rate of the trading execution strategy ty  at time t , [ ]20,t T∈ . Let [ ]( )2

20,L T  be the set of the 
square integrable functions defined on [ ]20,T  and ( )Y  be the set of the functions ty , [ ]20,t T∈ , solution 
of (7)-(9) whose derivative ( ),t tt yβ β β= = , [ ]20,t T∈ , belongs to [ ]( )2

20,L T . We assume that 
( )ty y Y= ∈ . The set ( )Y  is the set of the admissible trading execution strategies of the optimal control 

problem that defines the behaviour of the big trader. Let us define the utility function of the control problem that 
determines the behaviour of the big trader. This is done introducing the asset share price dynamic equation. 

We use as asset share price dynamic equation a simple generalization of the equation introduced by Almgren 
in [3]. Let tS  be the asset share price at time t , [ ]20,t T∈ , we assume that tS , [ ]20,t T∈  is a real stochas-
tic process defined as follows:  

( ) ( ]0
1 2 2 2,     0,t t t t tS S M Y y t Tη η β ζ= + + + − ∈ ,                      (10) 

0
0     givenS ,                                     (11) 

where ( )( ) ( ) ( ) ( ), , , dt t tM t x t x m t x xα α α
+∞

−∞
= = = ∫  , [ ]10,t T∈ , and 1η , 2η , 2ζ  are positive constants.  

Moreover we assume that: 0d dt tS Bε= , [ ]20,t T∈ , where 0ε >  is a real constant, 0
0S  is a positive random 

variable, tB , [ ]20,t T∈ , is a standard Wiener process defined in the time interval [ ]20,T  such that 0 0B =  
and d tB , [ ]20,t T∈ , is its stochastic differential. We assume that d tB , d tZ , d tW , [ ]20,t T∈ , are indepen-
dent. The term 0

tS , [ ]20,t T∈ , represents the asset share price in absence of trading. Note that with the pre-
vious choices the asset share price in absence of trading 0

tS , [ ]20,t T∈ , and the asset share price (in presence 
of trading) tS , [ ]20,t T∈ , can be negative. Usually this is considered an undesirable property, however when 
sufficiently small values of 2T  are considered it can be tolerated, see [3] [5]. In fact in this case from the as-
sumption 0

0 0S >  with probability one it follows that the probability of having negative prices in the time in-
terval [ ]20,T  is small and can be made arbitrarily small taking 2T  small enough. The asset share price dy-
namic equation of Almgren’s model [3] is obtained from (10) choosing 1 0η =  and has the same undesired 
property of (10). The terms 1 tMη  and 2 tη β  represent respectively the instantaneous market impact at time t , 

[ ]20,t T∈ , of the trading activity of the retail traders and of the big trader. The term ( )2 tY yζ −  represents the 
permanent market impact at time t , [ ]20,t T∈ , of the trading activity of the big trader. The choice of the term 

1 tMη , [ ]20,t T∈ , to model the effect on the asset share price of the trading activity of the retail traders reflects 
the assumptions stated in the Introduction. In fact in the Introduction we have assumed that individually the re-
tail traders execute small orders that do not influence the asset share price, these orders influence the asset share 
price only through the expected value of their trading rates, that is through the term 1 tMη , [ ]20,t T∈ . Note that 
the expected value of the trading rate of the mean retail trader tM , [ ]20,t T∈ , can be imagined as being pro-
portional to the expected value of the trading rate of the multitude of the retail traders. The situation is different 
for the big trader. The big trader executes large orders and the trading rate tβ , [ ]20,t T∈ , of a large order in-
fluences the asset share price directly. In (10) this influence is modeled through the terms 2 tη β  and 

( )2 tY yζ − , [ ]20,t T∈ . 
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Let ty , [ ]20,t T∈ , be a trading execution strategy that satisfies (7)-(9). It is easy to see that when the big 
trader adopts the trading execution strategy ty , [ ]20,t T∈ , and the asset share price dynamics is described by 
(10), (11) the expected final revenue (i.e. the expected revenue at time 2t T= ) for the big trader resulting from 
the sale of Y  asset shares in the time interval [ ]20,T  is:  

( )2

0
d

T
t tS tβ−∫ .                                       (12) 

Let us take a closer look to (12). Integrating (12) by parts and using (7) we have:  

( )2 2 2 2
2

0 2
0 1 2 20 0 0 0

d d d d
2

T T T T
t t t t t t t

YS t YS y B M t tβ ε η β η β ζ
 

− = + − − + 
 

∫ ∫ ∫ ∫  .               (13) 

Note that the assumption [ ]( )2
20,L Tβ ∈  implies that when [ ]( )2

20,tM L T∈  the expression  
2 2 2

1 20 0
d d

T T
t t tM t tη β η β− −∫ ∫  is well defined and finite. From (13) we have:  

( ) ( )2 2 2
2

0 2
0 2 1 20 0 0

d d d
2

T T T
t t t t t

YS t Y S M t tβ ζ η β η β− = + − −∫ ∫ ∫  .                     (14) 

The optimal trading execution strategy of the big trader is the strategy that maximizes the expected final rev-
enue of the big trader (14) subject to the constraints (7)-(9). That is the problem of finding the optimal trading 
execution strategy of the big trader consists in solving the following optimal control problem:  

[ ]( )
( )

2
20,

max
L T

V
β

β
∈

,                                      (15) 

where:  

( ) [ ]( )2 2 2 2
1 2 20 0

d d ,     0,
T T

t t tV M t t L Tβ η β η β β= − − ∈∫ ∫ ,                      (16) 

subject to the constraints (7)-(9). Note that in (16) we have dropped the term ( )
2

0
0 2 2

YY S ζ+  that appears in  

(14). In fact this term does not depend from the control variable β  and can be dropped from the objective 
function (14) without changing the solution of the control problem considered. The optimal control problem (15), 
(16), (7)-(9) is a linear quadratic optimal control problem. For later convenience note that the utility function 
( )V β , [ ]( )2

20,L Tβ ∈ , defined in (16) does not depend from 2ζ  and that the presence of tM , [ ]20,t T∈  in 
(16) determines how the behaviour of the retail traders influences the behaviour of the big trader. 

3. The Optimal Trading Execution Strategy of the Retail Traders 
Let us consider the mean field game problem (5), (6), (1)-(4). We define:  

( ) ( ) [ ]1

1

2 2
1

1, max ln , d ,     ,     0,
2t

T
tt

u t x m x x x x x t Tτ τ τα
τ α λ τ

∈

  = − − = ∈ ∈  
  

∫ 


,             (17) 

to be the value function of problem (5), (6), (1)-(4). 
The function ( ),u t x , x∈ , [ ]10,t T∈ , defined in (17), satisfies the following Hamilton Jacobi Bellman 

equation:  

( ) ( ) ( ) ( ) [ ]
2 2

2
1 12, , , ln , ,     ,     0,

2
u u ut x t x t x x m t x x t T
t xx

σ λ∂ ∂ ∂ + + − = − ∈ ∈ ∂ ∂∂  
 ,             (18) 

with final condition:  

( ) ( )2
1, ,     u T x x a xθ= − − ∈ ,                                (19) 

where ( ) 2 2
1

1 1max
2 2

p p pδ δ δ∈
 = − = 
 



  is the Hamiltonian function of the mean field games (5), (6), (1)-(4).  

Therefore the optimal trading execution strategy of the retail traders can be determined solving the following 
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system of partial differential equations, see [10]:  

( ) ( ) ( ) ( ) [ ]
22 2

2
12

1, , , ln , ,     ,     0,
2 2

u u ut x t x t x x m t x x t T
t xx

σ λ∂ ∂ ∂ + + − = − ∈ ∈ ∂ ∂∂  


,            (20) 

( ) ( ) ( )( ) ( ) [ ]
2 2

12, , , , 0,     ,     0,
2

m mt x t x m t x t x x t T
t x x

σα∂ ∂ ∂
+ − = ∈ ∈

∂ ∂ ∂
 ,                    (21) 

where the function ( ),t xα , x∈ , [ ]10,t T∈ , must satisfy the condition u
x

α ∂
=
∂

, x∈ , [ ]10,t T∈ . This last 

condition couples the Equations (20), (21). The system (20), (21) with the condition u
x

α ∂
=
∂

, x∈ , [ ]10,t T∈ , 

is equipped with a final condition on u  in 1t T=  and an initial condition on m  in 0t =  that is:  

( ) ( )2
1, ,     u T x x a xθ= − − ∈ ,                               (22) 

( ) ( )00, ,     m x m x x= ∈ .                                   (23) 

Equations (20), (21) with the conditions u
x

α ∂
=
∂

, x∈ , [ ]10,t T∈ , (22), (23) are a system of nonlinear  

partial differential equations with an initial and a final condition. This system expresses the first order necessary 
optimality condition of the mean field game model (5), (6), (1)-(4). Once known the solution of this system of 
partial differential equations the optimal trading rate of the retail traders solution of problem (5), (6), (1)-(4) is  

determined by the condition: ( ) ( ), ,
t

t t t x x

ut x t x
x

α α
=

∂
= =

∂
, [ ]10,t T∈  where tx , [ ]10,t T∈  is the solution of 

(1), (2) when α  is chosen equal to u
x
∂
∂

. 

We look for elementary solutions of problem (20), (21) with the conditions u
x

α ∂
=
∂

, x∈ , [ ]10,t T∈ ,  

(22), (23). In analogy with the work of Kalman [17] we formulate some hypotheses that make possible to reduce  

the solution of problem (20), (21) with the conditions u
x

α ∂
=
∂

, x∈ , [ ]10,t T∈ , (22), (23) to the solution of  

a constrained two point boundary value problem for a system of six Riccati ordinary differential equations. The 
choice of the logarithm function in the first addendum of (6) and as a consequence the presence of the logarithm 
function on the right hand side of (20) are crucial to operate this reduction. 

Let X  be a random variable and let ( ),N ⋅   be the Gaussian probability distribution of mean ⋅  and stan-
dard deviation  . The notation ( ),X N ⋅   means that the random variable X  is distributed ( ),N ⋅  .  

We have:  
Proposition 3.1 
Let 0 0,  µ ψ ∈ , 0 0ψ >  and let:  

( ) ( )2
0 022

00

1 1exp ,     
22π

m x x xµ
ψψ

 
= − − ∈ 

 
 ,                       (24) 

i.e. let ( )0 0 0,x N µ ψ
  then a solution of problem (20), (21) with the conditions u

x
α ∂
=
∂

, x∈ , [ ]10,t T∈ , 

(22), (23) is given by:  

( ) ( ) ( ) ( ) [ ]2
0 1 2 1, ,     ,     0,u t x c t c t x c t x x t T= + + ∈ ∈ ,                       (25) 

( ) ( ) ( ) ( ) [ ]2
0 1 2 1, exp ,     ,     0,m t x D t D t x D t x x t T = + + ∈ ∈   ,                (26) 

( ) ( ) ( ) [ ]1 2 1, 2 ,     ,     0,t x c t c t x x t Tα = + ∈ ∈ ,                              (27) 
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where the functions ( )0D t , ( )1D t , ( )2D t , ( )0c t , ( )1c t , ( )2c t , [ ]10,t T∈ , are solution of the following 
two point boundary value problem:  

[ ]
2

2 20
1 1 1 2 2 1

d
2 ,     0,

d 2
D

D c D D c t T
t

σ σ= − + − ∈ ,                       (28) 

( ) ( )
2

20
0 02

0

10 ln 2π
22

D
µ

ψ
ψ

= − − ,                                    (29) 

[ ]21
1 2 2 1 1 2 1

d
2 2 2 ,     0,

d
D D D c D c D t T
t

σ= − − ∈ ,                        (30) 

( ) 0
1 2

0

0D
µ
ψ

= ,                                                  (31) 

[ ]2 22
2 2 2 1

d
2 4 ,     0,

d
D D c D t T
t

σ= − ∈ ,                                (32) 

( )2 2
0

10
2

D
ψ

= − ,                                                (33) 

[ ]
2

20 1
0 2 1

d
,     0,

d 2
c cD c t T
t

σ= − − − ∈ ,                                (34) 

( ) 2
0 1c T a θ= − ,                                                (35) 

[ ]1
1 1 2 1

d
2 ,     0,

d
c D c c t T
t
= − − ∈ ,                                    (36) 

( )1 1 2c T aθ= ,                                                  (37) 

[ ]22
2 2 1

d
2 ,     0,

d
c D c t T
t

λ= − − + ∈ ,                                  (38) 

( )2 1c T θ= − ,                                                   (39) 

and satisfy condition (47). In fact, as shown later, in order to guarantee that ( ),m t x , x∈ , [ ]10,t T∈ , defined 
in (26) is a Gaussian probability density function it is necessary that the functions ( )0D t , ( )1D t , ( )2D t , 

[ ]10,t T∈ , satisfy condition (47). Note that (47) implies 0,<)(2 tD  ].[0, 2Tt∈  Condition (47) is a constraint 
imposed to the solution of (28)-(39). The equations (28)-(39) are a system of six Riccati ordinary differential 
equations in six unknowns defined for [ ]10,t T∈  equipped with three initial conditions in 0t =  and three final 
conditions in 1t T= . 

Proof 

Let ( ) ( )
( )2

2 ,
, ,

u t x
m t x k t x eσ= , x∈ , [ ]10,t T∈ , where u  is given by (25) and k  is a function to be 

determined. We have:  

[ ]12

1 2 ,     ,     0,m k um x t T
t k t tσ

∂ ∂ ∂ = + ∈ ∈ ∂ ∂ ∂ 
 ,                                      (40) 

[ ]12

1 2 ,     ,     0,m k um x t T
x k x xσ

∂ ∂ ∂ = + ∈ ∈ ∂ ∂ ∂ 
 ,                                      (41) 

[ ]
2 22 2

12 2 2 2 2

1 4 4 1 1 2 ,     ,     0,m k u k u k um x t T
k x x k x x x k xx xσ σ σ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     = + + + + ∈ ∈      ∂ ∂ ∂ ∂ ∂ ∂∂ ∂       
 ,   (42) 

[ ]
2 2

12 2

1 2 ,     ,     0,m k u u um m x t T
x x k x x x xσ

 ∂ ∂ ∂ ∂ ∂ ∂   = + + ∈ ∈    ∂ ∂ ∂ ∂ ∂ ∂     
 .                      (43) 
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Substituting (40)-(43) in (21) we have:  

[ ]
22

12

1 2 1 1 1 ,     ,     0,
2

k u k k k u x t T
k t t k x x k x k x x

σ
σ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + = + + ∈ ∈    ∂ ∂ ∂ ∂ ∂ ∂ ∂     
 .            (44) 

In (44) we choose ( ) ( ) ( ) ( ) 2
0 1 2,u t x c t c t x c t x= + + , x∈ , [ ]10,t T∈ , u

x
α ∂
=
∂

, x∈ , [ ]10,t T∈ , and 

( ) ( ) ( ) ( )( )2, expk t x A t B t x C t x= + + , x∈ , [ ]10,t T∈ , where ( )0c t , ( )1c t , ( )2c t , ( )A t , ( )B t , ( )C t , 

[ ]10,t T∈ , are functions to be determined. It is easy to see that with the previous choices from (20) and (44) we have 

(28)-(39) where ( ) ( ) ( )0 02

2D t A t c t
σ

= + , ( ) ( ) ( )1 12

2D t B t c t
σ

= +  and ( ) ( ) ( )2 22

2D t C t c t
σ

= + , [ ]10,t T∈ . 

Note that when m  is given by (26) and ( )2 0D t < , [ ]10,t T∈ , we have:  

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) [ ]

2
0 1 2

2
1

0 1
2 2

, d exp exp d

1 πexp ,     0, .
4

m t x x D t D t x D t x x

D t
D t t T

D t D t

+∞ +∞

−∞ −∞
 = +    

 
= − − ∈ 

  

∫ ∫

　　　　　　
                  (45) 

Imposing that ( ), d 1m t x x
+∞

−∞
=∫ , [ ]10,t T∈ , from (45) it follows that:  

( ) ( )
( )

( ) [ ]
2

1 2
0 1

2

1exp ,     0,
4 π

D t D t
D t t T

D t

 
− = − ∈ 

  
,                        (46) 

that is:  

( ) ( )
( ) ( ) [ ]

2
1

0 2 1
2

1 1 1ln ln ,     0,
4 2 2

D t
D t D t t T

D t
π− = − − ∈   .                      (47) 

Equation (47) implies that ( )2 0D t < , [ ]10,t T∈  and guarantees that the function m given by (26) is a Gaus-
sian probability density function in x  for [ ]10,t T∈ . 

Note that a solution of the two point boundary value problem (28)-(39) that satisfies (47) may or may not 

exist. When it does not exist the attempt of building a solution of problem (20), (21) with the conditions u
x

α ∂
=
∂

,  

x∈ , [ ]10,t T∈ , (22), (23), based on (25)-(27) fails. Conversely when there exist the formulae (25)-(27) and 
the solution of the constrained two point boundary value problem discussed above gives an elementary solution  

of problem (20) (21) with the conditions u
x

α ∂
=
∂

, x∈ , [ ]10,t T∈ , (22), (23) when 0m  is a Gaussian proba- 

bility density function. Proposition 3.1 shows that when (28)-(39) has a solution that satisfies (47) from the hy-
pothesis ( )0 0 0,x N µ ψ

  it follows that the probability density function ( ),m t x , x∈ , [ ]10,t T∈ , solution  

of problem (20), (21) with the conditions u
x

α ∂
=
∂

, x∈ , [ ]10,t T∈ , (22), (23) can be chosen as the Gaussian 

probability density function (26) with mean:  

( )
( ) [ ]1

1
2

,     0,
2t

D t
t T

D t
µ = − ∈ ,                                 (48) 

and variance:  

( ) [ ]2
1

2

1 ,     0,
2t t T

D t
ψ = − ∈ ,                                 (49) 

that is in this case we have: ( ),t t tx N µ ψ , [ ]10,t T∈ , with tµ , 2
tψ , [ ]10,t T∈ , given by (48), (49). In this 

Section and in Section 4 we assume that the system (28)-(39) has a solution that satisfies (47). In Section 5 we 
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discuss briefly the validity of this assumption and in some test cases we determine a solution of (28)-(39) that  

satisfies (47). In [18] Guéant studies the stationary version of problem (20), (21) with the conditions u
x

α ∂
=
∂

,  

x∈ , [ ]10,t T∈  (22), (23) and finds a solution given by the functions ( ) ( )( )ˆ ˆ,u x m x , x∈ , where ( )û x , 
x∈ , is a polynomial of degree two in x  and ( )m̂ x , x∈ , is a Gaussian probability density function.  

From (25) it follows that:  

( ) ( ) ( ) ( ) [ ]1 2 1, , 2 ,     0,
t

t t tx x

ut x t x c t c t x t T
x

α α
=

∂
= = = + ∈

∂
,                     (50) 

where tx  [ ]10,t T∈  is the solution of (1), (2) when α  is given by (50). Therefore when (50) holds we have:  

( ) ( ) ( ) ( ) ( ) ( )
( ) [ ]1

1 2 1 2 1
2

2 ,     0,t t t

D t
M c t c t c t c t t T

D t
α µ= = + = − ∈ ,                   (51) 

Proposition 3.2 
Let 0µ , 0ψ ∈ , 0 0ψ > , ( )0 0 0,x N µ ψ

  and ( ),u t x , ( ),m t x , x∈ , [ ]10,t T∈ , be the solution of  

problem (20), (21) with the conditions u
x

α ∂
=
∂

, x∈ , [ ]10,t T∈ , (22), (23) determined in Proposition 3.1  

that we assume to exist. We have ( ),t t tx N µ ψ , [ ]10,t T∈ , where:  

( ) ( )
( )( ) ( )( ) ( )0 1 0 1

1 1

1 cosh 2 sinh 2 sinh 2 ,
2

cosh 2 sinh 2
2

                                                                                                                                 

t t T t T a t
T T

λµ µ λ µ θ λ θ λ
λ λ θ λ

 
= − − − +  

 +

[ ]1                0, ,t T∈

   

(52) 
and  

( ) [ ]1
2

1 ,     0,
2t t T

D t
ψ = − ∈ .                               (53) 

The functions ( )sinh ⋅  and ( )cosh ⋅  denote, respectively, the hyperbolic sine and the hyperbolic cosine 
functions of ⋅  and the function ( )2D t , [ ]20,t T∈ , in (53) is the solution of the two point boundary value 
problems (32), (33), (38), (39). 

Moreover let tM , [ ]10,t T∈ , be the expected value of the optimal trading execution rate of the retail traders, 
defined in (51), we have:  

( )( )

( ) ( )
( )( ) ( )( ) ( )( )

[ ]

0 1 0 1

1 1

1

,

1 sinh 2 2 cosh 2 2 cosh 2 ,
cosh 2 sinh 2

2
                                                                            0, .

t tM t x

t T t T a t
T T

t T

α

µ λ λ µ θ λ λ θ λ λ
λ λ θ λ

= =

− − − +
+

∈



   

(54) 
Proof 
Differentiating (48) with respect to t  we have:  

[ ]1 1
1 2 1 2 1

2 2

d 1 d 2 ,     0,
d 2 d

t
t t

D Dc c c c M t T
t t D D
µ

µ
 

= − = − = + = ∈ 
 

,                 (55) 

from (55) it follows that:  

[ ]1 2 1 1
2 1

2 2

d d d d 2 ,     0,
d d d d

t
t

M c c D Dc t T
t t t D t D

λµ
 

= − − = ∈ 
 

.                     (56) 
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From (55), (56) we have that tµ , [ ]10,t T∈ , satisfies the differential equation:  

[ ]
2

12

d
2 ,     0,

d
t

t t T
t
µ

λµ= ∈ .                                (57) 

Equations (35), (39), (55), (56) imply that Equation (57) can be equipped with the following boundary condi-
tions:  

00t tµ µ
=
= ,                                      (58) 

( )1 1
1

d
2

d
t

T T
t T

M a
t
µ

θ µ
=

= = − .                              (59) 

It is easy to see that the function (52) is the solution of (57)-(59). Finally substituting (52) in (56) we deter-
mine tM , [ ]10,t T∈ , as solution of the first order ordinary differential Equation (56) with the final condition  

( )1 1
2T TM aθ µ= −  that follows from (58), (59). An elementary computation shows that the function (54) is the 

solution of (56) that satisfies this last final condition. 
Formula (54) shows that tM , [ ]10,t T∈ , depends from 0µ  but does not depend from σ . Note that when  

0λ =  we have 
d

0
d

tM
t

= , [ ]10,t T∈ , so that from ( )1 1
2T TM aθ µ= −  we have: ( )1

2t TM aθ µ= − , [ ]10,t T∈ ,  

moreover from (57)-(59) when 0λ =  we have: ( )10 2t T a tµ µ θ µ= − − , [ ]10,t T∈ . That is when 0λ = , tM , 
[ ]10,t T∈ , is constant, and tµ  is a linear function of t , [ ]10,t T∈ . 

4. The Optimal Trading Execution Strategy of the Big Trader 
Let us consider the optimal control problems (15), (16), (7)-(9). The value function ( ),v t y , y∈ , [ ]20,t T∈ ,  
of problems (15), (16), (7)-(9) is the maximum of the objective function 2 2 2

1 2d d
T T

t t
Mτ τ τη β τ η β τ− −∫ ∫  determined 

solving the following constrained optimization problem:  

[ ]( ) ( ) [ ]2 2

2
2

2
1 2 2

0,
max d d ,     0,

t

T T

t tL T
M t Tτ τ τ

β
η β τ η β τ

∈
− − ∈∫ ∫ ,                      (60) 

subject to the constraint (7), (9) and:  

[ ]2,     ,     0,ty y y t T= ∈ ∈ .                               (61) 

Note that we have:  

( ) ( )
[ ]( ) ( )2

2
2

2
0
0 2 00,

0, max d
2 t

T
t t

L T

Yv Y Y S S t
β

ζ β
∈

= − − + −∫  .                     (62) 

The function ),,( ytv  ,∈y  ],[0, 2Tt∈  is the solution of the following Hamilton Jacobi Bellman equation:  

( ) ( ) [ ]2 2, , , 0,     ,     0,t
v vt y t y M y t T
t y

 ∂ ∂
+ = ∈ ∈ ∂ ∂ 

 ,                     (63) 

with the final condition:  

( )2

0, 0,
,

, 0,
y

v T y
y
=

= −∞ ≠
                                 (64) 

where ( ) ( )( ) ( )22
2 2 1 1

2

1, max
4

p q p q p qδ η δ δ η η
η∈= − + − = −



  is the Hamiltonian function of problem (15),  

(16), (7)-(9). Note that the right hand side of (64) is not a real valued function. The final condition (64) must be  
interpreted as prescribing the ( )

2
lim ,

t T
v t y−→

, y∈  A trading rate tβ , [ ]20,t T∈ , such that 
2

0Ty ≠  that is  

a trading rate that does not satisfy (9), is a rate that at time 2t T=  has not achieved the goal of liquidating in the 
time interval [ ]20,T  the position of Y  asset shares held by the big trader at time 0t = . To this rate the final 
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conditions (64) attributes an infinite cost, or equivalently attributes a revenue equal to minus infinity. In this 
sense the final condition (64) translates to the value function v  the condition (9) imposed to the trading execu-
tion strategy ,ty  [ ]20,t T∈ . 

Therefore in order to find the optimal trading execution strategy of the big trader we must solve the following 
Hamilton Jacobi Bellman equation:  

( ) ( ) [ ]
2

1 2
2

1, , 0,     ,     0,
4 t

v vt y t y M y t T
t y

η
η

 ∂ ∂
+ − = ∈ ∈ ∂ ∂ 

 ,                 (65) 

with final condition (64), where tM , [ ]20,t T∈ , is given by (54). In fact from the knowledge of the value func-
tion v solution of (65), (64) we can determine the optimal control tβ , [ ]20,t T∈ , solution of(15), (16), (7)-(9),  

using the relation: ( ) ( ) 1
2

1, ,
2

t

t t t
y y

vt y t y M
y

β β η
η

=

 ∂
= = − ∂ 

, [ ]20,t T∈ , with ty , [ ]20,t T∈ , solution of (7)-(9). 

We have: 
Proposition 4.1 
Let tµ , [ ]10,t T∈ , and tM , [ ]20,t T∈ , be given respectively by (52) and (54), the value function solution 

of problem (65), (64) can be chosen as:  

( ) ( ) ( ) ( ) [ ]2
2, ,     ,     0,v t y a t b t y c t y y t T= + + ∈ ∈ ,                    (66) 

where ( )a t , ( )b t , ( )c t , [ ]20,t T∈ , are given by:  

( )
( )

[ ]2

2

2
2

21
2

2 2

d ,     0,
4

tT t

T
a t M t T

T t τ

µ µη
τ

η

 − = − ∈
 −
  

∫ ,                      (67) 

( ) ( ) [ ]
2

1
2

2

,     0,T tb t t T
T t
η

µ µ= − ∈
−

,                                (68) 

( ) [ ]2
2

2

,     0,c t t T
T t
η

= − ∈
−

.                                       (69) 

This means that the optimal trading execution rate of the big trader is:  

( ) ( ) [ ]
2

1 2
1 2

2 2 2

21 ,     0,
2t t T t tM y t T

T t T t
η η

β η µ µ
η

 
= − + − − ∈ 

− −  
,                 (70) 

where in (70) ty , [ ]20,t T∈ , is the solution of (7)-(9) when in (7) tβ , [ ]20,t T∈ , is given by (70). 
Proof 
Let ( ),v t y , y∈ , [ ]20,t T∈ , be given by (66), we impose that ( ),v t y , y∈ , [ ]20,t T∈  satisfies 

(65), (64). It follows that the coefficients ( )a t , ( )b t , ( )c t , [ ]20,t T∈ , that define the function v  through 
(66), must satisfy the system of ordinary differential equations and the final conditions that follow:  

( ) [ ]2
1 2

2

d 1 ,    0,
d 4 t
a b M t T
t

η
η

= − − ∈ ,                            (71) 

( )2 0a T = ,                                                 (72) 

( ) [ ]1 2
2

d 1 ,    0,
d t
b c b M t T
t

η
η

= − − ∈ ,                             (73) 

( )
22 1 Tb T Mη= ,                                             (74) 

[ ]2
2

2

d 1 ,     0,
d
c c t T
t η
= − ∈ ,                                    (75) 

( )2c T = −∞ ,                                               (76) 
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where tM , [ ]20,t T∈ , is given by (54). The final conditions contained in (76) must be interpreted as prescrib-

ing ( )
2

lim
t T

c t−→
. It is easy to see that the functions (67)-(69) satisfy (71)-(76).  

Moreover the optimal trading execution rate of the big trader is given by:  

( ) ( )2
1 2

1 1 1
2 2 2 2 2

21 1 12 ,
2 2 2

                                                                                                            

t
t t

t t t t T ty y
y y y y

v M b cy M M y
y T t T t

η η
β η η η µ µ

η η η=
= =

  ∂
= − = + − = − + − −      ∂ − −   

[ ]2                                  0, .t T∈

 (77) 

That is we have Equation (70).  
Substituting (70) in (7) and imposing (8) we determine the optimal trading execution strategy of the big trader 

ˆt ty y= , [ ]20,t T∈ , as solution of the following differential equation:  

( )
( )

[ ]21
2

2 2 2

ˆ
ˆd d d ,     0,

2
T tt

t t
y

y t M t t T
T t T t

µ µη
η

 −
 = − + − + ∈
 − −
 

,                     (78) 

with initial condition:  

0ŷ Y= .                                         (79) 

Note that the fact that ˆty , [ ]20,t T∈ , satisfies (8) (or equivalently (79)) is an hypothesis (i.e. the initial 
condition imposed to ˆty , [ ]20,t T∈ ) while the fact that ˆty , [ ]20,t T∈ , satisfies (9) is a consequence of the 
choice of β  made, that is of the choice tβ β= , [ ]20,t T∈ , given by (70). 

5. Numerical Experiments 
We begin the numerical study of the trading execution model presented in the previous Sections discussing the 
problem of the existence of solutions of the mean field game problem (5), (6), (1)-(4) of the form suggested in 
Propositions 3.1, 3.2. The existence of this kind of solutions is equivalent to the assumption that the two point 
boundary value problem (28)-(39) has a solution that satisfies (47). It is easy to see that the existence of a solu-
tion of the two point boundary value problem (28)-(39) that satisfies (47) depends from the existence of a solu-
tion of the two point boundary value problem (32), (33), (38), (39) such that ( )2 0D t < , [ ]10,t T∈ . In fact 
when the two point boundary value problem (32), (33), (38), (39) has a solution ( )2D t , ( )2c t , [ ]10,t T∈  
such that ( )2 0D t <  [ ]10,t T∈  from (52), (54) it follows that we can find: ( ) ( )1 22 tD t D tµ= − , [ ]10,t T∈ , 
using Equation (48), (49); ( ) ( )1 22t tc t M c t µ= − , [ ]10,t T∈ , using Equation (51), (52), (54);  

( ) ( )
( ) ( )

2
1

0 2
2

1 1 1ln ln
4 2 2

D t
D t D t

D t
π= + − −    [ ]10,t T∈  using Equation (47) and finally ( )0c t , using Equations  

(28), (29). Conversely when the two point boundary value problem (32), (33), (38), (39) does not have a solution,  

such that ( )2 0D t < , [ ]10,t T∈ , the solution of (20), (21) with the conditions u
x

α ∂
=
∂

, x∈ , [ ]10,t T∈ , (22),  

(23) constructed in Propositions 3.1, 3.2 does not exist. The study of the existence problem of the solution of the 
two point boundary value problem (32), (33), (38), (39) from the mathematical point of view is beyond our pur-
poses here. In the numerical experiments presented in this Section we proceed as follows: first of all the two 
point boundary value problem (32), (33), (38), (39) is solved numerically using the shooting method (see [19]) 
and the condition 0,<)(2 tD  ],[0, 1Tt∈  is checked. When this is done successfully from the solution of (32), 
(33), (38), (39) that satisfies ( )2 0D t < , [ ]10,t T∈ , found numerically we determine the solution of (28)-(31), 
(34)-(37). Let us study the trading execution model developed in Sections 2, 3 and 4. We present four study cases. 
In these study cases we use a generalized version of the mean field game problem (5), (6), (1)-(4) where the utility 
function defined in (6) is substituted with a new utility function that depends from some new parameters. Let us 
explain in detail the choices made. We recall that the utility function defined in (6) is the sum of the following terms:  

( )( )1

0
ln , d

T
tm t x t∫ , 1 2

0

1 d
2

T
t tα − 

 ∫ , ( )1 2
0

d
T

tx tλ−∫  and ( )( )1

2

Tx aθ− −  
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with λ , 0θ > , a∈ . As already explained in Sections 2 and 3 the second and the third term in different 
ways express the fact that the retail traders are risk adverse. Maximizing (6) the retail traders pursue three goals. 
The first one is the desire of adopting similar strategies (i.e. the desire of the retail traders of not being alone in the  

market). This goal is pursued making big the term ( )( )1

0
ln , d

T
tm t x t∫  of the utility function. The second goal 

is the desire of avoiding risk. This goal is pursued making big the term ( )1 2 2
0

1 2 d
2

T
t tx tα λ − + 

 ∫  of the utility 

function. In this term the risk aversion is declined in two ways: aversion to abrupt changes of trading strategies 

expressed by the term 1 2
0

1 d
2

T
t tα − 

 ∫  and aversion to hold open positions on the asset shares expressed by the 

term ( )1 2
0

d
T

tx tλ−∫ . The third goal is the desire of having a position on the asset shares close to a  in the long 

run (i.e. is at time 1t T= ). This last goal is pursued making big the term ( )( )1

2

Tx aθ− − . Note that to keep the 

formulae deduced in Sections 3 and 4 as simple as possible in the utility function (6) the four terms  

( )( )1

0
ln , d

T
tm t x t∫ , 1 2

0

1 d
2

T
t tα − 

 ∫ , ( )1 2
0

d
T

tx tλ−∫ , ( )( )1

2

Tx aθ− −   

are weighted in a predetermined way. However to show the versatility of the model developed in the previous 
Sections in the study cases presented in this Section it is convenient to introduce a new utility function contain-
ing two parameters not present in (6), that is: the parameter w that regulates the relative weights of the terms  

( )( )1

0
ln , d

T
tm t x t∫  and ( )1 2 2

0

1 2 d
2

T
t tx tα λ − + 

 ∫  and the parameter ξ  that regulates the relative weights of 

the terms ( )1 2
0

d
T

t tα−∫  and ( )1 2
0

d
T

tx t−∫ . That is in this Section we consider the utility function:  

( ) ( ) ( )( ) ( )( ) ( )
( ]

1

1

2, , 2 2
0

1

1 ln , 1 d ,
2

                                                           ,    ,  0,1 ,    0,    ,

Tw
t t t TU w m t x w x t x a

w a

ξ θ θα ξα ξ

α ξ θ

 = − − + − − − 
 

∈ ∈ ≥ ∈

∫





             (80) 

instead of the utility function ,U λ θ  defined in (6). Note that in (80) we choose ,w , ( ]0,1ξ ∈ , and that the pa-
rameter 2θ  of (8) replaces the parameter θ  of (6). For simplicity in (80) we exclude the choices 0w =  
and/or 0ξ =  from the possible choices of the parameter values. In fact when in (80) we have 0w =  and/or 

0ξ =  the resulting mean field game problem is degenerate. That is the choices 0w =  and/or 0ξ =  in (80) 
correspond to a problem with a non convex Hamiltonian, that is correspond to a degenerate problem. For sim- 

plicity we avoid degenerate problems. Note that ( ) ( )0.5,0.5,
0.5,

1
2

U Uθ
θα α= , 1α ∈ , 0θ ≥  where ( )0.5,U θ α   

is the utility function (6) with 0.5λ =  When the utility function (6) is substituted with the utility function (80) 
and instead of the problem studied in Section 3 we consider the problem of maximizing (80) subject to the con-
straints (1)-(4) some obvious changes must be made to the statement of Proposition 3.1, to the optimal trading 
execution rate (50) and to the results derived in Proposition 3.2. However it is easy to see that the analysis of the 
problem of maximizing (6) subject to the constraints (1)-(4) carried out in Section 3 can be extended to the 
problem of maximizing (80) subject to the constraints (1)-(4). To keep the exposition simple we leave to the 
reader the effort of working out these details. 

Let us point out that the aversion to abrupt position changes and the possession of stable positions in the asset 
shares are typical habits of the so called buy and hold investors. Instead the so called short term investors do not 
like to have stable positions in the asset shares. This last kind of investors open and close their positions within a 
relatively short time period to exploit short term movements of the asset share price. Based on these facts we 
argue that the utility function (80) when ξ  is close to one describes buy and hold investors while when ξ  is 
close to zero describes short term investors. Moreover it is easy to see that the parameter ( ]0,1w∈  measures 
the desire of the retail traders of behaving in a similar way. This desire decreases when w  increases. 
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In the study cases that follow we consider the solution of the problem:  

( ) ( ]
1

, ,
1max ,    ,    ,  0,1 ,    0,    wU w aξ θ α α ξ θ∈ ∈ ≥ ∈


 ,                     (81) 

when , ,wU ξ θ  is given by (80) subject to the constraints (1)-(4) when w , ( ]0,1ξ ∈ , 0θ ≥ , a∈ , and we 
study how the solution of the previous problem influences the trading execution strategy adopted by the big 
trader to implement the liquidation order. 

In the first study case we analyze the behaviour of the retail traders and we choose 1 1T = , 0θ = , 0.8σ = , 
0 5µ = −  and 0 0.5ψ = , ( )0 0 0,x N µ ψ

 . When w , ( ]0,1ξ ∈  we consider the optimal trading execution 
strategy of the retail traders solution of problems (80), (81), (1)-(4) determined with the technique presented in 
Section 3. The optimal trading execution strategy solution of the previous mean field game problem can be de-
fined through the Gaussian probability density function ( ),m t x , x∈ , [ ]10,t T∈ , of the trading position of 
the retail traders tx , [ ]10,t T∈ . Moreover from the knowledge of ( ),m t x , x∈ , [ ]10,t T∈ , we can deduce 
the expected value of the optimal trading execution rate of the retail traders tM , [ ]10,t T∈ , given by (54). Us-
ing the notation of Section 3 we have: ( ),t t tx N µ ψ , [ ]10,t T∈ . Note that 2

tψ , [ ]10,t T∈ , depends from w  
and ξ  while tµ  and tM , [ ]10,t T∈ , depend from ξ  but are independent of w . Given the choice of the 
parameter values stated above Figure 1, Figure 2 show the functions tµ , tM , [ ]10,t T∈  obtained as solution 
of problem (81), (80), (1)-(4) when 0θ = , 0.3,  0.7ξ =  and ( ]0,1w∈ . In particular Figure 1, Figure 2 show 
that tµ , [ ]10,t T∈  and, tM , [ ]10,t T∈ , when 0.7ξ =  are smaller than when 0.3ξ = . This means that the 
impact of the trading activity of the retail traders on the asset share price when 0.7ξ =  is smaller than when 

0.3ξ = . This is coherent with the fact that when 0.7ξ =  the retail traders are (mainly) buy and hold investors 
that hold stable open positions of the asset shares and that retail traders of this kind do not like to change ab-
ruptly their trading strategies. Conversely when 0.3ξ =  the retail traders are (mainly) short term investors that 
prefer to open and close their positions in a relatively small time period rather than holding stable open positions 
of the asset shares. Figure 3, Figure 4 show the function 2

tψ , [ ]10,t T∈ , when 0θ = , 0.3,  0.7ξ =  and 
0.2,  0.5,  0.7w = . In particular Figure 3, Figure 4 show that when ( ]0,1w∈  increases the variance 2

tψ , 
[ ]10,t T∈ , increases, that is when ( ]0,1w∈  increases the retail traders adopt more diversified trading positions 

in the asset shares market. This is coherent with the understanding that increasing w  decreases the desire of 
the retail traders of having similar strategies.  

In the second, third and fourth study cases we study the behaviour of the big trader during the execution of a 
liquidation order, that is we consider the solution of the optimal control problem (15), (16), (7)-(9). In particular 
we study the dependence of the behaviour of the big trader from the behaviour of the retail traders determined 
solving problem (81), (80), (1)-(4).  
 

 

Figure 1. The function tµ µ= , [ ]10,t T∈ , when 1 1T = , 0θ = , 0.3ξ =  
(solid line) and 0.7ξ =  (dashed line).                                  
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Figure 2. The function tM M= , [ ]10,t T∈ , when 1 1T = , 0θ = , 0.3ξ =  
(solid line) and 0.7ξ =  (dashed line).                                   

 

 

Figure 3. The function 2 2
tψ ψ= , [ ]10,t T∈ , when 1 1T = , 0θ = , 0.3ξ =  

and 0.2w =  (solid line), 0.5w =  (dashed line) and 0.8w =  (dotted line).     
 

In the study cases presented we assume that the number of asset shares held by the big trader at time 0t =  is 
2Y =  and that the final time within which the sale of the Y  asset shares must be completed is 2 0.5T = . Re-

call that the time horizon of the mean field game problem that describes the retail traders is chosen as 1 1T = . 
We choose 1 10η = , 2 1η =  in (16). Recall that (16) does not depend from 2ζ . 

We solve the differential Equation (7) with the initial condition (8). Recall that in (7) tµ , tM , [ ]10,t T∈ , 
are determined solving the mean field game problem associated to the retail traders and depend on ξ . As con-
sequence the functions ˆt ty y=  and tβ , [ ]20,t T∈  determined solving the optimal control problem associated 
to the big trader depend from ξ . The solution ˆty , [ ]20,t T∈  of (7) that satisfies (8) is:  

( ) ( ) ( ) [ ]
2 2

21 1
0 2

2 2 2

ˆ ,     0,
2 2t t T t T

T t
y y Y t T

T
η η

µ µ µ µ
η η

− 
= = − + − − ∈ 

 
,                (82) 
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Figure 4. The function 2 2
tψ ψ= , [ ]10,t T∈ , when 1 1T = , 0θ = , 0.7ξ =  

and 0.2w =  (solid line), 0.5w =  (dashed line) and 0.8w =  (dotted line).      
 
that corresponds to the trading rate:  

[ ]2 01
2

2 2 2

d
,     0,

d 2
Tt

t t
y YM t T
t T T

µ µη
β

η
− 

= = − + − ∈ 
 

.                       (83) 

Note that when 2t T=  the function ˆt ty y= , [ ]20,t T∈ , defined in (82) satisfies (9), that is we have 
2 2

ˆ 0T Ty y= = . Moreover when 1 0η =  that is when the behaviour of the retail traders does not contribute to the 
asset share price equation, the optimal trading execution strategy of the big trader resulting from (82), (83) is:  

( )2
2

ˆt t
Yy y T t
T

= = − , [ ]20,t T∈ . This strategy corresponds to the sale of the Y  asset shares held at time 0t =   

with constant trading rate 2t Y Tβ = − , [ ]20,t T∈ , during the time interval [ ]20,T . That is the strategy 
determined using the model developed in the previous Sections when 1 0η =  coincides with the optimal trading 
execution strategy of a risk neutral trader found by Almgren in [2]. It is easy to see that the instantaneous market 
impact of the trading activity of the retail traders introduced in Equation (10) (i.e. the term 1 tMη , [ ]20,t T∈  of 
(10)) can be seen as a kind of directional view of the big trader about the asset share price dynamics. Note that  

since 0λ >  Equation (56) implies that 
d
d

tM
t

 has the same sign of tµ , [ ]10,t T∈ . This means that positive 

values of tµ  imply that 
d
d

tM
t

 is positive, that is the “majority” of the retail traders are “buyers” of the asset 

shares, vice versa negative values of tµ  imply that 
d
d

tM
t

 is negative, that is the “majority” of the retail traders  

are “sellers” of the asset shares. Recall that when 1 0η ≠  the trading activity of the retail traders influences the 
asset share price dynamics through the term 1 tMη  of the asset share price equation and, as a consequence, 
influences the optimal trading execution strategy of the big trader. 

In the second study case we choose 1 1T = , 0θ =  and 0.5w ξ= =  in the mean field game model that 
describes the retail traders and we study the corresponding optimal trading execution strategy of the big trader as  

a function of 0µ  and t , [ ]20,t T∈ . Recall that when 0.5w ξ= =  we have ( ) ( )0.5,0.5,
0.5,

1
2

U Uθ
θα α= , 1α ∈ ,  

therefore when 0.5w ξ= =  the solution of the mean field game problem (81), (80), (1)-(4) corresponds to the 
solution of problems (5), (6), (1)-(4) with 0.5λ =  Recall that we have chosen 1 10η = . Figure 5 shows the 
optimal trading execution strategy of the big trader resulting from the formulae presented in Section 4 for  
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Figure 5. Optimal trading execution strategy of the big trader ty y= , 

[ ]20,t T∈  when 2 0.5T = , 0θ = , 0.5w ξ= = , 0 8µ = −  (dotted line), 

0 0µ =  (dashed line) and 0 8µ =  (solid line).                                   
 
several values of 0µ . When 0θ =  and 0 0µ =  we have 0tµ = , [ ]10,t T∈ . In this case we obtain as optimal 
trading execution strategy of the big trader the optimal trading execution strategy of the risk neutral trader found 
by Almgren in [2] (i.e. selling with constant rate, this is the straight line segment shown in Figure 5). When 

0θ =  and 0 0µ >  we have 0tµ > , [ ]20,t T∈ , that is the “majority” of the retail traders have long positions on 

the asset shares and 
d

0
d

tM
t

≥  that is the “majority” of the retail traders are buyers of the asset shares in the time  

interval [ ]20,T  and the asset share price tends to increase in the time interval [ ]20,T . This determines the 
behaviour of the big trader. In fact in this case the big trader waits to sell his shares at the end of the time interval 
[ ]20,T  assigned to execute the liquidation order, even more the big trader buys asset shares at the beginning of 
the time interval [ ]20,T  assigned to execute the liquidation order (i.e. we have ty Y>  when t  is close to 
zero) to take advantage of the expected rise of the asset share price in the time interval [ ]20,T  induced by the  
behaviour of the retail traders. That is in this case the trading execution strategy ˆt ty y= , [ ]20,t T∈ , of the big  
trader is a concave function that connects the points ( )0,Y , ( )2 ,0T  of the ( ),t y  plane as shown in Figure 5, 
Figure 6. When 0θ =  and 0 0µ <  we have 0tµ < , [ ]20,t T∈ , that is the “majority” of the retail traders  

have short positions on the asset shares (and 
d

0
d

tM
t

<  that is the “majority” of the retail traders are sellers of  

the asset shares in the time interval [ ]20,T ) and the asset share price tends to decrease in the time interval 
[ ]20,T . This fact induces the big trader to anticipate the sale of his asset shares at the beginning of the time 
interval [ ]20,T  to limit losses due to the expected fall of the asset share price in the time interval [ ]20,T  
induced by the behaviour of the retail traders. That is in this case the trading execution strategy ˆt ty y=  

[ ]20,t T∈  is a convex function that connects the points ( )0,Y , ( )2 ,0T  of the ( ),t y  plane as shown in Fig- 
ure 5, Figure 7. Note that Figure 5, Figure 7 show that during the liquidation order ty , [ ]20,t T∈  can be 
negative. That is the big trader can use short selling to maximize the revenue resulting from the execution of the 
liquidation order. Moreover Figure 6, Figure 7 show the optimal trading execution strategy of the big trader 
when the absolute value of 0µ  increases. Figure 6, Figure 7 show that when the absolute value of 0µ  
increases the influence of the behaviour of the retail traders on the asset share price dynamics increases and as a 
consequence the influence of the behaviour of the retail traders on the optimal trading execution strategy of the 
big trader increases. That is the optimal trading execution strategy of the big trader becomes respectively more 
concave (Figure 6) or more convex (Figure 7) whe 0µ  increases and 0 0µ >  or 0µ  increases and 0 0µ < .  

In the third study case in the mean field game model that describes the retail traders we assume 0θ =   
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.  

Figure 6. Optimal trading execution strategy of the big trader ty y= , 

[ ]20,t T∈  when 2 0.5T = , 0θ = , 0.5w ξ= = , 0 5µ =  (dotted line), 

0 7µ =  (dashed line) and 0 10µ =  (solid line).                                  
 

 
Figure 7. Optimal trading execution strategy of the big trader ty y= , 

[ ]20,t T∈  when 2 0.5T = , 0θ = , 0.5w ξ= = , 0 10µ = −  (dotted line), 

0 7µ = −  (dashed line) and 0 5µ = −  (solid line).                                   
 

0.5w = , 0 5µ =  and we study the corresponding optimal trading execution strategy of the big trader when ξ  
varies in ( ]0,1 . The remaining parameters of the trading execution model have the same values than in the  

second study case. We recall that when 0θ =  and 0 0µ >  we have 0tµ > , 
d

0
d

tM
t

> , [ ]20,t T∈ , that is in  

the time interval [ ]20,T  the “majority” of retail traders are long on the asset shares and are buyers, the asset 
share price tends to increase, and the big trader expects rising prices of the asset shares. The value assigned to 

( ]0,1ξ ∈  distinguishes the retail traders in buy and hold investors (ξ  close to one) and short term investors 
(ξ  close to zero). When ( ]0,1ξ ∈  is close to zero (i.e. the retail traders are short term investors) the short 
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term character of the retail traders amplifies the bullish direction of the market in comparison to the bullish di-
rection of the market induced in the same circumstances by buy and hold retail traders (ξ  close to one). As a 
consequence in presence of short term retail traders the big trader enhances the choice of moving the sale of the 
asset shares at the end of the time interval [ ]20,T . On the other hand when ( ]0,1ξ ∈  is close to one (i.e. the 
retails traders are buy and hold investors) the buy and hold character of the retail traders reduces the rise of the 
asset share price induced by the retail traders in comparison to the rise induced by the short term retail traders in 
similar circumstances. As a consequence in presence of buy and hold retail traders the big trader mitigates the 
choice of moving the sale of the asset shares at the end of the time interval [ ]20,T . That is leaving unchanged 
the other parameters of the numerical experiment (i.e. 0θ = , 0 0µ > ) the trading execution strategy of the big 
trader should be less concave in presence of retail traders that are buy and hold investors than in presence of re-
tail traders that are short term investors. A similar analysis can be carried out to deduce the behaviour of the big 
trader suggested by the model when 0θ =  and 0 0µ < . Figure 8 shows the optimal trading execution strategy 
of the big trader when 0θ = , 0 5µ = , 0.5w =  and 0.4,  0.7ξ = . Figure 9 shows the optimal trading execu-
tion strategy of the big trader when 0θ = , 0 5µ = − , 0.5w =  and 0.4,  0.7ξ = . Figure 8, Figure 9 confirm 
quantitatively the previous qualitative analysis.  

In the fourth study case we assume 1θ =  and 0.5w ξ= =  in the mean field game model that describes the 
retail traders and we study the corresponding optimal trading execution strategy of the big trader as a function of 

0µ , a  and t , [ ]20,t T∈ . Figure 10 shows the function tµ , [ ]20,t T∈  obtained as solution of problem (81),  
(80), (1)-(4) when 0 5µ = , 1θ = , 0.5w ξ= =  and 50a = − . We observe that when 0 5µ =  and 50a = −  the  
function tµ , [ ]20,t T∈  changes sign in the time interval [ ]20,T  in fact the function tµ , [ ]20,t T∈  from being 
positive in a neighborhood of 0t =  becomes negative in a neighborhood of 2t T= . Recall that Equation (56)  

implies that when tµ  changes sign also 
d
d

tM
t

 changes sign. That is in the time interval [ ]20,T  the “majority”  

of the retail traders from being buyers of the asset shares when t  is close to zero become sellers of the asset 
shares when t  is close to 2T .  

Figure 11 shows the optimal trading execution strategy of the big trader corresponding to the behaviour of the 
retail traders shown in Figure 10. Figure 11 shows that the big trader as a consequence of the behaviour of the 
retail traders initially waits to sell his shares, this is coherent with the fact that at the beginning the retail traders 
are buyers. However later, when the retail traders become sellers and the asset share price tends to decrease, 
Figure 11 shows that the big trader changes strategy and tries to anticipate the sale at the beginning of the time  
 

 
Figure 8. Optimal trading execution strategy of the big trader ty y= , 

[ ]20,t T∈  when 2 0.5T = , 0θ = , 0 5µ = , 0.5w = , 0.4ξ =  (solid line) 

and 0.5w = , 0.7ξ =  (dashed line).                                        
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Figure 9. Optimal trading execution strategy of the big trader ty y= , 

[ ]20,t T∈  when 2 0.5T = , 0θ = , 0 5µ = − , 0.5w = , 0.4ξ =  (solid line) 

and 0.5w = , 0.7ξ =  (dashed line).                                            
 

 

Figure 10. The function tµ µ= , [ ]20,t T∈  when 2 0.5T = , 1 1T = , 1θ = , 

50a = − , 0 5µ = , 0.5w ξ= = .                                            
 
interval that remains to conclude the execution of the liquidation order. That is the optimal trading execution 
strategy of the big trader ˆt ty y= , [ ]20,t T∈ , shown in Figure 11, from being a concave function of t  when 
t  is close to zero becomes a convex function of t  when t  is close to 2T  and the saddle point of ˆt ty y= , 

[ ]20,t T∈ , is the value of t  that corresponds to the zero of the function tµ , [ ]20,t T∈ . Finally Figure 12 
shows the function tµ , [ ]20,t T∈ , obtained as solution of problems (81), (80), (1)-(4) when 0 5µ = − , 1θ = , 

0.5w ξ= =  and 50a = . We observe that when 0 5µ = −  and 50a =  the function tµ , [ ]20,t T∈ , changes 
sign in the time interval [ ]20,T , in fact the function tµ , [ ]20,t T∈  from being negative in a neighborhood of 

0t =  becomes positive in a neighborhood of 2t T= . That is in the time interval [ ]20,T  the “majority” of the 
retail traders from being sellers of the asset shares when t  is close to zero become buyers of the asset shares  
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Figure 11. Optimal trading execution strategy of the big trader ty y= , 

[ ]20,t T∈  when 2 0.5T = , 1θ = , 50a = − , 0 5µ = , 0.5w ξ= = .              
 

 

Figure 12. The function tµ µ= , [ ]20,t T∈  when 2 0.5T = , 1 1T = , 1θ = , 

50a = , 0 5µ = − , 0.5w ξ= = .                                          
 

when t  is close to 2T  Figure 13 shows the optimal trading execution strategy of the big trader corresponding 
to the behaviour of the retail traders shown in Figure 12. Figure 13 shows that the big trader as a consequence 
of the behaviour of the retail traders when t  is close to zero anticipates the sale of his shares coherently with 
the fact that the retail traders are sellers. Later when t  is close to 2T , Figure 13 shows that the retail traders 
become buyers and the asset share price tends to increase, as a consequence the big trader waits to sell his asset 
shares at the end of the time interval that remains to conclude the execution of the liquidation order. That is 
Figure 13 shows that the optimal trading execution strategy of the big trader ˆt ty y= , [ ]20,t T∈ , from being a 
convex function of t  when t  is close to zero becomes a concave function of t  when t  is close to 2T  and 
that the saddle point of ˆt ty y= , [ ]20,t T∈ , is located at the value of t  that corresponds to the zero of the 
function tµ , [ ]20,t T∈ .  
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Figure 13. Optimal trading execution strategy of the big trader ty y= , 

[ ]20,t T∈  when 2 0.5T = , 1θ = , 50a = , 0 5µ = − , 0.5w ξ= = .             

 
The interested reader is referred to the website: http://www.econ.univpm.it/recchioni/finance/w19 to find ma-

terial including animations, an interactive application and an app that helps the understanding of this paper. A 
general reference to the work of the authors and of their coauthors in mathematical finance is the website:  
http://www.econ.univpm.it/recchioni/finance.  
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