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Abstract 
The purpose of this inventory model is to investigate the retailer’s optimal replenishment policy 
under permissible delay in payments. In this paper, we assume that the supplier would offer the 
retailer partially permissible delay in payments when the order quantity is smaller than a prede-
termined quantity (W). The most inventory systems are usually formed without considering the 
effect of deterioration of items which deteriorate continuously like fresh fruits, vegetables etc. 
Here we consider the loss due to deterioration. In real world situation, the demand of some items 
varies with change of seasons and occasions. So it is more significant if the loss of deterioration is 
time dependent. Considering all these facts, this inventory model has been developed to make 
more realistic and flexible marketing policy to the retailer, also establish the result by ANOVA 
analysis by treating different model parameters as factors. 
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1. Introduction 
The general, economic order quantity (EOQ) model assumes that the retailer must be paid for the items as soon 
as the items are received. However, in practical situation, the supplier offers to the retailer many incentives such 
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as a cash discount to motivate faster payment and stimulate sales, or a permissible delay in payments to attract 
new customers and increase sales. Before the end of the permissible delay period, the retailer can sell the goods 
and accumulate revenue and earn interest. On the other hand, a higher interest is charged if the payment is not 
settled by the end of the trade credit period. Therefore, it makes economic sense for the retailer to delay the set-
tlement of the replenishment account up to the last moment of the permissible period allowed by the supplier. 

Moreover, the most inventory systems are usually formed without considering the effect of deterioration. In 
real-life situations there are products such as volatile, liquids, some medicines, food materials, etc., in which the 
rate of deterioration is very large with time. Therefore, the loss due to deterioration should not be neglected. So 
in this model, we are considering the items such as fresh fruits and vegetables which have the exponential dis-
tribution for the time to deterioration. 

Several authors discussing this topic have appeared in the literatures that investigate inventory problems un-
der varying conditions. Some of the papers are discussed below. Goyal [1] developed an EOQ model under the 
conditions of permissible delay in payments. Aggarwal and Jaggi [2] extended Goyal’s [1] model to consider the 
deteriorating items. Chang, Ouyang and Teng [3] then established an EOQ model for deteriorating items under 
supplier’s trade credits linked to order quantity. Chung and Liao [4] studied a similar lot-sizing problem under 
supplier’s trade credits depending on the retailer’s order quantity. 

However, most of the papers dealing with EOQ in the presence of permissible delay in payments assume that 
the supplier only offers the retailer fully permissible delay in payments if the retailer orders a sufficient quantity. 
Otherwise, permissible delay in payments would not be permitted. We know that this policy of the supplier to 
stimulate the demands from the retailer is very practical. But this is just an extreme case. That is, the retailer 
would obtain 100% permissible delay in payments if the retailer ordered a large enough quantity. Otherwise, 0% 
permissible delay in payments would happen. 

Huang [5] established an EOQ model in which the supplier offers a partially permissible delay in payments 
when the order quantity is smaller than the prefixed quantity W. In the above paper, a partially permissible delay 
in payments means the retailer must make a partial payment to the supplier when the order is received to enjoy 
some portion of the trade credit. Then, the retailer must pay off the remaining balances at the end of the per-
missible delay period. For example, the supplier provides 100% delay payment permitted if the retailer orderes a 
predetermined quantity, otherwise only λ% (0 ≤ λ ≤ 100) delay payment permitted. From the viewpoint of sup-
plier’s marketing policy, the supplier can use the fraction of the permissible delay in payments to attract and 
stimulate the demands from the retailer. Ouyang [6] studied the similar EOQ model with constant deterioration 
of the quantity. Das et al. [7] presented an EPQ model for deteriorating items under permissible delay in pay-
ment. Teng et al. [8] developed an EOQ model for stock dependent demand to supplier’s trade credit with a 
progressive payment scheme. Min et al. [9] developed an EPQ model with inventory-level dependent demand 
and permissible delay in payment. Recently, Ouyang and Chang [10] proposed an optimal production lot with 
imperfect production process under permission delay in payment and complete backlogging. 

The present EOQ model based on the fact that the suppliers would offer a partially permissible delay in pay-
ment if the retailer ordered more than or equal to a predetermined quantity W. If the ordering quantity is less 
than W, then the retailer has to pay off a certain amount (which is decided by the supplier) at the ordering time. 
In the real-world situation, we generalize the inventory model by relaxing some facts as 1) the retailer’s selling 
price per unit is higher than its purchase unit cost; 2) the interest rate charged by the bank is not necessarily 
higher than the retailer’s investment return rate; 3) many items like as fresh fruits and vegetables deteriorate ex-
ponentially with time. 

In this regard, we model a retailer’s inventory system as a cost minimization problem to determine the retail-
er’s optimal inventory cycle time and optimal order quantity. Several theorems are established to describe the 
optimal replenishment policy for the retailer under the more general framework and use an approach to solve 
this complex inventory problem. Finally, numerical example has been given to illustrate all these theorems and 
sensitivity analysis has been done. Also we have established the result by ANOVA analysis by treating different 
model parameters as factors. 

2. Mathematical Notations and Assumptions 
In this section, the present study develops a retailer’s inventory model under conditionally permissible delay in 
payments. The following notation and assumptions are used throughout the paper. 
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2.1. Notation 
D: the annual demand 
A: the ordering cost per order 
W: the quantity at which the fully delay payment permitted per order 
P: the purchasing cost per unit 
H: the unit holding cost per year excluding interest charge 
S: the selling price per unit 
Ie: the interest earned per dollar per year 
Ik: the interest charged per dollar in stock per year 
M: the period of permissible delay in settling accounts 
λ: the fraction of delay payment permitted by the supplier per order, 0 ≤ λ ≤ 1 
Z(t) = αβtβ‒1: is two parameter Weibull distribution function representing time to deterioration, where α = scale 
parameter, (0 < α  1), β = shape parameter (β > 1) 
T: the replenishment cycle time in years 
Q: the order quantity 
TCR(T): the annual total relevant cost, which is a function of T 
T*: the optimal replenishment cycle time of TCR(T) 
Q*: the optimal order quantity = DT* 

2.2. Assumptions 
1) Replenishments are instantaneous. 
2) Demand rate, D, is known and constant. 
3) Shortages are not allowed. 
4) Inventory system involves only one type of inventory. 
5) Time horizon is infinite. 

3. Mathematical Formulation 
The inventory level decreases due to demand as well as deterioration. Thus, the change of inventory level can be 
represented by the following differential equation: 

( ) ( ) ( )
d

, 0
d
I t

Z t I t D t T
t

+ = − < <                              (1) 

where ( ) 1Z t tβαβ −= , with boundary condition I(t) = 0. The solution of (1) with 
1

e 1t t
βα βα
−
= +  (as α  1) is 

( ) ( ) ( )1 1e ; 0
1

tI t D T t T t t T
βα β βα

β
− + +  

= − + − ≤ ≤  +  
                   (2) 

Hence, the order quantity for each cycle is 

( ) 10
1

Q I D T T βα
β

+  
= = +  +  

                              (3) 

From (3), we can obtain the time interval Tw that W units are depleted to zero due to both demand and deteri-
oration. We put Q = W in (3) and get Tw from (3) 

1

1w wW D T T βα
β

+  
= +  +  

                                (4) 

If Q ≥ W (i.e., T ≥ Tw), the fully delayed payment is permitted, otherwise, partial delayed payment is permitted 
if Q < W (i.e., T < Tw), the retailer must have to pay supplier, the partial payment of (1 − λ)pQ at time 0. From 
the constant sales revenue sD, the retailer will be able to pay off the loan (1 − λ)pQ at time 
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( )( ) ( )( )11 say
1

p s T T Gβαλ
β

+  
− + =  +  

 

At time T0, the pay of time G of the partial payment is shorter or equal to the trade credit period M. i.e., G ≤ 
M. 

Therefore we get T0 from the following relation 

( )( ) 1
0 01

1
p s T T Mβαλ

β
+  

− + ≡  +  
 

It is obvious that always M < T0 and if T ≤ T0 then G ≤ M and vice-versa. 
Based on the values of M, Tw, T0, we have three possible cases: 
1) 0wT M T≤ ≤ , 2) 0wM T T< ≤ , 3) 0 wM T T< <  

a) Annual ordering cost = A
T

, 

b) Annual stock holding cost excluding interest charge 

( ) ( ) ( )1 1

0 0

d e d
1

T T
tH h T I t t h T D T t T t t
βα β βα

β
− + +  

= = − + −  +  
∫ ∫  

Simplifying with e 1t t
βα βα− = −  (as α  1) 

( )( )
( )

( )

2 12

2

1
2 1 2 2 1

T TH DhT
ββαβ α

β β β

+ 
= + − 

+ + +  
 

( )( )
1
2 1 2

TH DhT
βαβ

β β
 

= + 
+ +  

 (Neglecting α2 term, since α  1) 

c) Annual deteriorating cost [ ]1
1

pQ pDT Dp T
T

βα
β

 
= − =  + 

 

3.1. Case 1: Tw ≤ M < T0 
There are three sub-cases in terms of annual opportunity cost of the capital which are depicted in Figure 1. 

3.1.1. Sub-Case 1.1: M ≤ T 
The retailer starts paying the interest for the items in stock after time M with rate Ik and during time 0 to M, from 
the sale revenue the retailer earns the interest with rate Ie, therefore in this sub-case, the annual opportunity cost 
of capital is 
 

Inventory level [I(t)]                       Inventory level [I(t)]                       Inventory level [I(t)] 

 

Q 

time 
O  G   TwM TT0 

Sub-case 1.1 M ≤ T    
 

Q 

time 
O  G   Tw  TMT0 

Sub-case 1.2 wT T M≤ ≤    
 

Q 

time 
O  G   TTwMT0 

Sub-case 1.2 0 wT T≤ ≤   
Figure 1. Graphical representation of three different situations of case 1. 
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( )( )
( ) ( )( ) ( ) ( )

22 2
2 2

2 2 1 2 1 2
k epI D sI DMT M TM T M M T TM

T T
β β β βαβ α

β β β
+ + 

+ − + − + − − 
+ + +  

 

3.1.2. Sub-Case 1.2: wT T M≤ ≤  
In this case, there is no interest paid for financing inventory, therefore in this sub-case, the annual opportunity  

cost of capital is 
2e
TsI D M − −  

 

3.1.3. Sub-Case 1.3: 0 < T < Tw 
If T < Tw, then the retailer must have to pay the partial payment (1 − λ)pQ at time 0 to the supplier, and retailer 
pays off the loan to the bank from sales revenue at time 

( )( ) 11
1

G p s T T βαλ
β

+  
= − +  +  

 

Consequently, the interest is charged on the partial payment from time 0 to G. Hence the annual interest pay-
able is 

( ){ } ( ) ( ) ( )
2

2 12
0

 1 d 1
2 1

Gk kI I D
pQ sDt t p s T T

T T
βαλ λ

β
+

   − − = − +  +   
∫               (5) 

Similarly, the interest earned starts from time G to M, and the annual earned interest is 

( ){ } ( ){ }

( )( ) ( ) ( ) ( )( ) ( )
2

1 1

1 d 1 d

1 1
2 1 1

T Me
G T

e e

I sDt pQ t sDT pQ t
T

sDI sDIT p s T T M T T p s T T
T T

β β

λ λ

α αλ λ
β β

+ +

 − − + − −  

      
= − − + + − − − +      + +      

∫ ∫
   (6) 

Therefore in this sub-case, the annual opportunity cost of capital is 

( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

22
2 1 12

1

1 1
2 1 2 1

1
1

k e

e

I D sDIp s T T T p s T T
T T

sDI M T T p s T T
T

β β

β

α αλ λ
β β

αλ
β

+ +

+

       − + − − − +      + +      
  

− − − − +  +  

       (7) 

Therefore in case 1, the annual relevant cost can be expressed as 

( )
( )
( )
( )

1

2

3

,

,

, 0
w

w

TRC T M T

TRC T TRC T T T M

TRC T T T

≤


= ≤ ≤
 < <

                              (8) 

where, 

( ) ( )( )

( )( )
( ) ( )( ) ( ) ( )

2 2

1

2
2 2

1
2 1 2 1 2 2

1 2 1 2

k

e

pI DA T T MTRC T DhT Dp T TM
T T

sI DM
T M M T TM

T

β
β

β β β β

αβ α
β β β

αβ α
β β β

+ +

    = + + + + + −   + + +      
 + − + − − 

+ + +   

          (9) 

( ) ( )( )2
1
2 1 2 1 2e

A T TTRC T DhT Dp T sI D M
T

β
βαβ α

β β β
     = + + + − −     + + +      

             (10) 
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( ) ( )( )

( ) ( )

( ) ( )

( ) ( ) ( )

3

22
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1
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1
2 1

1
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k

e
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A TTRC T DhT Dp T
T

I D p T T
T s

sI D pT T T
T s

sI D pM T T T T
T s

β
β

β

β

β

αβ α
β β β

αλ
β

αλ
β

αλ
β

+

+

+

    = + + +   + + +     
   

+ − +   +    

   − − − +    +   
    − − − − +     +    

                 (11) 

3.2. Case 2: M < Tw ≤ T0 (cf. Figure 2) 
Similar to case 1, three different sub-cases are as follows: 

3.2.1. Sub-Case 2.1: Tw ≤ T 
This case is similar to the sub-case 1.1 (where M ≤ T). Since M < Tw ≤ T, therefore the total relevant cost is same 
as TRC1(T). 

3.2.2. Sub-Case 2.2: M ≤ T < Tw 
Since T < Tw, the retailer must have to pay the partial payment (1 − λ)pQ at time 0 to the supplier, and retailer 
pays off the loan to the bank from sales revenue at time G. The annual interest payable from 0 to time G is given 
by 

( ) ( ) ( )
22

2 1

0
1 d 1

2 1
Gk kI I D ppQ sDt t T T

T T s
βαλ λ

β
+

   
− − = − +       +    

∫  

Again since M ≤ T, the retailer has to pay interest from time M to time T. Therefore, the annual payable inter-
est is 

( ) ( )( )
( ) ( )( ) ( ) ( )

2 2
2 2d

2 2 1 2 1
Tk k
M

pI pI D T MI t t TM T M M T TM
T T

β β β βαβ α
β β β

+ + 
= + − + − + − 

+ + +  
∫  

Similarly, the interest earned starts from time G to M, and thus the annual interest earned is 

( ) ( ) ( )

2

11 d 1
2 1

Me e
G

I sI D psDt pQ t M T T
T T s

βαλ λ
β

+
   − − = − − +        +    

∫  

In this sub-case, the annual relevant cost is 
 

Inventory level [I(t)]                        Inventory level [I(t)]                         Inventory level [I(t)] 

 

Q 

time 
O  G M     TwT T0 

Sub-case 2.1 Tw ≤ T     
 

Q 

time 
O  G M     TwT T0 

Sub-case 2.2 wM T T≤ ≤      
 

Q 

time 
O  G M     TwT T0 

Sub-case 1.2 T M≤   
Figure 2. Graphical representation of three different situations of Case 2. 
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( ) ( )( ) ( ) ( ) ( )
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( ) ( )
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k

e
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T

sDI pM T T
T s

β
β β

β β β β

β

αβ α αλ
β β β β

αβ α
β β β

αλ
β

+

+ +

+

      = + + + + − +     + + + +        
 

+ + − + − + − 
+ + +  

   − − − +    +    

  (12) 

3.2.3. Sub-Case 2.3: T ≤ M 
This sub-case is similar to the Sub-Case 1.3 (where T < Tw < M). Since T ≤ M < Tw, the annual total relevant cost 
is same as TCR3(T). 

Therefore in Case 2 the annual relevant cost can be expressed as 

( )
( )
( )
( )

1

4

3

,        

,        

,        

w

w

TRC T T T

TRC T TRC T M T T

TRC T T M

≤


= ≤ ≤
 <

                         (13) 

3.3. Case 3: M < T0 < Tw (cf. Figure 3) 
There are four sub-cases as following: 

3.3.1. Sub-Case 3.1 Tw ≤ T 
This case is similar to the Sub-Case 1.1 (where M ≤ T). Since M < T0 < Tw ≤ T, therefore the total relevant cost is 
TRC1(T). 

3.3.2. Sub-Case 3.2 T0 ≤ T < Tw 

If T0 ≤ T, then M < G, i.e. ( ) 11 .
1

pM T T
s

βαλ
β

+  < − +   +   
 

 
Inventory level [I(t)]                         Inventory level [I(t)] 

 

Q 

time 
O M G  T0  Tw T  

Sub-case 3.1 Tw ≤ T       

Q 

O  M  G   T0  T Tw 

Sub-case 3.2 T0 ≤ T < Tw 

time 
 

Inventory level [I(t)]                         Inventory level [I(t)] 

 

O M G  TT0  Tw 

Sub-case 3.3 0M T T≤ ≤  

Q 

time 

      

Q 

time 
O  T  M  G  T0  Tw  

Sub-case 3.4 T M≤   

Figure 3. Graphical representation of four different situations of Case 3. 
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In this sub-case, at the beginning i.e. at time 0, the retailer must take a loan to pay the supplier the partial 
payment of (1 − λ)pQ. 

Since M < G, the retailer have to take another loan to pay the rest of λpQ at time M. 

Again since the first loan will be paid from the sale revenue until ( ) 11 .
1

pt T T
s

βαλ
β

+  = − +   +   
 

Hence, the retailer gets the second loan at time M but can start paying off from the sales revenue after time t = 
G (>M). As a result, there is no interest earned, but have to pay the interest. The 1st payable interest is 

( ) ( )
22

2 1
0

1 d 1 .
2 1

G k
k

I D pI pQ sDt t T T
s

βαλ λ
β

+
   

− − = − +       +    
∫  

For the 2nd loan λpQ, retailer has to pay interest at Ik rate per year from M to G. Therefore, the 2nd payable in-
terest is 

( ) ( )1 1d 1
1 1

G
k k kM

pI pQ t I pD T T G M I pD T T M
s

β βα αλ λ λ λ
β β

+ +     = + ⋅ − = − + −    + +     
∫  

Again, since the retailer has started to pay off the loan λpQ from the sales revenue after time G the loan will  

be completely paid off at time pQ
sD
λ . 

Therefore, the 3rd payable interest is ( )
2

2 1
0

d
2 1

pQ
ksD

k
I Q pI pQ sDt t T T

s

λ
βαλ λ

β
+   

− = +   +    
∫  

Therefore the annual total payable interest is 

( ) ( )
22

2 1 1

2
2 1

1 1
2 1 1

2 1

k k

k

I D I pDp pT T T T M
T s T s

I Q p T T
T s

β β

β

λα αλ λ
β β

αλ
β

+ +

+

        − + + − + −        + +         
   

+ +   +   

        (14) 

3.3.3. Sub-Case 3.3 M ≤ T ≤ T0 
This case is similar to the Sub-Case 2.2 (where M ≤ T < Tw). Since M ≤ T ≤ T0 < Tw, the annual total relevant 
cost is TRC4(T). 

3.3.4. Sub-Case 3.4 T ≤ M 
This case is similar to the Sub-Case 1.3 (where 0 < T < Tw). 
Since T ≤ M < T0 < Tw, therefore the annual total relevant cost is TRC3(T). 

In Case 3, the annual relevant cost can be expressed as 

( )

( )
( )
( )
( )

1

5 0

4 0

3

,        

,        

,        

,        

w

w

TRC T T T

TRC T T T T
TRC T

TRC T M T T

TRC T T M

≤


≤ ≤
= 

≤ <
 ≤

                       (15) 

where, 

( ) ( )( ) ( )

( )

22
2 1

5

1

1 1 2 2
2 1 2 1 2 1

1
1

k

k

I DA T pTRC T DhT Dp T T T
T T s

I pQ p T T M
T s

β
β β

β

αβ α αλ λ
β β β β

λ αλ
β

+

+

     
= + + + + − + +     + + + +      

   + − + −    +   

 (16) 
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4. Theoretical Results 
Now we try to determine the optimal replenishment cycle time (T) that minimizes the annual relevant cost. 

4.1. Case 1 Tw ≤ M < T0 

To minimize TRC1(T) in (9) for M ≤ T we get ( )1d
0

d
TRC T

T
=  

( ) ( )( ) ( )

2 2
1

2 2
2 2 1

2

2 2 1

2 2 1 2 1

0
2

k

e

T TDh Dp T

T MpI D T M MT

sI DM A

β
β

β β β

αβ αβ
β β

αβ αβ αβ
β β β β

+
+

+ + +

   
⇒ + +   + +  

 −
+ + + − + + + + 

+ − =

               (17) 

Now there exists a value T in [M, ∞) at which we get minimum value of TRC1(T). Let 

( ) 22 2 1
1

1 1

d
d 2 2 1 2

e

T M

TRC T sI DMM M MDh Dp A
T

β βαβ αβ
β β

+ +

=

 
∆ ≡ ⇒ ∆ ≡ + + + − + + 

           (18) 

Then we have the following lemma. 
Lemma 1: 
a) If Δ1 ≤ 0, then the annual total relevant cost TRC1(T) has the unique minimum value at the point T = T1, 

where T1 ∈ [M, ∞) and satisfies (17). 
b) If Δ1 > 0, the annual total relevant cost TRC1(T) has a minimum value at the boundary point T = M. 
Proof: Let 

( ) ( ) ( ) ( ) ( )

( )
( )( )

( )
( )

2 2 1 2 2 2
1

2 1 2

1 1
2 2 1 2 2

1
1 2 1 2

k

e

F T Dh T T Dp T pI D T M T

M MT sI DM A

β β β

β β

α β α β α β
β β β

α β α β
β β β

+ + +

+ +

   
= + + + − +   + + +   


+ − + − + + +  

        (A1) 

[ ),T M∈ ∞  
Taking the derivative of F1(T) with respect to T ∈ (M, ∞), we get 

( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

1 1 1

1

d
d

0

k

k

F T
Dh T T Dp T pI D T T MT

T

Dh T T Dp T pI D T T T M

β β β β

β β β

α β α β α β α β

α β α β α β

+ +

+

   = + + + + −   

   = + + + + − >   

        (A2) 

Therefore, F1(T) is strictly increasing function of T in [M, ∞). From (A1), we get 

( ) ( )1 1 10,   and  lim
T

F M F T
→∞

= ∆ ≤ = +∞  

Therefore, if ( )1 1 0,F M = ∆ ≤  then by applying the Darboux’s theorem†, ∃  a unique T1 ∈ [M, ∞) such that 
F1(T1) = 0. Again taking the second order derivative of TRC1(T) with respect to T at T1, we have 

( ) ( ) ( ) ( ) ( ) ( )2
1 1 1 1 1 1
2 2 2 3 2

d d 2 dd 1,    
d d dd

TRC T F T TRC T F T F T F T
T T TT T T T T

−    = = = +   
    


 

Hence, 
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( ) ( ){ } ( ) ( ) ( ){ }
1

2
1 1

1 1 1 1 12 2

d 1  0
d k

T T

TRC T
Dh T T Dp T pI D T T T M

T T
β β βα β α β α β+

=

 = + + + + − >       (A4) 

Therefore T1 ∈ [M, ∞) is the unique minimum solution to TRC1(T). 
On the other hand, if ( )1 1 0,F M = ∆ >  we have ( ) [ )1 0,  ,F T T M> ∀ ∈ ∞ . Consequently, we know that 

( ) ( ) ( )1 1
2

d
0,   ,

d
TRC T F T

T M
T T

= > ∀ ∈ ∞ . 

That is, TRC1(T) is a strictly increasing function of T in [M, ∞). Therefore, TRC1(T) has a minimum value at 
the boundary point T = M. This completes the proof. 

Darboux’s Theorem: 
If a function f is derivable on a closed in terval [a, b] and f'(a), f'(b) are of opposite signs then there exist at 

least one point c ∈ [a, b] such that f'(c) = 0. 

Again for Tw ≤ T ≤ M, TRC2(T) in (10) is minimum when ( )2d
0

d
TRC T

T
=  

1
2

2
2 1 2

1 0
2 2 1 2

0
2 2 1 2

e

e

sI D ADh T Dp T
T

sI DTDh T Dp T T A

β β

β β

αβ αβ
β β

αβ αβ
β β

−

+ +

   
+ + + − =   + +   

   
+ + + − =   + +  

                  (19) 

To prove that there exist a value of T in the interval [Tw, M] at which minimizes TRC2(T), we let 

( )2
2

2
2 1 2

2

d
d

2 2 1 2

WT T

W e
W W W

TRC T
T

T sI DDh T Dp T T Aβ βαβ αβ
β β

=

+ +

∆ ≡

   
∆ ≡ + + + −   + +  

                 (20) 

It is obvious that Δ1 ≥ Δ2 if M ≥ Tw, then we have the following lemma: 
Lemma 2: 
a) If Δ2 ≤ 0 ≤ Δ1, then the annual total relevant cost TRC2(T) has the unique minimum value at the point T = T2, 

where T2 ∈ [Tw, M] and (19) is satisfied by T2. 
b) If Δ2 > 0, the annual total relevant cost TRC2(T) has a minimum value at the lower boundary point T = Tw. 
c) If Δ1 < 0, the annual total relevant cost TRC2(T) has a minimum value at the upper boundary point T = M. 
Proof: The proof is similar to that in Lemma 1 so we omit it. 

Similarly, for 0 < T < Tw, TRC3(T) in (11) is minimum when ( )3d
0

d
TRC T

T
= . That is, 

( ) ( ) ( )
( )

( ) ( ) ( )

( )( )

22 2
22 1 2 2

2

2

1

1 2
1 1 2

2 2 1 2 1

1 2
1 1 1 1 1 1

2 1 1

2 1 0
1

k

e

I DT pDh T Dp T T T T
s

sDI p pT T T
s s

pM T T A
s

β β β β

β β

β

α βαβ αβ λ α
β β β

α βαλ λ
β β

αβλ
β

+ +

−

 +   
+ + + − + +   + + +      

    +       + − − + + − +       + +          

 + − − − =  +  

    (21) 

Again there exist a value of T in the interval (0, Tw) which minimizes TRC3(T), we let 
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( )

( ) ( ) ( )
( )

( ) ( ) ( )

3
3

22
22 2 1 2 2

3 2

2

d
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d

1 21 1 1 2
2 2 1 2 1

1 2
1 1 1 1 1 1

2 1 1

WT T

k
W W W W W W

e
W W W

TRC T
T

I D pDh T T Dp T T T T
s

sDI p pT T T
s s

β β β β

β β

α βαβ αβ λ α
β β β

α βαλ λ
β β

=

+ +

∆ ≡

  +    ∆ ≡ + + + − + +     + + +     
  +       + − − + + − +       + +         

( )( ) 12 1 0
1W W

pM T T A
s

βαβλ
β

−



 + − − − =   +   

   (22) 

Then we have the following lemma: 
Lemma 3: 
a) If Δ3 ≥ 0, then the annual total relevant cost TRC3(T) has the unique minimum value at the point T = T3, 

where T3 ∈ (0, Tw) and satisfies (21). 
b) If Δ3 < 0, then the value of T ∈ (0, Tw) which minimizes TRC3(T) does not exist. 
Proof: 
Let 

( ) ( ) ( ) ( )
( )

( ) ( ) ( )

( )( )

22 2
22 1 2 2

3 2

2

1

1 2
1 1 2

2 2 1 2 1

1 2
1 1 1 1 1 1

2 1 1

2 1
1

k

e

I DT pF T Dh T Dp T T T T
s

sDI p pT T T
s s

pM T T
s

β β β β

β β

β

α βαβ αβ λ α
β β β

α βαλ λ
β β

αβλ
β

+ +

−

 +   
= + + + − + +   + + +      

  +        + − − + + − +        + +          
 + − − −  +  

0A =

  (B1) 

Differentiating F3(T) with respect to T ∈ (0, Tw), we have 

( ) ( ) ( )( ) ( )

( ) ( )
( )

( )( ){ }

23 1 2

2
2 1

2

d
1

d

1 2
1 2 1 1

1

k e

e

F T
Dh T T Dp T DT I I p s

T

T T sDI T p s MT

β β

β β β

αβ α β λ

α β
α β αβ λ

β

+

−

  = + + + − − 

 +  × + + + + + − 
+   

        (B2) 

Since 

( ) ( )( ) ( ) ( ) ( )
( )

( )( ){ } ( )( ) ( )
( ) ( ) ( ) ( ){ }
( ) ( )

2
21 2 2

2

21 2

2 22 2

2 2

1 2
1 1 2

1

1 1 1

1 1 0

1 0 for and 0 1

k e

e k e e

k e

h hT p T I I p s T T

sI p s MT h I I p s sI

h p s I s p s I

s p s s p

β β β β

β

α β
αβ α β λ α β

β

αβ λ λ

λ λ

λ λ

−

−

 + + + + − − + + + 
+  

+ + − ≥ + − − +

= + − + − − >

 − − > ≥ ≤ ≤ 

 

Therefore we have ( ) ( )3
3

d
0

d
F T

F T
T

> ⇒  is a strictly increasing function of T in (0, Tw). Now from (B1), we 

have 

( ) ( )3 3 30
lim 0 and lim

WT T T
F T A F T

−→ →
= − < = ∆ .                      (B3) 
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Therefore, if ( )3 3lim 0,
WT T

F T
−→

= ∆ ≥  then applying Darboux’s theorem, ∃  a unique T3 ∈ (0, TW) such that  

F3(T3) = 0. Again, taking the second order derivative of TRC3(T) with respect to T at T3, we have 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( )( ){ }
3

2
23 1 2

3 32
3

2
2 1

3 3 3

d 1 1
d

1 2
1 2 1 1 0

1

k e

T T

e

TRC T
D h h T p T I I p s

TT

T T sI p s MT

β β

β β β

α β α β λ

α β
α β α β λ

β

−

=

−

= + + + − −

 + × + + + + + − > 
+    

   (B4) 

Therefore, T3 ∈ (0, TW) is the unique minimum solution to TRC3(T). Again if ( )3 3lim 0,
WT T

F T
−→

= ∆ <  then 

( ) ( )3 0 0, WF T T T< ∀ ∈ . We have 

( ) ( ) ( )3 3
2

d
0 0,

d W

F T F T
T T

T T
= < ∀ ∈ . 

Therefore, TRC3(T) is a strictly decreasing function of T in (0, TW), but we cannot find the value of T in the 
open interval (0, TW) which minimizes TRC3(T). This completes the proof. 

For 0 ≤ λ ≤ 1, it can be written that Δ2 ≤ Δ3. Again Tw ≤ M, we that Δ2 ≤ Δ1. Now combining Lemmas 1 - 3 
and including the fact that TRC1(M) = TRC2(M), for Case-1 we can obtain a theoretical result to determine the 
optimal cycle time T* as: 

Theorem 1: 
For Tw ≤ M < T0, the optimal replenishment cycle time T*, that minimizes the annual total relevant cost is 

given as: 
 

Condition TRC(T*) T*
 

Δ1 ≤ 0 and Δ3 < 0 TRC1(T1) T1 

Δ1 ≤ 0 and Δ3 ≥ 0 Min {TRC1(T1), TRC3(T3)} T1 or T3 

Δ1 > 0, Δ3 ≥ 0 and Δ2 < 0 Min {TRC2(T2), TRC3(T3)} T2 or T3 

Δ2 ≥ 0 Min {TRC2(Tw), TRC3(T3)} Tw or T3 

Δ1 > 0 and Δ3 < 0 TRC2(T2) T2 

4.2. Case 2 M < Tw ≤ T0 

For Tw ≤ T, similar approach used in Case 1, the 1st order condition for TRC1(T) of (9) is the same as (17), so 
there exist a unique value of T in [Tw, ∞) at which TRC1(T) is minimized. 

Let ( )1
4

d
d

WT T

TRC T
T

=

∆ ≡ , then 

( )

( )( ) ( )

2 2 1 2 2 2
4

2 1 2

1 1
2 2 1 2 2

1 2 1 2

w w w k w w

e
w

Dh T T Dp T pI D T M T

sI D
M MT M A

β β β

β β

αβ αβ αβ
β β β

αβ αβ
β β β

+ + +

+ +

   
∆ ≡ + + + − +   + + +  

 + − + − 
+ + +   

      (23) 

We have the following lemma: 
Lemma 4: 
a) If Δ4 ≤ 0, then the annual total relevant cost TRC1(T) has the unique minimum value at the point T = T1, 

where T1 ∈ [Tw, ∞) and satisfies (17). 
b) If Δ4 > 0, the annual total relevant cost TRC1(T) has a minimum value at the boundary point T = Tw. 
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Proof: The proof is similar to that in Lemma 1 so we omit it. 
Again for M ≤ T < Tw, the total relevant cost TRC4(T) in (13) is minimum when 

( )

( ) ( ) ( )
( )

( )( )

( ) ( )
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d
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d
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1 2 2 2
2 2 1 2 1
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k
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e
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T
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s
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β
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+ + +

+

=

  +  
 ⇒ + + + − + +     + + +     

 
+ − + + − + + + + 

   + − − + + −    +   

( ) 11 2
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1
T T A

s
βα β

β
+

 +    + − =     +      

   (24) 

To prove that there exist a unique value of T in [M, Tw) at where TRC4(T) is minimum, we let 
( )4

5

d
d

T M

TRC T
T

=

∆ ≡ , then 

( ) ( ) ( )
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( ) ( ) ( )

2 2 1
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β

α βαλ λ
β β

+ +  
∆ ≡ + +  + + 

 + 
 + − + +  +  

   +      + − − + + − + −        + +           

      (25) 

and let ( )4
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d
d
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( ) ( ) 11 2
1

1W W
pM T T A
s

βα β
λ
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  (26) 

Then we have the following lemma: 
Lemma 5: 
a) If Δ5 ≤ 0 ≤ Δ6, then the annual total relevant cost TRC4(T) has the unique minimum value at the point T = T4, 

where T4 ∈ [M, Tw) and (24) is satisfied by T4. 
b) If Δ5 > 0, the annual total relevant cost TRC4(T) has a minimum value at the lower boundary point T = M. 
c) If Δ6 < 0, then T ∈ [M, Tw) which minimizes TRC4(T) does not exist. 
Proof: The proof of (a) and (b) is similar to that in Lemma 1 and that of (c) is similar to that in Lemma 3 b. 

Again in (0, M], the total relevant cost TRC3(T) in (11) is minimum when ( )3d
0

d
TRC T

T
= , which is same as  

in (21), since at T = M, then Δ3 = Δ5, now we have the following lemma: 
Lemma 6: 
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a) If Δ5 ≥ 0, then the annual total relevant cost TRC3(T) has the unique minimum value at the point T = T3, 
where T3 ∈ (0, M] and satisfies (21). 

b) If Δ5 < 0, the annual total relevant cost TRC3(T) has a minimum value at the boundary point T = M. 
Proof: The proof is similar to that in Lemma 1 so we omit it. 
From (23) and (26), we get Δ6 ≥ Δ4 for 0 ≤ λ ≤ 1. Again since M < Tw, we get Δ6 ≥ Δ5. Now combining Lem-

mas 4-6 and the fact that TRC1(M) = TRC2(M), we can obtain a theoretical result to determine the optimal cycle 
time T* for Case 2. 

Theorem 2: 
For M < Tw ≤ T0, the optimal replenishment cycle time T*, that minimizes the annual total relevant cost is 

given as follows: 
 

Situation Condition TRC(T*) T* 

Δ6 < 0 Δ4 < 0, Δ5 < 0 Min{TRC1(T1), TRC3(M)} T1 or M 

..…………. ..…………… ...............…………. ..……… 

Δ6 ≥ 0 

Δ4 < 0, Δ5 < 0 Min{TRC1(T1), TRC4(T4)} T1 or T4 

Δ4 < 0, Δ5 ≥ 0 Min{TRC1(T1), TRC3(T3)} T1 or T3 

Δ4 ≥ 0, Δ5 < 0 Min{TRC1(Tw), TRC4(T4)} Tw or T4 

Δ4 ≥ 0, Δ5 ≥ 0 Min{TRC1(Tw), TRC3(T3)} Tw or T3 

4.3. Case 3 M < T0 < Tw 
For [Tw, ∞), the annual total relevant cost is similar as in (9) i.e. TRC1(T). From Lemma 4 of the Case 2, if Δ4 ≤ 
0, TRC1(T) has the unique minimum value at T = T1, where T1 ∈ [Tw, ∞) and satisfies (17) and if Δ4 > 0, then 
TRC1(T) has minimum value at the boundary point T = Tw. 

Again in [T0, Tw), the annual total relevant cost TRC5(T) in (16) is minimum when ( )5d
0.

d
TRC T

T
=  

( ) ( ) ( )
( )

( ) ( ) ( )
( )

( )

22
2 2 1 2 2 2

2

2
2 12 2 1

2

1 21 1 1 2 1 2
2 2 1 2 1

1 2
1 2 0

11

k

k

pDh T T Dp T I DT T T
s

ppI D T T T MT A
s

β β β β

ββ β

α βαβ αβ λ λ α
β β β

α β αβλ λ α
ββ

+ +

++ +

  +    ⇒ + + + − + + +     + + +     
  +    + − + + − − =   +   +    

  (27) 

To prove that there exist a value of T in [T0, Tw) at which minimizes TRC5(T), we let ( )
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        (28) 

and 

( )5
8

d
d

WT T

TRC T
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=

∆ ≡  
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       (29) 

Consequently, we have the following lemma: 
Lemma 7: 
a) If Δ7 ≤ 0 ≤ Δ8, then the annual total relevant cost TRC5(T) has the unique minimum value at the point T = T5, 

where T5 ∈ [T0, Tw) and (27) is satisfied by T5 . 
b) If Δ7 > 0, the annual total relevant cost TRC5(T) has a minimum value at the lower boundary point T = T0. 
c) If Δ8 < 0, then T ∈ [T0, Tw) which minimizes TRC5(T) does not exist. 
Proof: The proof of a) and b) is similar to that in Lemma 1 and that of (c) is similar to that in Lemma 3 b. 
Again in [M, T0], the annual relevant cost is similar to TRC4(T) in (13). TRC4(T) is minimum when 
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  (30) 

Then we have the following lemma: 
Lemma 8: 
a) If Δ5 ≤ 0 ≤ Δ9, then the annual total relevant cost TRC4(T) has the unique minimum value at the point T = T4, 

where T4∈ [M, T0] and (24) is satisfied by T4. 
b) If Δ5 > 0, the annual total relevant cost TRC4(T) has a minimum value at the lower boundary point T = M. 
c) If Δ9 < 0, the annual total relevant cost TRC4(T) has a minimum value at the upper boundary point T = T0. 
Proof: The proof is similar to that in Lemma 1 so we omit it. 
Again in (0, M], the annual total relevant cost is similar to TRC3(T) in (15). We know that at T = M, Δ3 = Δ5, 

so from Lemma 6, if Δ5 ≥ 0, TRC3(T) has unique minimum value at T = T3, where T3 ∈ (0, M) and satisfies (21). 
On the other hand if Δ5 < 0, then TRC3(T) has a minimum value at boundary point T = M. 

Since M < T0 < Tw, from (28) and (30) we can get Δ7 ≤ Δ9. Again we know that Δ5 ≤ Δ9 and Δ5 ≤ Δ7 ≤ Δ8 for 0 
≤ λ ≤ 1. Consequently, combining Lemmas 4, 6, 7 and 8, and the fact that TRC3(M) = TRC4(M), we can obtain 
the theoretical result to get the optimal cycle time T* for Case 3 as: 

Theorem 3: 
For M < T0 < Tw, the optimal replenishment cycle time T*, that minimizes the annual total relevant cost is 

given as follows: 
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Situation Condition Sub-condition TRC(T*) T* 

Δ4 < 0 

Δ8 < 0, Δ9 < 0 
Δ8 < 0, Δ9 ≥ 0 
Δ8 ≥ 0, Δ9 < 0 
Δ8 ≥ 0, Δ9 ≥ 0 

………… 

 

Min{TRC1(T1), TRC4(T0)} T1 or T0 

Min{TRC1(T1), TRC4(T4)} T1 or T4 

Min{TRC1(T1), TRC5(T5), TRC4(T0)} T1 or T5 or T0 

Min{TRC1(T1), TRC5(T5), TRC4(T4)} T1 or T5 or T4 

Min{TRC1(T1), TRC5(T0), TRC4(T4)} T1 or T0 or T4 

Min{TRC1(T1), TRC5(T0), TRC3(T3)} T1 or T0 or T3 

Δ4 ≥ 0 

Δ8 < 0, Δ9 < 0 
Δ8 < 0, Δ9 ≥ 0 
Δ8 ≥ 0, Δ9 < 0 
Δ8 ≥ 0, Δ9 ≥ 0 

………… 

 

Min{TRC1(Tw), TRC4(T0)} Tw or T0 

Min{TRC1(Tw), TRC4(T4)} Tw or T4 

Min{TRC1(Tw), TRC5(T5), TRC4(T0)} Tw or T5 or T0 

Min{TRC1(Tw), TRC5(T5), TRC4(T4)} Tw or T5 or T4 

Min{TRC1(Tw), TRC5(T0), TRC4(T4)} Tw or T0 or T4 

Min{TRC1(Tw), TRC5(T0), TRC3(T3)} Tw or T0 or T3 

5. Solution Procedures 
Here we develop the following algorithm to solve this complex inventory problem by using the characteristics of 
Theorems 1-3 above. 

Algorithm: 
 

Step 1 Compare the values of T0, M and Tw, if Tw ≤ M < T0, then go to step 2. 
If M < Tw ≤ T0, then go to Step 3. Otherwise, if M <T0 < Tw, then go to Step 4. 

Step 2 

Calculate Δ1, Δ2 and Δ3 which are shown as in Equation (18), (20) and (22), respectively. 
1) If Δ1 < 0 and Δ3 < 0, then TRC(T*) = TRC1(T1) and T* = T1. Go to Step 5. 
2) If Δ1 < 0 and Δ3 ≥ 0, then TRC(T*) = min {TRC1(T1), TRC3(T3)} and T* = T1 or T3. Go to Step 5. 
3) If Δ1 ≥ 0, Δ2 < 0 and Δ3 ≥ 0, then TRC(T*) = min{TRC2(T2), TRC3(T3)} and T* = T2 or T3. Go to Step 5. 
4) If Δ2 ≥ 0, then TRC(T*) = min{TRC2(Tw), TRC3(T3)} and T*=Tw or T3. Go to Step 5. 
5) If Δ1 ≥ 0 and Δ3 < 0, then TRC(T*) = TRC2(T2) and T* = T2. Go to Step 5. 

Step 3 

Calculate Δ4, Δ5 and Δ6 which are shown as in Equations (23), (25) and (26), respectively. 
1) If Δ6 < 0, then TRC(T*) = min {TRC1(T1), TRC3(M)} and T* = T1 or M. Go to Step 5. 
2) If Δ4 < 0, Δ5 <0 and Δ6 ≥ 0, then TRC(T*) = min {TRC1(T1), TRC4(T4)} and T* = T1 or T4. Go to Step 5. 
3) If Δ4 < 0 and Δ5 ≥ 0, then TRC(T*) = min{TRC1(T1), TRC3(T3)} and T* = T1 or T3. Go to Step 5. 
4) If Δ4 ≥ 0 and Δ5 < 0, then TRC(T*) = min{TRC1(Tw), TRC4(T4)} and T* = Tw or T4. Go to Step 5. 
5) If Δ4 ≥ 0 and Δ5 ≥ 0, then TRC(T*) = min{TRC1(Tw), TRC3(T3)} and T* = Tw or T3. Go to Step 5. 

Step 4 Calculate Δ4, Δ5, Δ7, Δ8 and Δ9 which are shown as in Equation (23), (25), (28), (29) and (30) respectively. 
If Δ4< 0, then go to Step 4.1. Otherwise, go to Step 4.2. 

Step 4.1 

1) If Δ8 < 0 and Δ9 < 0, then TRC(T*) = min{TRC1(T1), TRC4(T0)} and T* = T1 or T0. Go to Step 5. 
2) If Δ8 < 0 and Δ9 ≥ 0, then TRC(T*) = min{TRC1(T1), TRC4(T4)} and T* = T1 or T4. Go to Step 5. 
3) If Δ8 ≥ 0 and Δ9 < 0, then TRC(T*) = min{TRC1(T1), TRC4(T0), TRC5(T5)} and T* = T1 or T0 or T5. Go to Step 5. 
4) IfΔ7 < 0, Δ8 ≥ 0 and Δ9 ≥ 0, then TRC(T*) = min{TRC1(T1), TRC4(T4), TRC5(T5)} and T* = T1 or T4 or T5. Go to Step 5. 
5) If Δ5 < 0 and Δ7 ≥ 0, then TRC(T*) = min{TRC1(T1), TRC4(T4), TRC5(T0)} and T* = T1 or T4 or T0. Go to Step 5. 
6) If Δ5 ≥ 0, then TRC(T*) = min{TRC1(T1), TRC3(T3), TRC5(T0)} and T* = T1 or T3 or T0. Go to Step 5. 
7) If Δ8 < 0 and Δ9 < 0, then TRC(T*) = min{TRC1(T1), TRC4(T0)} and T* = T1 or T0. Go to Step 5. 
8) If Δ8 < 0 and Δ9 ≥ 0, then TRC(T*) = min{TRC1(T1), TRC4(T4)} and T* = T1 or T4. Go to Step 5. 
9) If Δ8 ≥ 0 and Δ9 < 0, then TRC(T*) = min{TRC1(T1), TRC4(T0), TRC5(T5)} and T* = T1 or T0 or T5. Go to Step 5. 
10) IfΔ7 < 0, Δ8 ≥0 and Δ9 ≥ 0, then TRC(T*) = min{TRC1(T1), TRC4(T4), TRC5(T5)} and T* = T1 or T4 or T5. Go to Step 5. 
11) If Δ5 < 0 and Δ7 ≥ 0, then TRC(T*) = min{TRC1(T1), TRC4(T4), TRC5(T0)} and T* = T1 or T4 or T0. Go to Step 5. 
12) If Δ5 ≥ 0, then TRC(T*) = min{TRC1(T1), TRC3(T3), TRC5(T0)} and T* = T1 or T3 or T0. Go to Step 5. 

Step 4.2 

1) If Δ8 < 0 and Δ9 < 0, then TRC(T*) = min{TRC1(Tw), TRC4(T0)} and T* = Tw or T0. Go to Step 5. 
2) If Δ8 < 0 and Δ9 ≥ 0, then TRC(T*) = min{TRC1(Tw), TRC4(T4)} and T* = Tw or T4. Go to Step 5. 
3) If Δ8 ≥ 0 and Δ9 < 0, then TRC(T*) = min{TRC1(Tw), TRC4(T0), TRC5(T5)} and T* = Tw or T0 or T5. Go to Step 5. 
4) If Δ7 < 0, Δ8 ≥0 and Δ9 ≥ 0, then TRC(T*) = min{TRC1(Tw), TRC4(T4), TRC5(T5)} and T* = Tw or T4 or T5. Go to Step 5. 
5) If Δ5 < 0 and Δ7 ≥ 0, then TRC(T*) = min {TRC1(Tw), TRC4(T4), TRC5(T0)} and T* = Tw or T4 or T0. Go to Step 5. 
6) If Δ5 ≥ 0, then TRC(T*) = min {TRC1(Tw), TRC3(T3), TRC5(T0)} and T* = Tw or T3 or T0. Go to Step 5. 

Step 5 Stop 



S. Bera et al. 
 

 
2691 

6. Numerical Example 
In this section, the present study provides the following numerical example as shown in Huang [5] to illustrate 
all the theoretical results. The values of the parameters are taken randomly. 

We assume that selling price per unit s = $50, ordering cost A = $50/order, demand D = 1000 units/year, pur-
chasing cost p = $20, holding cost h = $5/unit/year, period of permissible delay M = 0.12 year, interest earned Ie 
= $0.07/$/ year, interest charged Ik = $0.1/$/ year, scale parameter α = 0.02, shape parameter β = 1.5. 

We obtain the optimal cycle time and optimal order quantity for different parameters of the fraction of the de-
lay payment λ = {0.2, 0.5, 0.8} and the prefix quantity W = {50, 150, 250} as shown in Table 1. 

7. Sensitivity Analysis 
The purpose of the sensitivity analysis is to identify parameters to the changes of which the solution of the mod-
el is sensitive. The following inferences can be made based on above solution table. 
 
Table 1. Optimal solutions of deterministic model under different parametric values. 

λ W p T* Q* TRC(T*) 

0.2 

50 

10 T2 = 0.1079 107.9771 504.8680 

20 T2 = 0.1074 107.4866 507.6956 

30 T2 = 0.1069 107.0048 510.5040 

150 

10 Tw = 0.1499 150.0000 548.0174 

20 Tw = 0.1499 150.0000 555.6495 

30 Tw = 0.1499 150.0000 563.2817 

250 

10 T3 = 0.1077 107.7332 574.1584 

20 T3 = 0.1065 106.5423 650.3540 

30 T3 = 0.1049 104.9506 730.4759 

0.5 

50 

10 T2 = 0.1079 107.9771 504.8680 

20 T2 = 0.1074 107.4866 507.6956 

30 T2 = 0.1069 107.0048 510.5040 

150 

10 T3 = 0.1078 107.8809 547.6896 

20 Tw = 0.1499 150.00 555.6495 

30 Tw = 0.1499 150.00 563.2817 

250 

10 T3 = 0.1078 107.8809 547.6896 

20 T3 = 0.1070 107.1132 594.9391 

30 T3 = 0.1061 106.1860 643.7362 

0.8 

50 

10 T2 = 0.1079 107.9771 504.8680 

20 T2 = 0.1074 107.4866 507.6956 

30 T2 = 0.1069 107.0048 510.5040 

150 

10 T3 = 0.1079 107.9612 521.8023 

20 T3 = 0.1073 107.4256 541.8210 

30 T3 = 0.1068 106.8711 562.0734 

250 

10 T3 = 0.1079 107.9612 521.8023 

20 T3 = 0.1073 107.4256 541.8210 

30 T3 = 0.1068 106.8711 562.0734 
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1) For fixed W and p, increasing the value of λ will result in a significant increase in the value of the optimal 
order quantity and a significant decrease in the value of the annual total relevant costs as the retailer’s order 
quantity is smaller and only the partially delayed payment is permitted. 

For example when W = 250, p = 30 and λ increases from 0.2 to 0.5, the optimal order quantity will increase 
1.17%((106.1860 − 104.9506)/104.9506) and the annual total relevant costs will decrease 11.87%((730.4759 − 
643.7362)/730.4759). However, if the fully delayed payment is permitted, the optimal order quantity and the 
annual total relevant cost are independent of the value of λ. It implies that the retailer will order a larger quantity 
since the retailer can enjoy greater benefits when the fraction of the delay payments permitted is increasing. So 
the supplier can use the policy of increasing λ to stimulate the demands from the retailer. Consequently, the sup-
plier’s marketing policy under partially permissible delay in payments will be more attractive than fully per-
missible delay in payments. 

2) For fixed λ and p, increasing the value of W will result in a significant decrease in the value of the optimal 
order quantity and a significant increase in the value of the annual total relevant costs. 

For example, when λ = 0.2, p = 30 and W increases from 150 to 250, the optimal order quantity will decrease 
30.03%((150.00 − 104.9506)/150.00) and the annual total relevant costs will increase 29.68%((730.4759 − 
563.2817)/563.2817). It implies that the retailer will not order a quantity as large as the minimum order quantity 
as required to obtain fully permissible delay in payments. Hence, the effect of stimulating the demands from the 
retailer turns negative when the supplier adopts a policy to increase the value of W. 

3) Last, for fixed λ and W, increasing the value of p will result in a significant decrease in the value of the op-
timal order quantity and a significant increase in the value of the annual total relevant cost. However, for the 
case with λ = 0.2 and W = 150 in the numerical example, the optimal replenishment cycle and optimal order 
quantity are fixed and are not affected by the increase of the unit purchase price. The reason is that in this situa-
tion, the retailer trades off the benefits of full delay in payment against the partial delay in payment and enjoys 
the full delay in payment. 

8. ANOVA Analysis 
If the values of λ and W are taken randomly (Table 2), the Two-way ANOVA analysis on Total Relevant Cost 
(TRC) shown in Table 3: 

8.1. Does W Value Affect the Result? 
Since from Table 3, the calculated values are Fcal = 8.17, dfn = 2, dfd = 4, α = 0.05, Ftable = 6.9443 and Fcal > Ftable, 
we conclude that effect of prefixed quantity (W value) on the result (Total relevant cost) is considered extremely 
significant. 
 
Table 2. Cost table: (when p = 10). 

 W = 50 W- = 150 W = 250 

λ = 0.2 504.8680 548.0174 574.1584 

λ = 0.5 504.8680 547.6896 547.6896 

λ = 0.8 504.8680 521.8023 521.8023 

 
Table 3. Two way ANOVA table. 

Source of Variation df Sum-of-squares Mean square Calculated Fcal value Tabular Ftable value 

W value 2 3103 1551 8.170 6.9443 

Fraction of permissible delay 2 1064 531.8 2.800 6.9443 

Residual (error) 4 759.6 189.9   

Total 8 4926    
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8.2. Does Fraction of Permissible Delay Affect the Result? 
From the calculated values of Table 4, Fcal = 2.80, dfn = 2, dfd = 4, α = 0.05, Ftable = 6.9443 and since Fcal < Ftable, 
we can conclude that effect of fraction of permissible delay (λ value) on the result (Total relevant cost) is consi-
dered not quite significant. 

From the above analysis we can conclude that the fraction of permissible delay has no effect overall i.e., the 
effect is considered not significant. 

8.3. Does W Value Affect the Result? 
Since from Table 5 the calculated values of Fcal = 6.611, dfn = 2, dfd = 4, α = 0.05, Ftable = 6.9443 and Fcal < Ftable, 
we conclude that effect of prefixed quantity (W value) on the result (Total relevant cost) is considered not quite 
significant. 

8.4. Does Fraction of Permissible Delay Affect the Result? 
From the calculated values of Table 6, Fcal = 1.424, dfn = 2, dfd = 4, α = 0.05, Ftable = 6.9443 and Fcal < Ftable, we 
can conclude that effect of fraction of permissible delay (λ value) on the result (Total relevant cost) is considered 
not quite significant. 

From the above analysis we can conclude that after increasing the price rate the effect of W value and the 
fraction of permissible delay on the result is considered not significant overall i.e., the effect is considered not 
significant. 

8.5. Does W Value Affect the Result? 
From the values of Table 7, Fcal = 5.913, dfn = 2, dfd = 4, α = 0.05, Ftable = 6.9443 and Fcal < Ftable, we can con-
clude that effect of prefixed quantity (W value) on the result (Total relevant cost) is considered not quite signif-
icant. 
 
Table 4. Cost table: (when p = 20). 

 W = 50 W- = 150 W = 250 

λ = 0.2 507.6956 555.6495 650.3540 

λ = 0.5 507.6956 555.6495 594.9391 

λ = 0.8 507.6956 541.8210 541.8210 

 
Table 5. Two way ANOVA table. 

Source of Variation df Sum-of-squares Mean square Calculated Fcal value Tabular Ftable value 

W value 2 11620 5810 6.611 6.9443 

Fraction of permissible delay 2 2503 1251 1.424 6.9443 

Residual (error) 4 3515 878.8   

Total 8 17640    

 
Table 6. Cost table: (when p = 30). 

 W = 50 W- = 150 W = 250 

λ = 0.2 510.5040 563.2817 730.4759 

λ = 0.5 510.5040 563.2817 643.7362 

λ = 0.8 510.5040 562.0734 562.0734 
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Table 7. Two way ANOVA table. 

Source of Variation df Sum-of-squares Mean square Calculated Fcal value Tabular Ftable value 

W value 2 27760 13880 5.913 6.9443 

Fraction of permissible delay 2 4795 2398 1.021 6.9443 

Residual (error) 4 9390 2347   

Total 8 41950    

8.6. Does Fraction of Permissible Delay Affect the Result? 
Since Fcal = 1.021, dfn = 2, dfd = 4, α = 0.05 and Ftable = 6.9443 and Fcal < Ftable, we also conclude that effect of 
fraction of permissible delay (λ value) on the result (Total relevant cost) is considered not quite significant. 

From the above analysis we can conclude that after increasing the price rate the effect of W value and the 
fraction of permissible delay on the result is considered not significant overall i.e., the effect is considered not 
significant. 
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9. Conclusion 
In this paper, we develop a deterministic inventory model under the conditions of permissible delay in payments 
by considering the following situations simultaneously: 1) the retailer’s selling price per unit is higher than the 
purchase price; 2) the interest charged by a bank is not necessarily higher than the retailer’s investment return 
rate; 3) many selling items deteriorate continuously such as fresh fruits and vegetables and 4) the supplier may 
offer a partial permissible delay in payments even if the order quantity is less than W. Considering all these facts, 
this inventory model has been developed to make more realistic and flexible marketing policy to the retailer. 

References 
[1] Goyal, S.K. (1985) Economic Order Quantity under Conditions of Permissible Delay in Payments. Journal of the Op-

erational Research Society (JORS), 36, 335-338. http://dx.doi.org/10.1057/jors.1985.56 
[2] Aggarwal, S.P. and Jaggy, C.K. (1995) Ordering Policies of Deterioration Items under Permissible Delay in Payments. 

Journal of the Operational Research Society (JORS), 46, 658-662. http://dx.doi.org/10.1057/jors.1995.90 
[3] Chang, C.T., Ouyang, L.Y. and Teng, J.T. (2003) An EOQ Model for Deteriorating Items under Supplier Credits 

Linked to Ordering Quantity. Applied Mathematical Modelling (AMM), 27, 983-996.  
http://dx.doi.org/10.1016/S0307-904X(03)00131-8 

[4] Chang, K.J. and Liao, J.J. (2004) Lot-Sizing Decisions under Trade Credit Depending on the Ordering Quantity. Com-
puters & Operations Research (COR), 31, 909-928. http://dx.doi.org/10.1016/S0305-0548(03)00043-1 

[5] Huang, Y.F. (2007) Economic Order Quantity under Conditionally Permissible Delay in Payments. European Journal 
of Operational Research (EJOR), 176, 911-924. http://dx.doi.org/10.1016/j.ejor.2005.08.017 

[6] Ouyang, L.Y., Teng, J.T., Goyal, S.K. and Yang, C.T. (2009) An Economic Order Quantity Model for Deteriorating 
Items with Partially Permissible Delay in Payments Linked to Order Quantity. European Journal of Operational Re-
search, 194, 418-431. http://dx.doi.org/10.1016/j.ejor.2007.12.018 

[7] Das, D., Roy, A. and Kar, S. (2010) Improving Production Policy for a Deteriorating Item under Permissible Delay in 
Payments with Stock-Dependent Demand Rate. Computers and Mathematics with Applications, 60, 1973-1985.  
http://dx.doi.org/10.1016/j.camwa.2010.07.031 

[8] Teng, J.T., Krommyda, I.P., Skouri, K. and Lou, K.R. (2011) A Comprehensive Extension of Optimal Ordering Policy 
for Stock-Dependent Demand under Progressive Payment Scheme. European Journal of Operational Research, 215, 
97-104. http://dx.doi.org/10.1016/j.ejor.2011.05.056 

[9] Min, J., Zhou, Y.W., Liu, G.Q. and Wang, S.D. (2012) An EPQ Model for Deteriorating Items with Inventory-Level- 
Dependent Demand and Permissible Delay in Payments. International Journal of Systems Science, 43, 1039-1053.  
http://dx.doi.org/10.1080/00207721.2012.659685 

[10] Ouyang, L.Y. and Chang, C.T. (2013) Optimal Production Lot with Imperfect Production Process under Permissible 
Delay in Payments and Complete Backlogging. International Journal of Production Economics, 144, 610-617.  
http://dx.doi.org/10.1016/j.ijpe.2013.04.027  

http://dx.doi.org/10.1057/jors.1985.56
http://dx.doi.org/10.1057/jors.1995.90
http://dx.doi.org/10.1016/S0307-904X(03)00131-8
http://dx.doi.org/10.1016/S0305-0548(03)00043-1
http://dx.doi.org/10.1016/j.ejor.2005.08.017
http://dx.doi.org/10.1016/j.ejor.2007.12.018
http://dx.doi.org/10.1016/j.camwa.2010.07.031
http://dx.doi.org/10.1016/j.ejor.2011.05.056
http://dx.doi.org/10.1080/00207721.2012.659685
http://dx.doi.org/10.1016/j.ijpe.2013.04.027


http://www.scirp.org/
http://www.scirp.org/
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
mailto:submit@scirp.org

	An Inventory Model for Deteriorating Items under Conditionally Permissible Delay in Payments Depending on the Order Quantity
	Abstract
	Keywords
	1. Introduction
	2. Mathematical Notations and Assumptions
	2.1. Notation
	2.2. Assumptions

	3. Mathematical Formulation
	3.1. Case 1: Tw ≤ M < T0
	3.1.1. Sub-Case 1.1: M ≤ T
	3.1.2. Sub-Case 1.2: 
	3.1.3. Sub-Case 1.3: 0 < T < Tw

	3.2. Case 2: M < Tw ≤ T0 (cf. Figure 2)
	3.2.1. Sub-Case 2.1: Tw ≤ T
	3.2.2. Sub-Case 2.2: M ≤ T < Tw
	3.2.3. Sub-Case 2.3: T ≤ M

	3.3. Case 3: M < T0 < Tw (cf. Figure 3)
	3.3.1. Sub-Case 3.1 Tw ≤ T
	3.3.2. Sub-Case 3.2 T0 ≤ T < Tw
	3.3.3. Sub-Case 3.3 M ≤ T ≤ T0
	3.3.4. Sub-Case 3.4 T ≤ M


	4. Theoretical Results
	4.1. Case 1 Tw ≤ M < T0
	4.2. Case 2 M < Tw ≤ T0
	4.3. Case 3 M < T0 < Tw

	5. Solution Procedures
	6. Numerical Example
	7. Sensitivity Analysis
	8. ANOVA Analysis
	8.1. Does W Value Affect the Result?
	8.2. Does Fraction of Permissible Delay Affect the Result?
	8.3. Does W Value Affect the Result?
	8.4. Does Fraction of Permissible Delay Affect the Result?
	8.5. Does W Value Affect the Result?
	8.6. Does Fraction of Permissible Delay Affect the Result?

	9. Conclusion
	References

