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Abstract

In this paper, the fundamental theorem of Yetter-Drinfeld Hopf module is proved. As applications,
the freedom of tensor and twisted tensor of two Yetter-Drinfeld Hopf algebras is given. Let A be a
Yetter-Drinfeld Hopf algebra. It is proved that the category of A-bimodule is equivalent to the cat-
egory of AQ® A -twisted module.
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1. Introduction

Let k beafieldand A analgebra. Aleft A-moduleisa Kk -vectorspace V together witha k -linear map
A®V —V such that ab—>v=a —>(b —>v) and 1—v=v. The category of left A-module is denoted by
AM . Dually, let (C,A,g) be a coalgebra. A left C-comodule is a k -vector space V together with a k
-linearmap p:V >V ®C such that

Z(a’1)1®(a’1)2 ®a’ :Za*@(ao)fl@(a")o, Ye(at)a’ =a

The category of left C -comodule is denoted by M . For more about modules and comodules, see [1]-[3].
Assume that H is a Hopf algebra with antipode S, a left Yetter-Drinfeld module over H isa k -vector
space V which isbothaleft H -module and left H -comodule and satisfies the compatibility condition

Y(h—v) ' ®h-v) =3 hv's(h)®h, >\,

for all he H, veV . The category of left Yetter-Drinfeld module is denoted by | YD . Yetter-Drinfeld mod-
ules category constitutes a monomidal category, see [4]. The category is pre-braided; the pre-braiding is given by
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T VOW SWRV, vews (vi-w)ev.

_ The map is a braiding in "YD precisely when Hopf algebra H has a bijective antipode S with inverse
S of S.Inthis case, the inverse of 7, is

oW (W ®V 5V oW, W®V»—>ZV°®S_(V’1)—>W.

Let H be a Hopf algebra and |;YD the category of left Yetter-Drinfeld module over H . We call A a
Hopf algebra in [;YD or Yetter-Drinfeld Hopf algebra if A isa k-algebra and a k -coalgebra, and the fol-
lowing conditions (al)-(a6) hold for he H, a,be A,

(al) A isaleft H -module algebra, i.e.,

h—(ab)=>(h »>a)(h, >b), h—>1,=¢(h)L,.

(a2) A isaleft H -comodule algebra, i.e.,

p(ab)=Y(ab)" ®(ab)’ =Y ab'®a’’, p(L,)=1, ®1,
(@3) A isaleft H -module coalgebra, i.e.,

A(h—>a)=>(h »>a)®(h,>a,) e(h—oa)=¢,(h)e,(a).
(a4) A isaleft H -comodule coalgebra, i.e.,

Z“a‘l(@(ao)l@(ao)2 =Y a'a'®a®a;, Ya's(a’)=g,(a)l,.
(@5) A, ¢ arealgebramapsin YD, i.e.,
A(ab)=Ya (a,' >b)®ah,, A(1)=1®1 &(ab)=z(a)e(b), £(1,)=L.

(a6) There existsa k -linear map S:A— A in [JYD such that

2.S(a)a, =¢(a)ly = aS(a,)

One easily get that S is both H -linear and H -colinear. In general, Yetter-Drinfeld Hopf algebras are not
ordinary Hopf algebras because the bialgebra axiom asserts that they obey (a5). However, it may happen that
Yetter-Drinfeld Hopf algebras are ordinary Hopf algebras when the pre-braiding is trivial, for details see [5].

Yetter-Drinfeld Hopf algebras are generalizations of Hopf algebras. Some important properties of Hopf alge-
bras can be applied to Yetter-Drinfeld Hopf algebra. For example: Doi gave the trace formular of Yetter-Drin-
feld Hopf algebras in [6] and studied Hopf module in [7]; Chen and Zhang constructed Four-dimensional Yet-
ter-Drinfeld module algebras in [8]; Zhu and Chen studied Yetter-Drinfeld modules over the Hopf-Ore Exten-
sion of Group algebra of Dihedral group in [9]; Alonso Alvarez, Fernandez Vilaboa, Gonzalez Rodriguez and
Soneira Calvoar considered Yetter-Drinfeld modules over a weak braided Hopf algebra in [10], and so on.

Hopf module fundamental theorem plays an important role in Hopf algebras. This theory can be generalized
to Yetter-Drinfel Hopf algebras.

Theorem 1.1. Let A be a Yetter-Drinfeld Hopf algebra, M €4 M be a Yetter-Drinfeld Hopf module, then
M= A®M asleft A Yetter-Drinfeld Hopf module.

Note that Theorem 1.1 was appeared in [7], but we give a different proof with Doi’s here.

Let A bea Yetter-Drinfeld Hopf algebra. Define the multiplication of (A® A)T as

(a®b)(c®@d)=Y a(b™ —>c)®b°d,

then (A® A)T is an algebra. But it is not a Yetter-Drinfeld Hopf algebra if z is not the trivial twist T. As ap-
plications of Yetter-Drinfeld Hopf module fundamental theory, we have the freedom of the tensor of Yet-
ter-Drinfeld Hopf algebras and twisted tensor of Yetter-Drinfeld Hopf algebras.

Theorem 1.2. Let A be a Yetter-Drinfeld Hopf algebra, then A® A and (A® A)T are free over A.

)
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T

We also proved the category of Yetter-Drinfeld. A -bimodule is equivalent to the category of (A® A)
module.

Theorem 1.3. Let A be a Yetter-Drinfeld Hopf algebra. Then the category of ,M, and
equivalent.

(hoAY M are
2. The Freedom of Yetter-Drinfeld Hopf Algebras

In this section, we require H is a Hopf algebra and A is a Yetter-Drinfeld module over H . Moreover, we
need A is a Yetter-Drinfeld Hopf algebra. Next, we will give the definition of Yetter-Drinfeld Hopf module,
also see [7].

Definition 2.1. Let A be a Yetter-Drinfeld Hopf algebra. The Yetter-Drinfeld Hopf module over A is de-
fined by the following

1) M isaleft A-module and left A-comodule with comodule map p,, :M - A®M

2) py isa A-modulemap,ie., p,(am)=>a (a' —>m,)®am,  where a, a,<A.
Note that A isaleft H -comodule with p,(a)=>a*®a’ acA,and M isaleft A-comodule with
Py (M)=>'m ®my, meM . The Yetter-Drinfeld Hopf module category over A is denoted by M .

Define “*M = {m|,oM (m)=1® m} is the set of coinvariant elelments of M . Next conclusion is similar to
the fundamental theorem of Hopf algebra, we call it as the fundamental theorem of Yetter-Drinfeld Hopf mod-
ule.

Theorem 2.2. Let A be a Yetter-Drinfeld Hopf algebra, M €4 M be a Yetter-Drinfeld Hopf module.
Then M = A®™“ M asleft A Yetter-Drinfeld Hopf module.

Proof: We define o: A®*M —M by a@mi>a-m and S:M - A M by

me Y m?®s(m?)-m’.
First, we show that £ is well-defined, i.e., > S(m_)-m, €A M . In fact, we have
p(ZS(mﬁl)-mo):Z(S(mfz))l(s(mfz);l —>mfl)®(8(m72))2 Mo
=>mi > S(mfz)(mj - mfl)@)s(mfa)0 -m,
=>m, —>(S(m_2)(m_1))®8(m_3)°-mo
=>m, >s(m,)®s(m,)" -m,
=>'S(m)-m.

So > S(m,)m, e M.Thus f iswell-defined.
We will show that « isthe inverse of S .Indeed, if meM we have

ap(m)=a(Xm,®S(m,)-m)=>m,S(m,)-m =3 ¢g(m,)m,=m,
Hence af =id . Conversely, if me™ M, ae A, then
pa(a®m)=p(a-m)=> (a-m) ,®S(a-m)_-(a-m),
= Z(ai(az’1 N m_l))l ®S((a1(a2’1 N m_l))z)az2 ‘m,
=Y a,®S(a,)a,-m=a®m,

which show that o =id too. It remains to show that « is a morphism of H -module and H -comodule.
The first assertion is clear, since

a(b-(a®m))=a(ba®m)=ba-m=b-a(a®m).

Next, we show that o isa H -comodule morphism, i.e. pa =(id ® «)(A®id). Indeed, we have
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poc(a@bm):p(a-m):Zai(a;1 —>m_1)®a§’-m0 =Y a,®a,-m=(id®a)(A®id)(a®m).

This complete the proof.
Proposition 2.3. We have A® A is a Yetter-Drinfeld Hopf module over A.
Proof: A® A is an A-module by the trivial module action: a-(b@c):ab@c. In fact, for a,be A,

c®deA®A, we have a(b(c®d))=a(bc®d)=abc®d =(ab)(c®d) and 1(c®d)=c®d. The A-co-

module structure of A® A is defined by p(a@b) = 231 ®a, ®bec AQ A® A. Itiseasy to check A®A is
an Yetter-Drinfeld Hopf module over A, we omit it.

Theorem 2.4. Let A be a Yetter-Drinfeld Hopf algebra, then A® A is free over A.

Proof: Apply M =A® A to the fundamental theorem of Yetter-Drinfeld Hopf algebra, then « and g
become «:a®(b®c)—a(b®c)=ab®c and

Bb®c > b ®S(b,)(b,®c)="b ®(S(b,)b,®c)=b®(1®c).
Next, we show that SBa =id = af . In fact, we have

pa(a®(b®c))= B(ab®c) =Y (ab), ®S((ab),)-((ab), ®c)
=Xa (2" >)o5((alb,))-((at.), @c)
=>a(a' b ®S(a2)l( ; )) (a9) b ®c)
=Y a(a'a’ —>bl)®s(ag(a3 —b,) )(agb ®c)
=Ya (a2’ >b)@S(a’ >b,)s(a) ((aib:) Oc)
=Za1(a2‘lag2—>1)®S(a3‘l—>1)s(a§)(a§b3®c)
=>"a, ®Sa, (a,b, ®c)

D a,®S(a,)ab,®c
®(b®c).

and

ap(b®@c)=a(X b @S (b,) (b ®c))=3b,(S(b,)(b @c))=bec.

Hence, we have fa =id =af.
Moreover, « isan A-module map. Since a(a(b ®(c®d ))) =a(ab®(c®d))=abc®d and
aa(b®(c®d))=a(bc®d)=abc®d . Furthermore, o isalsoan A-comodule map by the following. Take

acA b®ce™ (A®A), then p(b®c)=> b ®b,®c=1®b®c.We have
p(a(a®(b®c)))=p(ab®c)=>(ab), ®(ab), ®c=>"a (3" > )®ah, ®c=>"a ®a,b®c
and
(id®a)(A®id)(a®(b®c))=(id®a)(D a ®a, ®b®c)=) a ®abc.
Inaword, A A= A®°°A(A®A),so A® A isfree over A. This completes the proof.

3. Twist Yetter-Drinfeld Hopf Module
Let A bea Yetter-Drinfeld Hopf algebra over Hopf H . Define the multiplication of (A® A)T as follows:

(a®b)(c®d)=Ya(b™ —c)®b’, @)

=)
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Lemma 3.1. Let A be a Yetter-Drinfeld Hopf algebra, then (A® A)’ is an algebra with multiplication (1).
Proof: We only need to check the associativity of (A® A)’

(a®b)(c@d))(e® f)= (a(b* >c)@bd)(e®f)=a(b? >c)(b’d* >e)®b’d’f
=a[b™ > (c(d* >e)))®bCdf
= (a®b)(c(d™ >e)®df )= (a®b)((c®d)(e® f)).

And 1®1 isthe unitelementof (A®A)". Thus (A®A)" isan algebra.

Remark 3.2. (A® A)T is a Yetter-Drinfeld Hopf algebra if and only if =T . See reference [5] for the de-
tails.

Denote the A -bimodule category by ,M,, and (A® A)T -module category by

(A®A)

Theorem 3.3. Let A be a Yetter-Drinfeld Hopf algebra. Then the category of ,M, and .M are

(A®A)
equivalent.
Proof: we are going to construct the functor F:, M, ~ aoay M as follows. Let M be an A -bimodule.
We denote the two-side actionon M by “.”. Define F(M)=M as k -space with the left (A® A)T action
given by

(a®b)m=>a:(b* ->m)-S(b,), abeA meM,
We claim that the action is well-defined, i.e. ((a®b)(c®d))m=(a®b)((c®d)m). In fact, we have
(a®b)(c®d))m=3(a(b™ >c)®b’d)m=3a(b? —>c)-(bd ™ > m)-5(b%"°)
=S (afo > o) (b7 > m) (o 5(6°))s (1)
and
(a®b)((c®d)m):Z(a®b)(c-(d’l—>m)~S(d°)):Za(b’l—>(c-(d’1—>m)-S(d°)))-S(b°)
=X(a(b? >e))- (o7 > m)-(5" > 5(d"))s(e°).
By comparing the above two identities, we have M and (A® A)" -module.
Moreover, we have the functor G: = M —, M, given as follows: Let N bealeft (A® A) -module,

(A®A)
define G(N) tobe N as k-space, andits A -bimodule structure givenby a-n=(a®1)n and

n-b= Z(l@) S’l(bo))(s_(b’l) - n) . Note that S denotes the inverse of S, and S denotes the inverse of
S, - Clearly, G(N) isaleft A-module. Note that

(n-a)-b= Z(l® S’l(bo))(_(b’l) - (n~a))

1®S ( ®S *(a ))(§(a’l)—>n))
-(1@5™ (1@ N 1(a°)))(§(b’2)§(a’l)—>n)
oo e e
= (1057 (a))(s ( ) n)=n-(ab).

Hence, G(N) isalsoaright A-module. We have
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(a-n)-b=(a®l)n-b= Z(a@l)(l@ S‘1<b°))(§(b‘1) - n)

and
a-(n-b)=Ya-(1®s7(b°)S(b™) > n) = (a®1) (1@ (b°))(S (b™*) > n),

therefore, G(N) isa A-bimodule. It is easy to check that the functors F and G are inverse to each other.
This completes the proof.
Let A bea Yetter-Drinfeld Hopf algebra, then (A® A)" isaright A-module by

(a®b)-cioYa(bt —>¢ )®bCc, .

Recall that if V is a vector space, then V ® A isafree A-module with the action (v® a)b =v®ab.
Theorem 3.4. The right A -module (A® A)T defined above is free over A.
Proof: Let V denote the underlying space of A. Thus V ® A become a right free module. Define a map

v (A®A) >V ®A:a®b=> aS(b)®b,. Itisobvious that y is a bijection with inverse

“(a®b)=>ab ®b, . Weclaim that y isaright A-module morphism, then we are done.
In fact, we have

v((a®b)c)=

a(b™ ¢ ((b° ) b’c,

2

)
abl—>cl (bl b° —>c2))®b§c3
)

? (0, > cz))®b°c3

Il
MMMM[;?MMM

Il
g
QD

(b)®b,c.

Note that the right A -module structure on V®A is (v®a)-b=v®ab,so y(a®b)-c=> aS(h)®b,c.
Thus we have proved that y ((a®b)-c) =y (a®b)-c. This completes the proof.
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