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Abstract 
From the lifecycle of schistosome, the phenomenon of time delay is widespread. In this paper, a 
two-dimensional system is studied that incorporates two time delays which are the incubation pe-
riod of human and snail, respectively. Our purpose is to demonstrate that the time delays are 
harmless for stability of equilibria of the system. Further, sufficient conditions of stability of equi-
libria are obtained. 
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1. Introduction 
Mathematical models ([1]-[7], etc.) have been used to study the transmission and control of schistosomiasis 
since the first model that has been given by MacDonald in [8]. MacDonald’s model consists of two differential 
equations in two state variables that correspond to average parasite burden in the definitive hosts and the preva-
lence of infection in snails. DAS et al. [5] added a layer of biological realism to these early models to study the 
delay effect on schistosomiasis transmission with control measures. The model is given by 
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 = − −
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  = − − − −   

                             (1) 

where x  is the current number of egg laying schistosomes in the human host population and y  is the current 
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number of infected snails in the environment. Here, σ  is the human population density per unit accessible wa-
ter area; α  is the multiplication rate due to the infected snail population; γ  and δ  are the intrinsic death 
rates of two populations x  and y  respectively; β  is the simple contact rate; C  is the constant decay rate 
due to chemotherapy; and H  is the constant decay rate by predation or harvesting. Further τ  is the incuba-
tion period for becoming y  to be infectious. For simplicity, it is assumed that N  is the constant total popula-
tion of snails. 

In [5], for the sake of mathematical simplicity, they assumed the development of schistosoma is instantaneous. 
In fact, the developmental time of schistosome is not short. Under normal circumstances, the transit time from 
parasite eggs to miracidia to infect snail is about 21 days, cercariae are produced about 44 - 159 days after the 
miracidium penetration in snail hosts. In this paper, we also assume that C  and H  are the proportions of 
chemotherapy and predation or harvesting, respectively. Based on the above description, a schistosomiasis mod-
el with two time delays is proposed: 

( ) ( )

( ) ( )

1

2

d ,
d
d 1 ,
d

x y t C x
t
y yx t H y
t N

ασ τ γ

β τ δ

 = − − +


  = − − − +   

                             (2) 

where 1τ  is the incubation period for becoming infected human host population and 2τ  is the transit time 
from parasite eggs to miracidia to infect snail. We assume that all parameters are positive. 

From biological view, we assume that system (2) holds for the time 0t >  with given nonnegative initial 
conditions: 

( ) ( ) ( ) ( ) [ ) ( ) ( )0,   0,   ,0 ,   0 0,   0 0,x yθ φ θ θ ψ θ θ τ φ ψ= ≥ = ≥ ∈ − > >                (3) 

where ( ) ( )( ) [ ]( )2
0, ,0 ,Cφ θ ψ θ τ +∈ −  , the Banach space of continuous functions mapping the interval [ ],0τ−   

into 2
0+ , where ( ){ }2

0 1 2, : 0, 1, 2ix x x i+ = ≥ = . 

In the following, we focus on dynamics of system (2) in a nonnegative cone 

( ){ }2, : 0, 0D x y R x y= ∈ ≥ ≥  

It is well known by the fundamental theory of functional differential equations [9] that system (2) has a 
unique solution ( ) ( )( ),x t y t  satisfying initial conditions (3). It is easy to show that all solutions of system (2) 
corresponding to initial conditions (3) are defined on [ )0,+∞  and remain positive for all 0t ≥ . 

The remainder of the paper is organized as follows. In the next section, the stability of the disease-free equili-
brium of system (2) is obtained. In Section 3, we investigate the stability of the endemic equilibrium. Some dy-
namical behaviors are given by numerical simulations in Section 4. This paper is ended with a brief discussion. 

2. Stability Analysis of the Disease-Free Equilibrium 
In this section, the stability of the disease-free equilibrium of system (2) is investigated. 

Using standard methods, it is easy to see that the disease-free equilibrium ( )0 0,0E =  always exists. 
Define the basic reproductive number by 

( )( )0 .R
C H
αβσ

γ δ
=

+ +
 

Then for system (2), it is easy to obtain the following result: 
(i) If 0 1R < , system (2) has a unique disease-free equilibrium 0E ; 
(ii) If 0 1R > , system (1.2) has two equilibria, the disease-free equilibrium 0E  and the unique endemic 

equilibrium ( ),E x y∗ ∗ ∗ , where 

( ) ( )( )
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= − + +  
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In the following, we study the global stability of the disease-free equilibrium 0E  of system (2). 
Theorem 2.1. If 0 1R < , the disease-free equilibrium 0E  of system (2) is locally asymptotically stable. 
Proof. First, according to [9], the Jacobian matrix at 0E  of system (2) can be written as 

( ) ( )
( )

1

2
0,0

e
 eC

J
H

λτ

λτ

γ ασ
β δ

−

−

 − +
=   − + 

                            (4) 

Then the characteristic equation of system (2) at 0E  
2 e 0,p q m λτλ λ −+ + − =                                 (5) 

where 0p H Cδ γ= + + + > , ( )( ) 0q C Hγ δ= + + > , 0m αβσ= > , 1 2τ τ τ= + . 
When 0τ = , (5) becomes into 

2 0  .p q mλ λ+ + − =                                  (6) 

If q m> , the roots of the equation (6) have negative real parts. Note that q m>  is equivalent to 0 1R < . 
Therefore, if 0 1R <  and 0τ = , 0E  is locally asymptotically stable. 

Assume that there exists a 0 0τ >  such that (5) has pure imaginary roots ( )0iλ ω ω= ± > . Then we have from 
(5) that 

( )2 cos sin 0.q p i m iω ω ωτ ωτ− + + − − =  

Separating real and image parts: 
2 cos ,

sin .
q m

p m
ω ωτ
ω ωτ

− + =

− =

 

Adding up the squares of both equations, we obtain that 

( )4 2 2 2 22 0.p q q mω ω+ − + − =                               (7) 

Note that 

( ) ( ) ( ) ( ) ( )( ) ( )( )22 2 2 2 4 4H C H C H C H Cp qδ γ δ γ δ γ δ γ+ + + + + + + + + ≥ + + =  = =  

and q m>  Thus, 2 2q m> , which implies that (7) has no positive roots, i.e., 0τ  does not exist. This yields 
that all roots of (5) have negative real parts if 0 1R < . 

Next, the global stability of the disease-free equilibrium of system (2) is analyzed. And the strategy of proof is 
to use Lyapunov functionals and the LaSalle invariance principle. 

Theorem 2.2. If 0 1R < , the disease-free equilibrium 0E  is globally asymptotically stable in D  for all 
0τ > . 

Proof. Let ( ) ( )( ),x t y t be any positive solution of system (2) with initial conditions (3). 
Define 

( )11 1 2V t c x c y= + , 

where 1 2,  c c Cβ γ= = + . 
Calculating the derivative of ( )11V t  along positive solutions of system (2), it follows that 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

11 1 1 2 2

1 1 2 2 2 1 2 2

1

          .

yV y c y t C x c x t H y
N

yc y t c H y c x t c C x c x t
N

ασ τ γ β τ δ

ασ τ δ β τ γ β τ

  = − − + + − − − +        

= − − + + − − + − −



           (8) 

Define 



H. H. Cao et al. 
 

 
2811 

( ) ( ) ( )
1

12 11 1 d .
t

t
V t V t c y s s

τ
ασ

−
= + ∫                                  (9) 

We derive from (8) and (9) that 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 1 1

1 2 2 2 1 2 2

12

.

V c y y t

yc c H y c x t c C x c x t

V t t t

N

ασ τ

ασ δ β τ γ β τ

+ − −  

= − + + − − + − −

=

 

 

               (10) 

Define 

( ) ( ) ( )
2

1 12 2 d
t

t
V t V t c x s s

τ
β

−
= + ∫ .                              (11) 

It follows from (10) and (11) that 

( ) ( ) ( ) ( ) ( ) ( ) ( )12 2 2 1 2 2 1 21 2
yV c x x t c c H y c c C x c x tV t t t
N

β τ ασ δ β γ β τ+ − − = − + + − + − −          =     (12) 

On substituting 1c β=  and ( )2c Cγ= +  into (12), we obtain that  

( ) ( )( ) ( ) ( )1 2 .
C

V t C H y x t y
N

β γ
αβσ γ δ τ

+
= − + + − −                     (13) 

If 0 1R < , that is ( )( ) 0C Hαβσ γ δ− + + < , it then follows from (13) that ( )1 0V t ≤ . By Theorem 5.3.1 in 
[9], solutions limit to M , the largest invariant subset of ( ){ }1 0V t = . Clearly, we see from (13) that ( )1 0V t =  
if and only if 0y = . Noting that M  is invariant, for each element in M , we have 0y = . It therefore fol-
lows from the second equation of system (2) that 

( ) ( )20 ,y t x tβ τ= = −  

which yields ( ) 0x t = . Hence, ( )1 0V t =  if and only if ( ) ( ), 0,0x y = . Accordingly, the global asymptotic 
stability of 0E  follows from LaSalle’s invariance principle. 

3. Stability Analysis of the Endemic Equilibrium 
It is obtained that the endemic equilibrium E∗  of system (2) is local stable in this section. Further, the global 
stability of E∗  is shown if 0τ = . 

Similar to the proof of Theorem 2.1, the following result is obtained. 
Theorem 3.1. If 0 1R > , the endemic equilibrium E∗  of system (2) is locally asymptotically stable. 
Proof. First, according to [9], the Jacobian matrix at E∗  can be written as 

( )
( )

( )( )
1

2

e
,

e

 C
J x y H C

C

λτ

λτ

γ ασ
δ γ αβσ

ασ γ

−

∗ ∗
−

 − +
 

= + + − + 

                        (14) 

Then the characteristic equation of system (2) at E∗ : 

( ) ( )( )2 e 0C H C
C

λταβσλ γ λ αβσ δ γ
γ

− 
+ + + + − + + = + 

,                  (15) 

where 1 2τ τ τ= + . 
When 0τ = , (15) becomes into 

( ) ( )( )2 0C H C
C

αβσλ γ λ αβσ δ γ
γ

 
+ + + + − + + = + 

,                    (16) 

If 0 1R > , then ( )( ) 0H Cαβσ δ γ− + + > . It is shown that all the roots of the Equation (16) have negative 
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real parts, suggesting E∗  is locally asymptotically stable. 
Assume that there exists a 0 0τ ′ >  such that (15) has pure imaginary roots ( )0 .iλ ω ω= ± >  Then we have 

from (15) that 

( ) ( )( )( )2 cos sin 0.C i H C i
C

αβσω γ ω αβσ δ γ ωτ ωτ
γ

 
− + + + + − + + − = + 

 

Separating real and image parts: 

( )( )

( ) ( )( )

2 cos ,

sin .

H C

C H C
C

ω αβσ δ γ ωτ

αβσγ ω δ γ ωτ
γ

− + = + +

 

+ + = − + + + 

 

Adding up the squares of both equations, we obtain that 

( )
( )

( ) ( )
2 2 2

2 2 24 2 2 2 2
2 0.C H C

C
α β σω γ ω α β σ δ γ
γ

+ + + + − + + =
+

 
  

               (17) 

We know that ( ) ( )2 22 2 2 0H Cα β σ δ γ− + + >  if 0 1R > , so (17) has no positive roots, i.e., 0τ ′  does not 
exist. This yields that all roots of (17) have negative real parts if 0 1R > . 

Now, we are interested in the global stability of E∗ . Then its global stability is investigated by means of 
Bendixson theorem. 

Theorem 3.2. If 0 1R > , the endemic equilibrium E∗  is globally asymptotically stable in D  when 0τ = . 
Proof. It is easy to check that equilibrium 0E  of system (2) is unstable if 0 1R > . By the above discussion, 

we know that equilibrium E∗  is locally stable if 0 1R >  and all solutions of system (2) are ultimately 
bounded in D . To prove the second assertion, we only prove that system (2) has not periodic orbits in the inte-
rior of D  if 0 1R > . 

When 0τ = , 

( )

( )

d ,
d
d 1 .
d

x y C x P
t
y yx H y Q
t N

ασ γ

β δ

 = − +


  = − − +   





 

It follows that 

( ) ( ) 0,P Q xC H
x y N

βγ δ∂ ∂
+ = − + − + − <

∂ ∂
 

which leads to the nonexistence of periodic orbits by Bendixson theorem, therefore, E∗  is globally asymptoti-
cally stable. 

4. Numerical Simulations 
It is reported that cercariae are produced about 44 - 159 days after the miracidium penetration in snails. And the 
time from parasite eggs to miracidia to infect snail is about 21 days. Therefore, we choose 1 45τ =  and 

2 21τ =  in this paper. Further, in this section, we perform some numerical simulations and sensitivity analysis 
using the following value of parameters: 0.55α = , 0.48β = , 0.059σ = , 0.15C = , 0.10H = , 0.012δ = , 

1 0.0055γ = , 610N = . 
Thus, we can obtain 0 0.894 1R = < , the disease-free equilibrium ( )0,0  is asymptotically stable (Figure 

1(a)). When 0.08H = , the value of other parameters is fixed, we can obtain 0 1.089 1R = >  and the unique 
endemic equilibrium is asymptotically stable (Figure 1(b)). In addition, fixing H in simulations, we find that 
the number of parasite eggs and infectious snails increases as C  decreases, respectively (Figure 2). 

From the above theorems, we know that the two time delays are harmless. According to the expression of 0R ,  
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Figure 1. The figure (a) shows that a numerical solution of system (2) tends to the disease-free equilibrium as time tends to 
infinity, where 0 0.894.R =  The figure (b) illustrates that a numerical solution of system (2) tends to the endemic equili-
brium as time tends to infinity, where 0 1.089R = . 
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Figure 2. Simulation results: 0.040C = , 0.042, 0.044, 0.046, 0.048, 0.050 from top to base, respectively. We can find that 
the smaller of values of C , the higher of values of parasite eggs and infected snails. 
 
the impact of C and H on schistosomiasis transmission is discussed. Fixing 0.10H = , we can see that when 

[ ]0,0.13C∈ , the endemic equilibrium exists and is stable, when 0.13C > , the endemic equilibrium doesn’t 
exist. But the disease-free equilibrium is stable (Figure 3(a)). Analogously, fixing 0.15C = , from Figure 3(b), 
it is obvious that the disease-free equilibrium is stable when 0.08H > . 

From the formula of the basic reproductive number, we know that the basic reproductive number is a decrease 
function of the rates of chemotherapy and predation or harvesting. This means chemotherapy and predation or 
harvesting can influence the system. 

However, to find out the most influential control measure, we need sensitivity analysis. Now we carry out the 
sensitivity analysis by calculating the derivation of 0R  on C  and H . The derivation is respectively 

( ) ( )

( )( )

0
2

0
2

,

.

R
C C H
R
H C H

αβσ
γ δ

αβσ
γ δ

∂
= −

∂ + +

∂
= −

∂ + +

 

From Figure 4(a), we can see that when 0.2C < , 0R  decreases rapidly with the increase of C , the decline 
of 0R  is not obvious. Similarly, 0R  decreases rapidly with the increase of H  when 0.25H <  (Figure 4(b)).  
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Figure 3. Forward bifurcation diagrams for the parasite eggs population. 
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Figure 4. Sensitivity analysis of 0R  on C  and H , respectively. 

 
In brief, the basic reproductive number 0R  is more sensitive when C  and H  are small. 

By sensitivity analysis of the basic reproductive number on the rates of chemotherapy and predation or har-
vesting, we know that the basic reproductive number is a decrease function of the rates of chemotherapy and 
predation or harvesting. In numerical simulations, we also find that the smaller of values of the rate of chemo-
therapy, the more sensitive of the basic reproductive number 0R . 

Although the two time delays are harmless, all of these results imply that the rates of chemotherapy and pre-
dation or harvesting can influence the dynamic behaviors. Furthermore, to reduce the prevalence of schistoso-
miasis infection, to some extent, increasing the rate of predation or harvesting by some measures could achieve 
better results than increasing the rate of chemotherapy. 

5. Conclusions 
In this paper, we propose a system of delayed differential equations for schistosomiasis japonicum transmission 
and obtain sufficient conditions for the existence and local stability of equilibria. Further, global asymptotic sta-
bility of the disease-free equilibrium is also studied by constructing suitable Lyapunov functions. When 0 1R < , 
the disease-free equilibrium is globally asymptotically stable (Figure 5(a)); when 0 1R > , the endemic-free 
equilibrium is locally asymptotically stable and globally asymptotically stable if 1 2 0τ τ τ= + = . Thus, 0R  plays 
an important part in controlling schistosomiasis. 

Finally, we guess that the endemic equilibrium should be global asymptotic stable when 0τ > . And this 
guess is verified by numerical simulations (Figure 5(b)). This issue will be addressed in future studies. 
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Figure 5. Phase diagrams: (a) 0 0.894R = ; (b) 0 1.089R = . 
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