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Abstract 
Demands for low-energy microcontrollers have been increasing in recent years. Since most mi- 
crocontrollers achieve user programmability by integrating nonvolatile (NV) memories such as 
flash memories for storing their programs, the large power consumption required in accessing an 
NV memory has become a major problem. This problem becomes critical when the power supply 
voltage of NV microcontrollers is decreased. We can solve this problem by introducing an instruc- 
tion cache, thus reducing the access frequency of the NV memory. Unlike general-purpose micro- 
processors, microcontrollers used for real-time applications in embedded systems must accu- 
rately calculate program execution time prior to its execution. Therefore, we introduce a “trans- 
parent” instruction cache, which does not change the existing NV microcontroller’s cycle-level exe- 
cution time, for reducing power and energy consumption, but not for improving the processing 
speed. We have conducted detailed microar chitecture design based on the architecture of a major 
industrial microcontroller, and we evaluated power and energy consumption for several benchmark 
programs. Our evaluation shows that the proposed instruction cache can successfully reduce ener- 
gy consumption in a fairly wide range of practical NV microcontroller configurations. 
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1. Introduction 
In recent years, sensor networks have been widely studied as a fundamental technology to help realize the con- 
cept of the “SmartSociety” [1]. In order to implement sensor networks in various fields of application, sensor 
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nodes that can operate for a long time with a small energy source are required. Therefore, it is necessary to re- 
duce power consumption of microcontrollers that operate sensor nodes. 

Meanwhile, NV microcontrollers (microcontrollers integrated with on-chipnonvolatile memories) are widely 
used due to their convenience in helping develop embedded system software. However, the power consumption 
of the nonvolatile memory dominates the total power consumption of the microcontroller [2]. Furthermore, it is 
difficult to reduce the power consumption of nonvolatile memories in microcontrollers. The purpose of our work 
is to reduce power and energy consumption by introducing an instruction cache to the microcontroller, which 
will reduce the frequency of access of the nonvolatile memory. 

As shown in Table 1, traditional cache architecture research has attempted to improve microprocessor per- 
formance by introducing a high-speed cache memory, known as static random-access memory (SRAM), be- 
tween the main memory and the datapath by reducing memory access time [3]. On the other hand, in the case of 
NV microcontrollers used for real-time applications in embedded systems, the program execution time can be 
calculated in advance. Furthermore, the change of execution due to cache misses should be avoided, since such a 
change can cause problems in the system such as real-time applications. Thus, it is necessary to introduce an in- 
struction cache that does not cause cache miss penalties and leaves the speed of memory access during cache 
hits unchanged. 

Therefore, in this paper, we attempt to reduce power and energy consumption instead of improving perfor- 
mance. To accomplish this, we introduce a “transparent” instruction cache that does not change the cycle-level 
timing of existing NV microcontrollers. In particular, we evaluate power and energy reduction by introducing 
the transparent instruction cache to a base microcontroller that is integrated with a flash memory, which is the 
most popular nonvolatile memory. 

The rest of this paper is organized as follows: Section 2 describes the features of our research. Section 3 de- 
scribes the architecture of the proposed instruction cache employed with the NV microcontroller. Section 4 dis- 
cusses the evaluation results of the instruction cache’s effects of reducing power and energy consumption. Sec- 
tion 5 concludes this paper. 

2. Features of Our Research 
The features of our research are as follows: 

1) Examination of instruction cache suitable for microcontroller deployments: As described in Section 1, 
in the case of a microcontroller, it is more important to prolong the battery run time than to reduce the pro- 
cessing time. Thus, the instruction cache that we propose in this paper is intended to reduce power consumption 
rather than to improve processing speed. 

2) Evaluation based on a realistic microcontroller architecture: We evaluated the power and energy con- 
sumption of our system, which was built on a base microcontroller, Renesas Electronics Corporation’s 78K0R. 
Since not all of the 78K0R’s specifications are open, we implemented the base microcontroller using only pub-
licly available information [4]-[6]. 

3) Power evaluation with high precision: We evaluated the power and energy consumption using the chip 
design data generated from the RTL description. This allowed us to obtain the results with high precision. 
 
Table 1. Concept of this work. 

Traditional Cache Architecture Research This work 

  

High Performance Low power and low energy transparent (i.e., doesn’t change cycle level timing) 
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3. Architecture 
3.1. Base Microcontroller 
Our microcontroller is based on the 78K0R, which is used in various industrial fields [7]. The block diagram is 
shown as a part of Figure 1. The 78K0R has an on-chip flash memory as its NV instruction memory, and a 
SRAM as its data memory [4]. 

This architecture has a three-stage pipeline structure (IF stage, ID stage, MEM stage) [5]. In the IF stage, the 
microcontroller provides an address from the program counter (PC) to the instruction memory (flash memory), 
and fetches an instruction sequence from the instruction memory. This instruction sequence is stored in an in- 
struction queue (I-Queue). In the ID stage, the microcontroller decodes the instruction that has been fetched in 
the IF stage, and extracts data memory (SRAM) and register file (RF) addresses to be accessed. In the MEM 
stage, the microcontroller retrieves the data from the data memory and executes the instruction. 

In addition, the base microcontroller uses complex instruction set computing (CISC) architecture [5]. The 
number of instructions of the base microcontroller is 915, and the instruction length is 1 byte to 5 bytes. The 
base microcontroller has a 4-byte (1 word) instruction queue that contains an instruction sequence fetched from 
the instruction memory. Therefore, if a valid instruction exists in the I-Queue, there is no need to access the 
flash memory. 

3.2. 1-Word-Per-Line Instruction Cache 
Most (on-chip) NV microcontrollers, including the 78K0R, access the NV memory in one cycle [5]. Therefore, 
ourbase microcontroller fetches one word from the instruction sequence in the flash memory in one cycle [5]. 
Thus, as the first step to introduce the instruction cache to the base microcontroller, we designed a 1-word-per- 
line instruction cache architecture, as shown in Figure 1. We assumed the operation timing of the instruction 
cache to be the same as the timing of the base microcontroller’s access to the flash memory: The instruction se-
quence is read from flash memory in the subsequent cycle of the access to the flash memory. 

Operation of the instruction cache is as follows: 
1) In the case of a cache miss, the microcontroller accesses the flash memory and fetches 1 word from the in- 

struction sequence. 
2) In the case of a cache hit, the microcontroller accesses the instruction cache (I-Cache) and fetches 1 word 

from the flash memory. The word is written to the instruction cache. Since the bit widths of the instruction cache 
and the flash memory are the same, there is no penalty for writing to the instruction cache. 

Since the proposed instruction cache does not allow for a cache miss penalty, there is a problem in that a read 
access and a write access to the instruction cache can occur coincidentally. For example, as shown in Figure 2, 
 

 
Figure 1. Concept of proposed 1-word-per-line instruction cache ar-
chitecture. 
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when a cache miss occurs at PC1, the microcontroller reads the flash memory. Then, in the next cycle, the in- 
struction sequence is read from the flash memory. Thus, the instruction sequence for the cache miss (F-DATA1) 
must be written to the instruction cache in this cycle (the next cycle of the cache miss). In the cycle immediately 
after the cache miss, when a cache hit occurs at PC2, an instruction is fetched from the instruction cache. In this 
case, a read access and a write access collide in the instruction cache. 

There are two methods for solving this problem: 
1) Clock cycle dividing method: On collision of read access and write access in the instruction cache, this 

method bisects the clock cycle and allows write access in the first half and read access in the second half. 
2) Intermediate buffer insertion method: This method delays the write access to the cache by inserting an 

intermediate buffer to which the instruction sequence in the cache miss is written between the instruction cache 
and the flash memory. Figure 3 shows its architecture. In this method, the timing of writing the instruction se- 
quence to the instruction cache is a cycle that does not access the instruction cache. If a valid instruction is still 
in the I-Queue of the datapath as described in the base microcontroller architecture, and if a cache miss occurred, 
the microcontroller does not have access to the instruction cache. 

In particular, when a cache miss occurs, the instruction sequence that has been present in the intermediate 
buffer is written to the instruction cache, and the instruction sequence that has been read from the flash memory 
is newly written to the intermediate buffer. 

In the case of the clock cycle dividing method, controlling the divided clock cycle is complicated. In addition, 
because it is necessary to generate a write/read access signal in one cycle, the operating frequency of the micro- 
controller must be lowered unless another clock is provided. Therefore, in this paper, we adopt the intermediate 
buffer insertion method, which simplifies the control scheme. 
 

 
Figure 2. Instruction memory access timing in case of cache hit 
immediately after cache miss. 

 

 

Buffer Hit 

 
Figure 3. Intermediate buffer insertion method for 1-word-per- 
line instruction cache architecture. 
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3.3. 4-Word-Per-Line Instruction Cache 
For the second step to integrate the instruction cache to the base microcontroller, we designed a 4-word-per-line 
instruction cache architecture that can take advantage of spatial locality. 

The flash memory (NV memory) of the base microcontroller (the existing NV microcontroller) reads one 
word from the instruction sequence in one cycle. Therefore, in order to implement the 4-word-per-line instruc- 
tion architecture, a buffer for storing four words is required. We implemented a 4-word-per-line instruction 
cache by extending the number of words in the intermediate buffer, as shown in Figure 4. The instruction se- 
quence that is read from the flash memory in one cycle is stored in the intermediate buffer at one word per cycle. 
When all four entries of the intermediate buffer are filled, the contents are sent to the 4-word-per-line instruction 
cache memory. 

For example, when a miss occurs in the first cycle, the instruction sequence that is read from the flash memory is 
stored to one of the entries of the intermediate buffer by referring to the lower 2 bits of the instruction address 
(held in the PC). In the next cycle, if the flash memory is not accessed (in other words, if there are cache hits, 
buffer hits, or I-Queue hits), the next instruction sequence is read from the flash memory by incrementing the 
PC, and is stored to the next entry of the intermediate buffer. Four words of the instruction sequence will be 
written to the instruction cache memory. 

However, when a miss occurs before the four words are collected in the intermediate buffer, it is necessary to 
store the instruction sequence that has been read from the flash memory to the intermediate buffer. In this case, 
the existing instruction sequences in the intermediate buffer are written to the instruction cache, and the instruc- 
tion sequence that has been read from the flash memory on a miss is stored to the intermediate buffer. For ex- 
ample, as shown in Figure 5, if a miss occurs when only three words of an instruction sequence are stored in the 
intermediate buffer, the three words are written to the instruction cache, invalidating the 0th word. In this paper, 
we extend the 4-word-per-line tag memory’s valid bits to 4 bits, and make them indicate the valid word of each 
line. 

However, when writing the line that has invalid words to the instruction cache, such as the case shown in 
Figure 5, it is expected that there will be a case of a low hit rate, due to the deletion of the valid word that ex- 
isted in one line of the instruction cache. In Section 4, we will evaluate our system in this regard. 

3.4. Associativity 
As the third step to integrate the instruction cache with the base microcontroller, we increased the associativity 
from 1 to 2 and 4. It is expected that the power consumption of the control unit of the tag memory will increase 

 

 
Figure 4. Proposed 4-word-per-line instruction cache archi-
tecture. 
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because the control unit of the tag memory becomes complicated by increasing the associativity. Yet there is a 
possibility that the hit rate will rise. We will evaluate our system in this regard as well. In addition, we adopt a 
pseudo least-recently-used (LRU) replacement algorithm. 

4. Evaluation 
4.1. Method of Evaluation 
Figure 6 shows our evaluation method. In the first step, we made a RTL description of the base microcontroller 
based on the public specifications of the 78K0R, and attached the instruction cache architecture to the RTL de- 
scription. In the second step, we generated the chip design data of the base microcontroller with and without the 
instruction cache. The chip design data was generated through a logic synthesis and a placement/routing, using 
the RTL description. The tools used for the logic synthesis and the placement/routing are shown in Table 2. In 
the third step, we evaluated the power and energy consumption of each instruction cache system by examining 
the results of a back-annotated simulation, using the chip design data generated in the second step. 

We used the evaluation programs shown in Table 3. The method of estimating power consumption is as fol- 
lows: 

1) CPU logic: We estimated the power consumption from the results of the back-annotated simulation using 
chip design data with the Synopsys Power Compiler. 

2) Data memory: We evaluated the power consumption of the base microcontroller’s data memory (SRAM) 
using the SRAM’s power consumption parameters, which are publicly available [8]. 

3) Instruction cache memory: Similarly, we evaluated the power consumption from publicly available infor- 
mation about the SRAM’s power consumption parameters. Further, we changed the size of the cache memory 
from 128 bytes to 4 Kbytes and evaluated it. 

4) Tag memory: Tag memory was also evaluated using the SRAM information. 
 

 
Figure 5. Writing operation of proposed 4-word-per-line in-
struction cache. 

 

 
Figure 6. Method of evaluation for this work. 

 
Table 2. Tools and process used in evaluation. 

Phase Tools and Process 

Logic Synthesis Synopsys Design Compiler (ver. 2013.03-SP3) 

Placement and Routing Cadence Encounter (ver. 10.13) 

Estimated Power Consumption Synopsys Power Compiler (ver. 2013.03-SP3) 

Process TSMC 0.18 μm 
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Table 3. Evaluation programs and hit rate. 

Evaluation Program Size (Byte) 1 Word/Line (%) 4 Word/Line (%) 

Bubble Sort 614 98.69 98.76 

Celsius to Fahrenheit 585 96.76 96.11 

Checksum 535 96.92 98.46 

Copy Verify 602 97.90 98.18 

Factorial 606 98.63 95.67 

EEMBC Coremark 11701 99.89 93.03 

 
In addition, we used a 1.8 V power supply voltage and a 20 MHz operating frequency for evaluating power 

and energy consumption. Operation frequency was determined from the data arrival time of the critical path of 
its architecture, after logic synthesis. Furthermore, we evaluated energy consumption using the power consump- 
tion and delay time of the instruction cache, before and after its introduction. 

4.2. Evaluation of Flash Memory (NV Memory) 
In general, it is known that the power consumption of the flash memory access occupies a large part of the entire 
power consumption of a flash (NV) microcontroller. Moreover, the power consumption of flash memory differs 
according to the memory’s capacity, the device technology, and circuit configurations. In addition, power con- 
sumption specifications of the NV memory are not publicly available. 

In this paper, we evaluated the power consumption of the flash memory by parameterizing the ratio that the 
power consumption of flash memory occupies (i.e., 30%, 50%, and 70%). We selected these parameters to indi- 
cate the energy reduction in a wide range of practical NV microcontroller configurations. Thus, by realizing re- 
duced power and energy consumption of the proposed instruction cache, we believe we can provide useful in- 
formation to microcontroller designers. 

4.3. Power Consumption 
First, the hit rates for the evaluation programs are shown in Table 3. The cache size is 2 Kbytes. Because the 
programs are small in size, they (from the bubble sort program to the factorial program) showed high hit rates. 
Hereafter, we will evaluate power consumption in greater detail using the EEMBC Coremark programin order to 
discuss power consumption more realistically. 

In the EEMBC Coremark program, the hit rate of each cache size is shown in Figure 7. For a large instruction 
cache (1 Kbytes or more), the 1-word-per-line instruction cache has a higher hit rate than the 4-word-per-line in- 
struction cache. This is because there is also a case where valid data that was in the instruction cache in the 
4-word-per-line instruction cache has been discarded as described in the 4-word-per-line instruction cache ar- 
chitecture. In the case of an instruction cache of less than 1 Kbyte, the 4-word-per-line instruction cache has a 
higher hit rate. This is because the 4-word-per-line instruction cache can take advantage of spatial locality, even 
if the valid data has been discarded. Further, if the associativity was high, the hit rate was high for both methods. 
In particular, when the cache size was small, this effect became significant. 

Next, we evaluated actual power consumption. Estimated power consumption results for an instruction cache 
of 512 bytes are shown in Figure 8. The results show that the proposed instruction cache reduces the power 
consumption of the flash memory by 66% with a 1-way, 1-word-per-line instruction cache, and by 90% with a 
1-way, 4-word-per-line instruction cache. The larger effect on the 4-word-per-line instruction cache is a result of 
its higher hit rate. 

In addition, for the 4-way instruction cache, the reduction of power consumption increased by 4% for the 
1-word-per-line instruction cache, and by 2% for the 4-word-per-line instruction cache, compared to a 1-way in- 
struction cache. However, the power consumption of the instruction cache memory and the tag memory shown 
in Table 4 is added after introducing the instruction cache. 

For the instruction cache memory, since the bit width of the 4-word-per-line instruction cache is larger than 
that of the 1-word-per-line instruction cache, the power consumption for accessing the 4-word-per-line instruction 
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Figure 7. Cache hit rate by cache size. (Evaluation program: EEMBC 
Coremark) 

 

 
Figure 8. Power consumption by ratio of flash memory’s power 
consumption to overall power consumption of microcontroller. 
(Cache size: 512 bytes) 

 
Table 4. Power consumption of instruction cache and tag memory. (Cache size: 512 bytes)    

Evaluation Program Cache (mW) 1 Way Tag (mW) 4 Way Tag (mW) 

1 Word/Line Instruction Cache 0.775 0.209 0.449 

4 Words/Line Instruction Cache 0.775 0.461 0.749 

 
cache memory does not increase significantly. This occurs because the architecture often has cache hits at the 
intermediate buffer, and the access rate to the cache memory is lower than that of the 1-word-per-line cache. 

For the tag memory, power consumption increases as the width of the instruction cache line and the associa- 
tivity increase, since the control circuit becomes complicated when the bit width of the tag memory increases. 

From the above results, we note that the absolute amount of reduced power consumption by the proposed in- 
struction cache becomes larger as the ratio of the flash memory’s power consumption increases. In addition, 
when their capacities are 512 bytes, the 4-word-per-line instruction cache has a larger effect on reducing power 
consumption than the 1-word-per-line instruction cache. As associativity increases, power consumption de- 
creases for the 4-way instruction cache. 

Next, we evaluated power consumption by changing the size of the instruction cache. The results are shown in 
Figure 9. The red line in this figure represents power consumption without the instruction cache. There is a case 
where total power consumption with the instruction cache increases when the size of the 1-word-per-line in- 
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struction cache is 128 bytes (1-way associative). This is because the reduced power consumption of the flash 
memory is small (because the hit rate for this cache size is low), and the power consumption of the instruction 
cache memory and tag memory has been added. 

In addition, reflecting the behavior of the hit rate, the 4-word-per-line instruction cache is more effective at 
reducing power consumption for a small instruction cache (512 bytes or less). Similarly, in the case of a large (1 
Kbyte or more) instruction cache, the 1-word-per-line instruction cache is more effective in reducing power 
consumption. In addition, as associativity increases, the reduction of power consumption becomes larger as the 
hit rate improves in the case of a small (128-byte) instruction cache. In other cases, the power consumption does 
not decrease as much because the power consumption of the tag memory increases. 

Furthermore, we investigated the crossover point, which is the point where power consumption before and 
after the introduction of the instruction cache are the same. If the ratio of the power consumption of the flash 
memory exceeds the crossover point, power consumption can be expected to be reduced by introducing the in- 
struction cache. The evaluation results of the crossover point are shown in Figure 10. 

In the case of a 512 byte or larger instruction cache, the crossover point was approximately 20% to 30%. Ac- 
cordingly, if the power consumption of the flash memory was approximately 20% or more, a reduction in power 
consumption can be expected by introducing a 512 byte or larger instruction cache. In the case of a 256 byte or 
smaller instruction cache, a reduction in power consumption cannot be expected in the 1-word-per-line instruc-
tion cache. However, in this case, the reduction in power consumption improved slightly by introducing a 4-way 
associative instruction cache. However, for other sizes of instruction cache, the crossover point increased be- 
cause power consumption did not decrease as much. 

 
 

Non-Cache 

 
Figure 9. Power consumption by cache size. (Ratio of flash memory’s power con-
sumption: 50%) 

 

 
Figure 10. Change of crossover point by cache size for nor- 
mal voltage operation. 
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4.4. Reducing the Power Supply Voltage 
In recent years, research in reducing the power consumption of logic circuits by lowering the power supply vol- 
tage has been reported [9]. However, lowering the power supply voltage of flash memories or other NV memo- 
ries is difficult, owing to the circuit characteristics of NV memories [10]. Because the proposed instruction 
cache can work at a lower power supply voltage in accordance with the logic circuits, and because it can de- 
crease the frequency of yet high-power flash memory access, the power reduction should be more enhanced. 

Thus, we examined the effect of reducing power consumption by introducing a proposed instruction cache 
with a decreased power supply voltage (to 0.9 V) for all components except for the flash memory. In addition, 
we used a 4 MHz operating frequency, which was estimated from a circuit simulation of a single gate. 

Calculating with the following Formula (1), the ratio of the flash memory’s power consumption at normal vol- 
tage is shown in Table 5. By decreasing the power supply voltage, the power consumption of the flash memory 
becomes dominant, compared to the power consumption during normal voltage operation. 

2
L dd clkP C V f∝                                       (1) 

The crossover points during low-voltage operation are shown in Figure 11. With a lower voltage, the cross- 
over point is reduced by approximately 20% from the crossover point during normal voltage operation. This is 
because the absolute amount of power consumption by the proposed instruction cache decreases more as the 
power consumption of the flash memory becomes dominant. Therefore, during low-voltage operation, a reduc- 
tion in power consumption can be expected for an even smaller ratio of the flash memory’s power consumption. 
When the crossover point in the instruction cache of 512 bytes or more becomes approximately 10%, a reduc- 
tion in power consumption can be expected by introducing an instruction cache of 512 bytes or more, even if the 
power consumption of the flash memory occupies approximately 10% of the entire power consumption at nor- 
mal voltage. 

4.5. Area and Critical Path 
Using the proposed instruction cache, various increased areas of the microcontroller chip are shown in Table 6. 
These values indicate an area of the proposed instruction cache control logic and cache memory (SRAM). We 
estimated the area using the following method: 
• Proposed instruction cache control logic: We calculated this area based on the chip design data of the post 

placement and routing. 
• Cache memory (SRAM): We calculated this area using memory design data that was obtained by using 

MEMAKER by Faraday Technology. 
The critical path of the NV microcontroller is generally a read-path of NV memory. This is because NV memory 

is slower than that of the other logic types [11]. In addition, operation frequency is determined by the critical path 
 

 
Figure 11. Change of crossover point by cache size for low-voltage 
operation. 
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(read-path of NV memory). By introducing the proposed instruction cache, the delay time of the logic path in- 
creases. This increase occurs because of the cache hit determination of the proposed instruction cache. In most 
cases, the increased delay time of the cache hit determination will not exceed the existing critical path of the NV 
microcontroller (read-path of NV memory). In most cases, the delay time of the NV memory read-path is higher 
than that of the logic path [11]. However, if the increased delay time of the logic path by cache hit determination 
exceeds the existing critical path, the delay time of the critical path will increase up to 2.91 ns for a 1-word-per- 
line instruction cache, and 3.62 ns for a 4-word-per-line instruction cache. These delay times are calculated us- 
ing the chip design data of the post placement and routing. 

4.6. Low-Energy Effect 
In this section, we will show the low-power-consumption effects and the low-energy-consumption effects by 
examining the reduction rate of power consumption for the ratio of the power consumption of the flash memory, 
which is 30% to 70%. 

First, we determine the low-power-consumption effects for 512 byte and 2 Kbyte instruction caches, as shown 
in Table 7. In the case of the 512 byte instruction cache, the effect of the 4-word-per-line instruction cache is 
larger than that of the 1-word-per-line instruction cache, and the obtained low-power-consumption effect is ap- 
proximately 16.7% to 56.5%. For the 2 Kbyte instruction cache, the effect of the 1-word-per-line instruction 
cache is larger, and the obtained low-power-consumption effect is approximately 37.5% to 75.6%. In addition, a 
low-power effect was confirmed for low-voltage operation. 

In the worst case, the delay time due to hit determination was approximately 2.91 ns for the 1-word-per-line 
instruction cache, and approximately 3.62 ns for the 4-word-per-line instruction cache. We determined the low- 
energy-consumption effects on the basis of these results, as shown in Table 8. Reflecting the delay time of the 
hit determination, the low-energy-consumption effect decreased by approximately 5% for the 1-word-per-line 
instruction cache, and approximately 6% for the 4-word-per-line instruction cache. 
 

Table 5. Change of ratio of power consumption of flash memory. 

Normal Voltage Operation Low-Voltage Operation 

30% 63% 

50% 80% 

70% 90% 
 
Table 6. Area of proposed instruction cache. 

Cache Size (Byte) 1-Word-per-Line Instruction Cache 4-Word-per-Line Instruction Cache 

256 0.112, mm2 0.241, mm2 

512 0.133, mm2 0.265, mm2 

1024 0.167, mm2 0.301, mm2 

2048 0.220, mm2 0.369, mm2 

 
Table 7. Low-power-consumption effect. 

 Cache Size: 512 Bytes (4 Words/Line) Cache Size: 2 Kbytes (1 Word/Line) 

Normal Voltage Operation Approximately 16.7% - 56.5% Approximately 37.5% - 75.6% 

Low Voltage Operation Approximately 23.1% - 64.3% Approximately 47.4% - 84.1% 

 
Table 8. Low-energy-consumption effect. 

 Cache size: 512 Bytes (4 Words/Line) Cache size: 2 Kbytes (1 Word/Line) 

Normal Voltage Operation Approximately 10.1% - 52.4% Approximately 33.3% - 74.4% 

Low Voltage Operation Approximately 16.7% - 60.0% Approximately 44.4% - 83.1% 
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5. Conclusions 
In this paper, we proposed a transparent instruction cache architecture for reducing the power and energy con- 
sumption of a practical NV microcontroller architecture. Unlike traditional cache architecture, we intended to 
reduce power and energy consumption rather than improve processing speed. This is because, in the case of a 
NV microcontroller used for real-time applications in embedded systems, it is important to prolong the battery 
run time and not change the existing NV microcontroller’s cycle-level execution time. 

In addition, we presented the effects of reducing power and energy consumption by introducing proposed in- 
struction caches. The proposed instruction cache reduces energy consumption by 10% to 52% for a ratio of the 
power consumption of the flash memory of 30% to 70%, if the size of the cache is one-twentieth of the program 
size. Meanwhile, for NV memories that include flash memories, it is generally difficult to lower the power 
supply voltage due to the circuit characteristics. Therefore, the proposed instruction cache is more effective in 
reducing energy consumption by lowering the power supply voltage, since the proposed instruction cache can 
work at a lower power supply voltage and can decrease the frequency of NV memory accesses. In this case, the 
proposed instruction cache reduces energy consumption by 16%, to 60%. 

From the above evaluation results, we can see that the proposed instruction cache can successfully reduce the 
energy involved. In particular, if the power consumption of the flash memory occupied approximately 20% or 
more of normal voltage operation, a reduction in power consumption can be expected by introducing a 1 Kbyte 
or smaller instruction cache. In addition, microcontroller designers can lower a logic circuit’s power supply vol- 
tage in order to reduce energy consumption. In this case, if the power consumption of flash memory is approxi- 
mately 10% or more, a reduction in power consumption can be expected by introducing a 512-byteor smaller in- 
struction cache. 

Our future work involves devising a architecture for increasing the hit rate of the instruction cache, and to 
evaluate the plurality of a realistic large-size application. In addition, we intend to evaluate more precise power 
consumption using a prototype chip. 
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