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Abstract 
There are many proposed policy-improving systems of Reinforcement Learning (RL) agents which 
are effective in quickly adapting to environmental change by using many statistical methods, such 
as mixture model of Bayesian Networks, Mixture Probability and Clustering Distribution, etc. 
However such methods give rise to the increase of the computational complexity. For another 
method, the adaptation performance to more complex environments such as multi-layer envi-
ronments is required. In this study, we used profit-sharing method for the agent to learn its policy, 
and added a mixture probability into the RL system to recognize changes in the environment and 
appropriately improve the agent’s policy to adjust to the changing environment. We also intro-
duced a clustering that enables a smaller, suitable selection in order to reduce the computational 
complexity and simultaneously maintain the system’s performance. The results of experiments 
presented that the agent successfully learned the policy and efficiently adjusted to the changing in 
multi-layer environment. Finally, the computational complexity and the decline in effectiveness of 
the policy improvement were controlled by using our proposed system. 
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1. Introduction 
Along with the increasing need for rescue robots in disasters such as earthquakes and tsunami, there is an urgent 

http://www.scirp.org/journal/jilsa
http://dx.doi.org/10.4236/jilsa.2014.64014
http://dx.doi.org/10.4236/jilsa.2014.64014
mailto:12092001@mmm.muroran-it.ac.jp
mailto:kitakosi@tokyo-ct.ac.jp
mailto:shioya@csse.muroran-it.ac.jp
mailto:junji@csse.muroran-it.ac.jp
http://creativecommons.org/licenses/by/4.0/


U. Phommasak et al. 
 

 
177 

need to develop robotics software for learning and adapting to any environment. Reinforcement Learning (RL) 
is often used in developing robotic software. RL is an area of machine learning within the computer science do-
main, and many RL methods have recently been proposed and applied to a variety of problems [1]-[4], where 
agents learn the policies to maximize the total number of rewards decided according to specific rules. In the 
process whereby agents obtain rewards; data consisting of state-action pairs are generated. The agents’ policies 
are effectively improved by a supervised learning mechanism using the sequential expression of the stored data 
series and rewards. 

Normally, RL agents need to initialize the policies when they are placed in a new environment and the learn-
ing process starts afresh each time. Effective adjustment to an unknown environment becomes possible by using 
statistical methods, such as a Bayesian network model [5] [6], mixture probability and clustering distribution [7] 
[8], etc., which consist of observational data on multiple environments that the agents have learned in the past 
[9] [10]. However, the use of a mixture model of Bayesian networks increases the system’s calculation time. 
Also, when there are limited processing resources, it becomes necessary to control the computational complexity. 
On the other hand, by using mixture probability and clustering distribution, even though the computational 
complexity was controlled and the system’s performance was simultaneously maintained, the experiments were 
only conducted on fixed obstacle 2D-environments. Therefore, examination of the computational complexity 
load and the adaptation performance in dynamic 3D-environments is required. 

In this paper, we describe modifications of profit-sharing method with new parameters that make it possible to 
work on dynamic movement of multi-layer environments. We then describe a mixture probability consisting of 
the integration of observational data on environments that agent learned in the past within framework of RL, 
which provides initial knowledge to the agent and enables efficient adjustment to a changing environment. We 
also describe a novel clustering that makes it possible to select fewer elements for a significant reduction in the 
computational complexity while retaining system’s performance. 

The paper is organized as follows. Section 2 briefly explains the profit-sharing method, the mixture probabil-
ity, the clustering distribution, and the flow system. The experimental setup and procedure as well as the pres-
entation of results are described in Section 3. Finally, Section 4 summarizes the key points and mentions our fu-
ture work. 

2. Preparation 
2.1. Profit-Sharing 
Profit-sharing is an RL method that is used as a policy learning mechanism in our proposed system. RL agents 
learn their own policies through “rewards” received from an environment. 

2.1.1. 2D-Environments 
The policy is given by the following function: 

:w S A R× →                                       (1) 
where S  and A  denote a set of state and action, respectively. Pair ( )( ), ,s a s S a A∀ ∈ ∀ ∈  is referred to as a 
rule. ( ),w s a  is used as the weight of the rule ( ( ),w s a  is positive in this paper). When state 0s  is observed, 
a rule is selected in proportion to the weight of rule ( )0 0,w s a . The agent selects a single rule corresponding to 
given state 0s  using the following probability: 

( ) ( )
( )

0 0
0 0

,

,
,

,
s S a A

w s a
P s a

w s a
′ ′∈ ∈

=
′ ′∑

                                 (2) 

The agent stores the sequence of all rules that were selected until the agent reaches the target as an episode. 

( ) ( ){ }1 1, , , ,L LL s a s a=                                   (3) 

where L  is the length of the episode. When the agent selects rule ( ),L Ls a  and requires reward r , the weight 
of each rule in the episode is reinforced by 

( ) ( ) ( ), ,i i i iw s a w s a f i← +                                  (4) 
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( ) L if i rγ −=                                        (5) 

where ( )f i  is referred to as the reinforcement function and ( ]( )0,1γ ∈  is the “learning rate”. In this paper, 
the following nonfixed reward is used: 

( )0r r t n= + −                                       (6) 

where 0r  is the initial reward, t  is the action number limit in one trial and n  is the real action number until 
the agent reaches the target. We expect that the agent can choose a more suitable rule to reach the target in a 
dynamic environment by using this nonfixed reward. 

2.1.2. 3D-Environments 
The weight ( ),w s a  becomes ( ), ,w z s a  where 1, ,z n=   ( n  is number of layers in this paper). The proba-
bility of the rule ( )0 0 0, ,z s a  becomes to this following function: 
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and the new episode is given in the following function: 
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By the movement on z , we can set the pseudo-reward [11] by using the following function: 

( ) ( )    1, , ,     0 1n i
i z zr r i nγ γ−= = < ≤                               (10) 

and update the weights according to the following function by using function (10): 

( ) ( ) ( ), , , , ,i j j i j jw z s a w z s a f i j← +                                (11) 

( ) ( ),     1, , ,     ( 1, , )i iL j L jn i
i z if i j r r i n j Lγ γ γ− −−= = = =                        (12) 

2.1.3. Ineffective Rule Suppression 
As Figure 1, agent selects rule ( )1 11, ,L Lz s a  in 1z  then moves to 2z . When agent selects any rule in 2z  and 
finally moves back to state ( )11, Lz s , the rules were selected on 2z  are became detour rules which may not 
contribute to the acquisition of the reward and these detour rules are called as ineffective rule [12] [13]. 

The ineffective rule has more negative effect such as the rules continue being selected repeatedly on the 
movement of z  and agent cannot avoid from that situation. And this may make the policy learning become 
stagnation. From these reasons, the suppression of ineffective rule becomes necessary. 

In this paper, we use this following method to suppress the ineffective rule: 
Here, we use iL  as the length of episode i  and CL  as a fixed number for determination ineffective rule.  

When 1 1i C i iL L z z− +≤ =∩ , all rules in i  are decided to be ineffective rule. Here, all rules in i  and the fi- 
nal rule in ( )1 11 1, ,

i ii i L Lz s a
− −− −  will be excluded from   as shown on Figure 1. 

2.2. Mixture Probability 
Mixture probability is a mechanism for recognizing changes in the environment and consequently improving the 
agent’s policy to adjust to those changes. 

The joint distribution [14] ( ), ,P z s a , consisting of the episode observed while learning an agent’s policy, is  



U. Phommasak et al. 
 

 
179 

 
Figure 1. Example of ineffective rule.                                 

 
probabilistic knowledge about the environment. Furthermore, the policy acquired by the agent is improved by 
using the mixture probability of ( )1, ,iP i m=   obtained in multiple known environments. The mixing distri-
bution is given by the following function: 

( ) ( )mix
1

, , , ,
m

i i
i

P z s a P z s aβ
=

= ∑                                  (13) 

where m  denotes the number of joint distributions, and iβ  is the mixing parameter ( )1, 0i ii β β= ≥∑ . By  

adjusting the environment subject to this mixing parameter, we expect appropriate improvement of the policy on 
the unknown dynamic environment. 

In this paper, we use the following Hellinger distance [15] function to fix the mixing parameter: 

( ) ( ) ( )
1

2 21 1
2 2,H i i

x
D P Q P x Q x

   = −     
∑                                  (14) 

where HD  is the distance between iP  and Q , and HD  is set to 0 when iP  and Q  are the same. iP  is 
joint distributions obtained in m  different environments that an agent has learned in the past, Q  is the sample 
distribution obtained from the successful trial of τ  times in an unknown environment, and x  is the total 
number of rules. Given that ( ), 2H iD P Q ≤  is established, the mixing parameter can be fixed by the following 
function: 

( )
( )1

2 ,

2 ,
H i

i m
H jj

D P Q

D P Q
β

=

−
=

 − ∑
                                 (15) 

However, when ( )1 2 , 0m
H jj D P Q

=
 − = ∑ , 1

i m
β = , and when all distributions are equal, the mixing para-

meter is evenly allotted. 

2.3. Clustering Distributions 
We expect that the computational complexity of the system can be controlled and it will be possible to maintain 
the effectiveness of policy learning by selecting only the suitable joint distributions as the mixture probability 
elements based on this clustering method. 

In this study, we used the group average method as opposed to the clustering method. The distance between 
the clusters can be determined by the following function: 

( ) ( )
,

1, ,
i i j j

i j H i j
P Cl P Cli j

D Cl Cl D P P
n n ∈ ∈

= ∑                          (16) 

where ;  i jn n  are the number of joint distributions contained in iCl  and jCl , respectively. In this study, we 
used the Hellinger distance function ( ),H i jD P P . After completing the clustering, element iP  having the min-
imum ( ),H iD P Q  will be selected as the mixture probability element from each cluster. 

2.4. Flow System 
The system framework is shown in Figure 2. A case involving the application of mixture probability and clus-
tering distributions to improve the agent’s policy is explained in the following procedure: 
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Figure 2. System framework.                                            

 
Step 1 Learn the policy in m  environments by using the profit-sharing method to make the joint distribu-

tions ( )1, ,iP i m= =  ; 
Step 2 Cluster𝑚𝑚 distributions into n  clusters; 
Step 3 Calculate the Hellinger distance HD  of distributions iP  and sample distribution Q ; 
Step 4 Select the element having the minimum ( ),H iD P Q  from each cluster; 
Step 5 Calculate the mixing parameter iβ ; 
Step 6 Mix probability mixP ; 
Step 7 Update the weight of all rules by using the following function: 

new old old
mixw w w P← + ×                                  (17) 

and then continue learning the updated weight by using the profit-sharing method. 

3. Experiments 
We performed an experiment to demonstrate the agent navigation problem and to illustrate the applied im-
provement in the RL agent’s policy through the modification of parameters of the profit-sharing method and us-
ing the mixture probability scheme. The purpose of this experiment was to evaluate the adjustment performance 
in the unknown dynamic 3D-environment by applying the policy improvement, and to evaluate its effectiveness 
by using mixture probability. 

3.1. Experimental Setup 
The aim in the agent navigation problem is to arrive at the target from the default position of the environment 
where the agent is placed. In the experiment, the reward is obtained when the agent reaches the target by avoid-
ing the obstacle in the environment, as shown in Figure 3. 

The types of state and action are shown in Table 1 and Table 2, respectively. Table 1 shows the output ac-
tions of an agent in 8 directions and Table 2 shows 256 types of the total input states coming from the combina-
tion of existing obstacles in 8 directions. The 8 directions are the top left, top, top right, left, right, bottom left, 
bottom, and bottom right. The agent has 2048 (8 actions × 512 states) rules in total that result from a combina-
tion of input states and output actions in a layer. The size of agent, target, and environment are 1 × 1, 5 × 5, and 
50 × 50, respectively. 

3.2. Experimental Procedure 
The agent learns the policy by using the profit-sharing method. A trial is considered to be successful if an agent  
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Figure 3. Environment of agent navigation problem.                      

 
Table 1. Types of action.                                           

Direction of action Value 

 ↑  

←  → 

 ↓  
 

0 1 2 

3  4 

5 6 7 
 

 
Table 2. Some types of state.                                         

Position of obstacle and value 

   …  …  

0 1 2  111  255 
 

 
reaches the target at least once out of 200 action attempts. The action is selected by randomization and that ac-
tion continues until the state is changed. 

The purpose of the experiment is to learn the policy in unknown dynamic environments ,  A BE E  and CE  in 
three cases (fixed obstacle, periodic dynamic and nonperiodic dynamic environments), by employing only the 
profit-sharing method and the mixture probability scheme (elements are m  and n ); the evaluation is based on 
the success rate of 2000 trials. The experimental parameters are shown in Table 3. Some of known environ-
ments that became mixture probability elements, and the unknown dynamic environments ( ), ,A B CE E E  used 
to evaluate the policy improvement are shown in Figure 4 and Figure 5, respectively. 

3.3. Discussion 
The success rate of policy improvement in ,  A BE E  and CE  by using only profit-sharing method and using 
mixture probabilities and clustering is shown in Figure 6, and the processing time from Step 3 (system flow) 
until experiment finish in cases using all 50 elements and using only 35, 25 and 15 elements is shown in and 
Table 4, respectively 

Figure 6 shows that the immediate success rate obtained by policy improvement is higher than that obtained 
by only the profit-sharing method in all environments. This means the speed of adaptation in unknown environ-
ment is higher and the higher success rate continues until the experiments end. This results shows the success 
rate by policy improvement is higher than using only the profit-sharing more than 20% in AE  and CE , and 
more than 30% in BE . So, we can say the policy improvement is effective in all environments. 

Even the success rate by using only 15 elements is also higher than that using only the profit-sharing method, 
but is still lower compared to the results using 25 and 35 elements. Hence, we can say by reducing the number 
of elements too much, the influence on policy improvement is apparent in all environments. However, although  

http://dict.longdo.com/search/although
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Figure 4. Some of known environments.                            

 

 
Figure 5. Unknown environments.                              

 

 
Figure 6. Transition of success rate.                                                                           
 
Table 3. Experimental parameters.                                                                                

Variable Value Variable Value 

t  200 τ  20 

γ  0.8 0w  10.0 

r  Nonfixed n  15, 25, 35 

0r  100 m  50 

iL  ≤3 CL  6 
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Table 4. Processing time.                                                                                  

 
Element number and processing time (s) 

50 35 25 15 

AE  26.541 21.047 18.241 13.114 

BE  29.247 24.169 21.374 18.471 

CE  32.311 28.697 24.417 20.381 

 
the success rate using all 50 elements was the highest, but that obtained using 25 elements was almost the same 
as that using all the elements in this result. So, the decline in effectiveness can still be controlled even if the 
number of mixture probability elements is reduced to half. 

Furthermore, from the results in Table 4, we can see that by reducing the number of elements, the processing 
time was reduced considerably. Hence, we can say by using 25 elements, we can reduce the processing time 
without declining in policy improvement performance. 

Figure 7 shows the typical trajectories of agent following the policy acquired while selecting data in envi-
ronment CE  in cases 1 - 500, 501 - 1000 and 1001 - 2000 trials. The intensity of color (from light red to dark 
red) show the frequency of agent’s trajectories when they reached to target in each layers. 

In these results, we can see in the first 500 trials, agent reached to all sub-targets in top layer. But due to the 
agent which started from sub-target 1 was the most difficult for reaching next sub-target, the number of time that 
agent reached to sub-target 1 became fewer in 501 - 1000 trials and finally almost reached to sub-target 2 and 3 
in 1001 - 2000 trials. Also in middle layer, agent reached to all sub-targets in first 500 trials. But due to the agent 
which started from sub-target 5 was more easily for reaching to the final goal, the more number of trials there 
are, the more frequency of agent’s trajectories from sub-target 5 to the final goal increased clearly. 

From the results of typical agent’, we can say by using the pseudo-reward, the agent can choose more suitable 
rules to reach the target in each layers even agent might be sometimes more difficult to reach in some layer, but 
more easily to reach to the final goal. 

3.4. Supplemental Experiments 
These experiments were conducted to compare the performance of the policy improvement in cases of fixed ob-
stacle, periodic dynamic movement and nonperiodic dynamic movement on AE  and BE  by using 25 elements. 
And experiments in only periodic and nonperiodic cases by using the same parameters were conducted 5 times. 

4. Discussion 
The results of policy improvement by using 25 elements of mixture probabilities in three cases are shown in 
Figure 8, and the results of five sets of experiments in periodic and nonperiodic dynamic movement are shown 
in Figure 9, respectively. 

Figure 8 shows that the success rate in the case of periodic dynamic movement was almost no difference in 
the early period compared with the fixed obstacle case in both AE  and BE , and continued to keep abreast of 
high success rate until the experiments end. On the other hand, in the case of nonperiodic dynamic movement, 
even the success rate in BE  was almost no difference or sometime was conversely higher compared with the 
fixed obstacle case. However, as shown in Figure 9, even though the experiments were conducted by using the 
same parameters, the results of nonperiodic case in AE  was quite low compared to periodic case. And the re-
sults of nonperiodic case were unstable in all AE  and BE . 

From these results, we can deduce that agent successfully learns the policy in the periodic dynamic movement 
environment and can more easily reach the target when the obstacle moves out from the trajectory as in BE . On 
the contrary, when the obstacle moves into the trajectory, it will be more difficult for the agent to reach the tar-
get. 

5. Conclusions 
In this research, we used the joint distributions ( ), ,P z s a  as the knowledge and the sample distribution Q  to  
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Figure 7. Typical agent trajectories in CE .                              

 

 
Figure 8. Transition of success rate (3 cases).                                                                 
 

 
Figure 9. Five sets of experiments.                                                                            
 
find the degree of similarity between the unknown and each known environment. We then used this as the basis 
to update the initial knowledge as being very useful for the agent to learn the policy in a changing environment. 
Even if obtaining the sample distribution is time-consuming, it is still worthwhile if the agent can efficiently 
learn the policy in an unknown dynamic environment. 

Also, by using the clustering method to collect similar elements and then selecting just one suitable joint dis-
tribution as the mixture probability elements from each cluster, we can avoid using similar elements to maintain 
a variety of elements when we reduce their number. 

From the results of the computer experiment as an example application in the agent navigation problem, we 
can confirm that the policy improvement in dynamic movement environments is effective by using the mixture 
probabilities. Furthermore, agent is possible to select suitable rules to reach to the target in multi-layer by using 
the pseudo-reward. And the decline in effectiveness of the policy improvement can be controlled by using the 
clustering method. We conclude that the improvement of stability and speed in policy learning, and the control 
of computational complexity are effective by using our proposed system. 

Improvement of the RL policy is also required by using mixture probability with a positive and negative 
weight value for making the system adaptable to unknown environments that are not similar to any known envi-
ronments. Finally, a new reward process is needed as well as a new mixing parameter for the agent to adjust to a 
changing environment more efficiently and to be able to work well in any complicate environments in future 
work. 
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