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Abstract 
The qualitative solutions of dynamical system expressed with nonlinear differential equation can 
be divided into two categories. One is that the motion of phase point may approach infinite or sta-
ble equilibrium point eventually. Neither periodic excited source nor self-excited oscillation exists 
in such nonlinear dynamic circuits, so its solution cannot be treated as the synthesis of multi- 
harmonic. And the other is that the endless vibration of phase point is limited within certain range, 
moreover possesses character of sustained oscillation, namely the bounded nonlinear oscillation. 
It can persistently and repeatedly vibration after dynamic variable entering into steady state; 
moreover the motion of phase point will not approach infinite at last; system has not stable equi-
librium point. The motional trajectory can be described by a bounded space curve. So far, the 
curve cannot be represented by concretely explicit parametric form in math. It cannot be ex-
pressed analytically by human. The chaos is a most universally common form of bounded nonli-
near oscillation. A number of chaotic systems, such as Lorenz equation, Chua’s circuit and lossless 
system in modern times are some examples among thousands of chaotic equations. In this work, 
basic properties related to the bounded space curve will be comprehensively summarized by ana-
lyzing these examples. 
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1. Introduction 
1.1. State Description of Nonlinear Dynamic System  

solutions of nonlinear dynamical system
bou

non-bounded non-oscillation solutions
periodic solution

nonlinear oscillations
aperiodic solution--chaos

nded 








 

The solutions of nonlinear dynamic system can be classified as indicated above. 
The motional form of particle or charge in nonlinear dynamic system can be described by state equation. Its 

solution can be represented by phase portrait. The motional trajectory of phase point in 3-dimensions phase 
space can be expressed by a space curve. Its parametric forms and other expressions of intersection surface are 
shown in (1). The motional trajectory denoted by (1) can be divided into two categories. First, the motional tra-
jectory will tend to be infinite or return to stable equilibrium point at last. For example, the parametric equation 
of circular helix is shown in (2). It is a space curve denoted by rectangular coordinates. The trajectory of the 
space curve approaches infinite. It is not bounded. 

( ) ( ) ( ) ( ) ( ), , , , 0, , , 0x x t y y t z z t F x y z x y zφ= = = = =                     (1) 

cos , sin ,x t y t z tα ω α ω βω= = = ±                           (2) 

Second, the motional form of phase point will neither tend to be infinite, nor return to stable equilibrium point 
at last (or system has not stable equilibrium point), but always wander endlessly within definite range of phase 
space belong to bounded oscillation solution. 

The bounded oscillation solution can also be divided into two categories. One is periodic oscillation or con-
stant periodic oscillation. This kind of oscillation can be expressed as Fourier series. Another one is called non- 
constant periodic oscillation or aperiodic oscillation for short. Dynamic variable in such oscillation will keep os-
cillating continuously at last without determination period, or its period is infinitely or sufficiently long. Al-
though the orbit in phase portrait is always without repetition, the sustained oscillation with infinite or sufficient 
length is deterministic. Such a phenomenon is called orbital chaos of continuous time system. 

1.2. Birth of Chaos Regarding Academic Term  
The birth of modern chaos theory or the source of term chaos is not consistent in different literatures. The Lo-
renz is father of chaos or raise of Lorenz equation in 1963 is the first precedent of studying chaos theory [1]. 
Above opinion has been supported in many literatures. In a lot of other literatures, however, it is considered that 
the term—chaos was imported firstly in Li-Yorke Theorem put forward by Li Tianyan and Yorke. When they 
proposed Period Three Implies Chaos and published it in American Mathematical Monthly in 1975, technical 
term chaos was used for the first time in history of mathematics and science. Since then definition of chaos was 
truly imported into mathematics, so this should be treated as real birth of chaos theory of mathematics. Moreo-
ver, Lorenz equation is just a model of chaos born in continuous time system, while chaos theory put forward by 
Li-Yorke includes concept of discrete chaos (e.g. the famous Logistic map). The theorem gives more extensive 
meaning to the term chaos. Objectively and fairly, the Ukrainian mathematician, Sharkovsky also made contri-
bution to scientific theory of chaos. The some results proved by Sharkovsky are more general than Li-Yorke 
Theorem as early as in 1964.  

2. Chaos Is Most Universally Common Form of Bounded Oscillation Solution  
2.1. Describing Chaos Using Bounded Space Curve 
Continuously, chaotic oscillation is the most universally motional form of phase point in multi-dimensions phase 
space. It has characteristics of mis-convergence, mis-divergence and aperiodicity during observation interval. Its 
Fourier transformation exists. Human can only conclude differential equations constraining such kind of chaotic 
function, can only cognize its general expression as shown in (1), where 2 2 2x y z+ + < ∞  when t →∞ , it is 
bounded to differ from (2). Obviously, chaos as a kind of bounded nonlinear function displayed in phase portrait 
is much more complicate compared with (2). Its extent of complex can enough be believed. This space curve 
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cannot be represented by concretely explicit parametric form in math. It cannot be expressed analytically by 
human. It exists no in math manuals. In other words, chaotic function has not concretely explicit math expres-
sion. It only has phase portrait. However, this kind of chaotic function extensively exists in natural science. De-
scribing the motional trajectory of phase point using bounded space curve, chaotic functions which are not in-
troduced in math manual are universal, while some functions introduced in math manual are special. These 
functions which have concretely possessed explicit math expression are specific. 

2.2. The Complexity Is Common Phenomenon Instead of Singular  

Modern chaos theory covers everything, and chaos can be found in every subject area. Although it is compli-
cated, it is the most common phenomenon with universality in the nature. In the past, the nature recognized by 
human is limited in simple situations. For example, only two situations, divergence and convergence were stu-
died in discrete iterative map previously. When a kind of sequence is found, that is neither divergent nor con-
vergent, humanity considered singular and special in past. It is unilateral that the humanity hardly realizes objec-
tive truth of the nature. In fact, the sequence of neither divergent nor convergent is universal phenomenon in the 
nature, while the divergent and convergent sequences are two simplest special situations. Taking the Lorenz eq-
uation, Chua circuit and lossless circuit as typical examples, this paper analyzes and studies orbital chaos in con-
tinuous time system to illustrate the basic properties of continuous chaos.  

Chaos is a popular form of oscillation solution (the orbit will never repeat during observation), while its de-
generated forms, namely periodic orbit and limit cycle are special forms of oscillation solution, both of which 
are generally called oscillation solution. In other words, it is a very ordinary and common that character and 
patterns of non-linear oscillation solution displayed in phase portrait are extremely complex. But the complicacy 
cannot explain the chaos is singular.  

In last century, the era when chaos theory was first published, chaos was considered as a singular attractor in a 
lot of literatures. Human may absolutely ask an inversive question in recognition of objective truth in the nature. 
Why can the phase point persistently repeat original motional orbit? Why is it so strange?  

People can also make a completely opposite conclusion: The motional trajectory of phase point will neither 
diverge to be infinite nor converge to stable limit cycle. The phase point which freely and arbitrarily wanders in 
phase space (non-random but deterministic) is ordinary and universal motional form. The constant periodic os-
cillation which continuously repeats original orbit is an individual and special motion form.  

So far, half a century has passed since Lorenz first discovered chaos in 1963. Appearance of chaos system 
doesn’t shake the basic theory of differential equation and doesn’t get rid of constraint of all subject theories and 
scientific laws in natural science. No matter how it changes, however, establishing state equations can not vi-
olate regulars and laws of various subject theories. Chaotic phase portrait can be plotted, only when it is sup-
ported by differential equation theory and numerical simulation technique. So what are its singularities on earth?  

2.3. The Extensiveness of Chaotic Function  
Nowadays, new chaos systems spring up constantly. New chaos and deformation put forward in various litera-
tures make a great innovative contribution to development of chaos theory [2]-[6]. The chaos can be correctly 
recognized and applied, only when generality character is concluded and abstracted from these literatures. Based 
on the original equation of chaos, some non-linear items are added. With such addition, if new stable equili-
brium point will never appear in the system and ideal character will also never appear in the system, phase point 
will never tend to be infinite. Then, it is inevitable that another chaos or super-chaos system will be created. 
Various non-linear chaos systems will be put forward in succession (frequency occurrence in recent literatures) 
with deep study and practical engineering application of chaos in the near future. And such tendency will de-
velop rapidly.  

It is not difficult to create a chaos system with nonlinear function, as long as chaotic phase portrait created 
with numerical simulation are new or deformed diagrams, then a new chaotic function is certainly constituted. 
When a circuit contains three or above dynamic variables, for example, Chua’s and Colpitts circuit can create 
various chaotic equations [7]-[9]. Just like there are a lot of non-linear functions in mathematics, certainly, there 
also is a great deal of chaotic function in various subject areas. After development for a certain time, a great 
amount of chaos or super-chaos systems will be built up in near future. Then present chaos systems in a small 
number will become very ordinary, including Lorenz equation. This equation will become a common example 
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among thousands of non-linear oscillation equation without any unique character. However, contribution of Lo-
renz is still indelible because he is the first one to put forward this kind of phenomenon. 

3. Multiple Kinds of Chua’s Circuit Deformation and Butterfly Effect  
Various kinds of Chua’s circuit family show the deformed equations can be created in a very extensive range 

( ) ( )1 1 2 1 0 2 2 1 2 0 2C C C N C C C L L CC V V V g i C V V V g i Li V= − − = − + = − 
             (3a) 

0 0 3 1 1 0 0 1
2 1 1

1 2 1 2 1 1 2 1 2

61 0N C C N N C
C C C

g g g a V V g g i g V
V V V

C C C LC C C C C C L
   +

+ + + + + + + =  
   



               (3b) 

( ) 3 2 4 6 2
1 3 1 3 1 3 1 33 8 10 10 3 4N N N N N N NF mi f v a v a v g a a v a a g a a V− −= = − + = − + = × = = − +           (4a) 

6 6 3
2 1 0 10.0082; 0.05 10 ; 0.0055 10 ; 0.752 110 ; C NL C C g V v− − −= = × = × = × =             (4b) 

1 1 1 1 1 2 2 2 2 2sin 20766 9.364 sin 46521 30.54N Nm Nm N Nm Nmv V t V v V t Vω ω ω ω= = = = = =            (5) 

Example 1: The first kind of Chua’s circuit deformation has two different oscillation characters, which means 
there also is butterfly effect in it. The circuit is shown in Figure 1, and its equation is shown in (3). Its parame-
ters after deformation are shown in (4), where Ni  denotes current of voltage-controlled nonlinear device Ng , 
the NFg  denotes equivalent first harmonic conductance. The (3) is found by harmonic balance principle. Two 
sets of fundamental wave solution 1Nv  and 2Nv  can be determined with power balance theory or fundamental 
wave analysis method. The corresponding two fundamental wave voltage amplitudes and two frequencies are 
shown in (5), which are consistent with the data in [10]. In the solution, the voltage Nv  of entering into nonli-
near device Ng  is the fundamental wave sinN mv V tω= , instead of adding two harmonic components. The 

1 2N N Nv v v= +  is not used to substitute into equation for balance. The 1Nv  and 2Nv  are dependent compo-
nents of satisfying power balance. Two fundamental wave solutions are shown in (5), which means no unique 
fundamental wave in this dynamic system. It is impossible to have two fundamental waves in expansion of 
Fourier series, so it’s sufficient to show that the final result of its oscillation is aperiodic. If the parameters 1a  
shown in (4) is reduced, when 4

1 7 10a −= × , only one fundamental wave solution can be obtained. Its phase 
portrait is a limit cycle. 

We draw a phase portrait of Chua’s circuit and take phase points in the last one percent to represent the curve 
described after entering into steady state. Figure 2 shows that there are two different oscillation characters for 
different network parameters.  
 

 
Figure 1. Chua’s circuit.                                     

 

             
(a)                                                  (b) 

Figure 2. The first kind of Chua’s circuit deformation horizontal is Vc1 and vertical is Vc2. (a) 4
1 8 10a −= × , Chaos with 

small scope; (b) 4
1 7 10a −= × , Limit cycle with big scope.                                                          
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The 1cria  denotes critical value, when ( )5 5
1 174 10 ,80 10 cria a− −∈ × × > , the maximum of oscillation scope is 

less than the smaller fundamental wave voltage amplitude 1 9.364NmV = . the maximum is within small scope 
and the double-scroll chaos can occur as shown in phase portrait Figure 2(a). At this time, two frequency com-
ponents all satisfy power balance. They all possess self-oscillation capability. The operation of Program Chua 
80/74.nb shows two real solutions satisfying equation balance. It explains the solution of equation cannot be 
represented by means of proper harmonic component. 

When ( )5 5
1 170 10 ,73 10 cria a− −∈ × × < , the periodic oscillation with bigger first harmonic amplitude 2 30.54NmV ≈  

is formed as a limit cycle as shown in phase portrait Figure 2(b). At this time, only one frequency component 
has self-oscillation capability for its satisfaction of power balance. Therefore, only limit cycle will be generated 
shown in Figure 2(b). The operation of Program chua73/70.nb shows only one real solution satisfying equation 
balance.  

When parameter 1a  changes between 573 10−×  and 574 10−× , the essence characters of phase portraits of 
steady state will produce quite essential changes. Variation around critical value 5

1 73.5 10cria −= ×  will become 
more and more subtle with further improvement of algorithm precision. This is called butterfly effect, just like 
the function values in the 0÷  and 0−  of mathematics are quite different, so butterfly effect also existence in 
the Chua’s circuit. 

Example 2: The second kind of Chua’s circuit deformation. Two non-linear items will be added in Ni , all 
the parameters after deformation are shown in (6). Two fundamental wave solutions are shown in (7). The 
maximum of oscillation lessens awfully. The phase portrait Figure 3 similar to four-scroll chaos is created 
[11]. 

3 5 7 2 4 6
1 3 5 7 1 3 5 73 4 5 8 7 12.8N N N N N NF m m mi a v a v a v a v g a a V a V a V= − + − + = − + − +               (6a) 

4 4 4
1 3 5 70.000834, 6.1 10 3, 5.8 10 5, 1.28 10 7a a a a− − −= = × = × = ×                  (6b) 

1 1 1 2 1 220766 2.04083 46521 2.57305S c m c mV Vω ω= = = =               (7) 

The data in (6) and (7) is consistent with the data in [11]; the Figure 3 is consistent with the phase diagram9 
of four-scroll chaos as shown in [11]. 

Example 3: The third kind of Chua’s circuit deformation 

( ) ( ) ( )2
1 1 2 1 0 2 2 1 2 0 2 2 21C C C N C C C L L C CC V V V g i C V V V g i Li V kLC V= − − = − + = − + 

           (8) 

A non-linear item 3
2 2CkLC V− , 82 10k = ×  is added in the third equation of the (3a), the state equations after 

deformation are shown in (8), and there is no fundamental wave solution in the Equation (8), its phase portrait is 
shown in Figure 4.  

The necessary and sufficient condition for periodic oscillation is that there should and must be only one 
unique fundamental wave solution. There are two fundamental wave solutions in the second kind of Chua’s cir-
cuit deformation; and there is no fundamental wave solution in the third kind. So they are all belong to the con-
dition of aperiodic chaotic oscillation. 

Example 4: The fourth kind of Chua’s circuit deformation 

( ) ( )1 1 2 1 0 2 2 1 2 0 2C C C N C C C L k L CC V V V g i C V V V g i i Li V= − − = − + − = − 
        (9a) 

 

     
(a)                             (b)                                      (c) 

Figure 3. The second kind of Chua’s circuit deformation. (a) ( )1 2,C CV V ; (b) ( )1,C LV i ; (c) ( )2 ,C LV i .                      
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Figure 4. Phase portrait of the third kind of deformation.                                                       
 

3 4 6 3
1 2 3 2 1 3 1 310 , 2 10k c c N N Ni k V k V k k i a v a v− −= − + = = × = − +              (9b) 

6 6 3 3 6
2 1 0 1 30.0082, 0.05 10 , 0.0055 10 , 0.6 10 , 0.8 10 , 10L C C g a a− − − − −= = × = × = × = × =              (10) 

1 1 2 235429, 18.84; 42698, 23.84Nm NmV Vω ω= = = =              (11) 

A non-linear item ki  is added in the second equation of the (3a), the state equations after deformation are 
shown in (9); the parameters are shown in (10); two fundamental wave solutions satisfying power balance in 
(11). We can discover the maximum of oscillation scope is less than the smaller fundamental wave voltage am-
plitude 1 18.84NmV = . The maximum is within small scope and the chaos is generated. At this time, two fre-
quency components all satisfy power balance. They all possess self-oscillation capability. Therefore, chaos 
shown in Figure 5 can be generated. The operation of Program Exam4.nb explains that there are two real solu-
tions satisfying equation balance  

As mentioned above, the sufficient and necessary condition of producing chaos is that there is no unique fun-
damental wave in this dynamic system. In other words, the solution of equation cannot be represented by means 
of Fourier series. 

4. Chaos Oscillation Generated in Lossless Circuit 

( ) ( ) ( )2 2 2
1 3 0 3 0 0 01 1 1NL k k u L a CL u w CLω= + = + = =                     (12a) 

3
1 3 1 0 3 3d d 1L L Ni i t u L uk k u k L wC k a C= = = + = = =                    (12b) 

Example 5: the Figure 6 is a lossless circuit with voltage controlled non-linear inductance NL  shown in 
(12a), where 3a , C  and 0L  are all constant. Nonlinear relationship between d dL Li i t=  and u  is estab-
lished by (12b). The conservative circuit consist of NL  and C in series connection. There is one excited source 

Fu  as shown in the Figure 6 compared with the conservative circuit. In a excited period, Fu  does not export 
any energy to conservative circuit. In other words, only reactive power is exported. Total energy storage in NL  
and C connected with excited source has not kept conservation in every instant any more. But its energy will 
keep in original value after an excited period. Therefore, zero-loss system is further improvement of conserva-
tive system. Conclusions made from lossless system and conservative systems are all greatly valuable in science. 

( ) ( )0 const 0E t E t t= ∀ >=                                 (13) 

( ) ( )0 0 const 0E t E t nT n= + = ∀ >                           (14) 

( )2 4 6
0 0 01 36 10 25 9 10 1000Fw L C L Cω ω−= = = × = = =               (15a) 

( ) ( )sin cos sin arctanF Fmr F Fmx F Fm F u u Fmx Fmru U t U t U t U Uω ω ω θ θ= + = + =             (15b) 

2
3/ / ( )F c F L L Fu u u u i C u i C u u w a u u= − = − + = + + =

                    (16) 

It is assumed that ( )E t  is the sum of storage energy of capacity C and inductance NL  in any instant, the 
( )0E t  is the total energy storage in the first instant 0t , and T is excited period and n is any positive integer. 

Then (13) can be derived according to conservative circuit without excited source ( Fu  short circuit), and (14) 
can be derived according to zero-loss circuit with excited source. The circuit parameters in Figure 6 are shown 
in (15), and scalar equation is shown in (16). There are two situations when change rules of oscillation charac- 
ters are analyzed. 
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(a)                             (b)                                      (c) 

Figure 5. Phase diagram of the fourth deformation. (a) ( )1,C LV i ; (b) ( )1 2,C CV V ; (c) ( )2 ,C LV i .                         
 

NL u

C
Li

Fu

 
 Figure 6. Example 5 circuit.               

4.1. The Excited Source Fu  Keep Constant When a3  Change  
The main harmonic solutions of the (16) can be found by Program Tab1.nb and listed in Table 1. The phase 
portraits in Figure 7 are drawn from the (16). The change rule of oscillation character can be displayed. When 

3 0a = , the system will be degenerated into linearity. Periodic orbit caused by linear non-autonomous equation 
is displayed in Figure 7(a). Aperiodic chaos state is caused by nonlinear factor ( )3 0a ≠ . When 3a  increases 
gradually, there will be more and more trajectory and denser and denser phase orbits as shown in Figures 
7(b)-(f). At last, chaos oscillation with ergodicity will be formed. 

It is thus obvious that aperiodic chaos is the most universally common oscillation form in non-linear system. 
When the nonlinear strength of circuit is reduced, its slight non-linearity is almost equal to linearity. Oscillation 
of system will be degenerated into its special form of periodic state, and closed periodic orbit is represented in 
phase portrait Figure 7(a). The change rule that phase portraits gradually develops from periodic state to chaotic 
state can confirm chaotic basic property to be infinite (or sufficient) extension of oscillation period. 

In Table 1, the Uhm denotes the amplitude of self-oscillation component; Upm denotes the amplitude of force 
oscillation component; maxu denotes the maximum of the 1u u≈ ; dmaxu denotes the maximum of the d du t . 

4.2. Keeping the Fixed Non-Linear Factor a3  and Changing the Controlling Factor FmU  
The main harmonic solutions of the (16) can be found by Program Table 2 and listed in Table 2. When setting 
specific value 0FmU = , periodic orbit of Hamiltonian cycle will emerge in the system. With progressive en-
hancement of FmU  in proper scope, phase orbit will gradually increase and become denser and denser, which 
is similar to process from period doubling leading to chaos. Result of this process is led by ceaseless extension 
of oscillation period with gradual changes of controlling factor FmU . 

4.3. The Solution of the Equations (16) Is Described by Bounded Space Curve 
The variable u  in (16) is an aperiodic function. Using the ( ), ,u u u   constitute a three-dimension phase space. 
Taking Table 2(f) as an example, the three phase portraits of plane projection of the space curve can be drawn 
as shown in Figure 8(f) and Figure 9. The chaotic function of the three variable has not concretely explicit math 
expression, but it is bounded. It can only be expressed by using general parametric forms (17) or phase portraits, 
The change rules of the (17) are constrained by the differential Equations (16). 

( ) ( ) ( ),u u t u u t u u t= = =                                      (17) 

4.4. Chaotic Boundedness Is Different from Its Attractiveness 
Above mentioned two conditions show that if there is sufficient strong non-linearity and excitation in zero-loss 
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system, original oscillation period T will double or undoable extend to sufficient or infinite length with gradual 
change of system parameter ( 3a , FmU ). Both Lorenz system and Chua circuit may also appear period doubling 
leading chaos. At first, closed orbit with single circle 0T T=  will become gradually that with multi-circle 

( ) 02, 4,8,T T=  , and finally chaos with numerous circle will emerge, the phase trajectory may finally full in 
the whole phase plane. If no period is formed during observation, then the chaos will be defined as aperiodic. 
All of these phenomena show that chaos is sufficient (or infinite) extension of oscillation period [12] [13].  
 
Table 1. Example 5 main harmonic solutions 1u u≈ , ( ) ( )0 0, 0,0du u = , when Fu  constant, but 3a  change.                     

u1/V 8sin 6cosF F Fu t tω ω= +  2 2 2 10Fm Fmr FmxU U U= + =  max hm pmu u u≈ +  dmax h hm p pmu U Uω ω≈ +  

(a) 
3 0a =  22.85hmU =  15.6pmU =  max 38.45u ≈  dmax 29332u ≈  

[ ] [ ] [ ] [ ]1 9.38Cos 600 9.38Cos 1000 20.8Sin 600 12.5Sin 1000u t t t t= − + − +  

(b) 
3 1a =  22.9hmU =  15.6pmU =  max 38.5u ≈  dmax 29379u ≈  

[ ] [ ] [ ] [ ]1 9.39Cos 600.6 9.39Cos 1000 20.8Sin 600.6 12.5Sin 1000u t t t t= − + − +  

(c) 
3 3a =  22.9hmU =  15.7pmU =  max 38.6u ≈  dmax 29474u ≈  

[ ] [ ] [ ] [ ]1 9.42Cos 602 9.42Cos 1000 20.9Sin 602 12.6Sin 1000u t t t t= − + − +  

(d) 
3 10a =  23hmU =  15.9pmU =  max 38.9u ≈  dmax 29815u ≈  

[ ] [ ] [ ] [ ]1 9.52Cos 606 9.52Cos 1000 20.9Sin 606 12.7Sin 1000u t t t t= − + − +  

(e) 
3 120a =  27.4hmU =  21.6pmU =  max 49u ≈  dmax 41271u ≈  

[ ] [ ] [ ] [ ]1 13Cos 716 13Cos 1000 24.2Sin 716 17.3Sin 1000u t t t t= − + − +  

(f) 
3 300a =  35.5hmU =  38.5pmU =  max 74u ≈  dmax 79105u ≈  

[ ] [ ] [ ] [ ]1 23.1Cos 1000 23.1Cos 1145 30.8Sin 1000 26.9Sin 1145u t t t t= − + − +  

 
Table 2. Example 5 main harmonic solutions 1u u≈ , when 3 10000a = , but Fu  change.                                 

u1/V sin cosF Fmr F Fmx Fu U t U tω ω= + , ,Fmr Fmxur U ux U= = , 2 2 2
FmU ur ux= + , max hm pmu u u≈ + , dmax h hm p pmu U Uω ω≈ +  

(a) ( ) ( )0 00, , 1,0Fm dU u u= = , [ ]1 Cos 606u t=  1hmU =  max 1u ≈  dmax 606u =  

(b) 
0.02FmU = ; 0.016ur = ; 0.012ux =  ( ) ( )0 0, 0,0du u =  0.0457hmU =  0.031pmU =  max 0.077u ≈  dmax 58.7u =  

[ ] [ ] [ ] [ ]1 0.0188Cos 600 0.0188Cos 1000 0.0417Sin 600 0.0250Sin 1000u t t t t= − + − +  

(c) 
0.1FmU = ; 0.06ur = ; 0.08ux =  ( ) ( )0 0, 0,0du u =  0.20hmU =  0.156pmU =  max 0.357u ≈  dmax 276.7u =  

[ ] [ ] [ ] [ ]1 0.125Cos 600.6 0.125Cos 1000 0.1563Sin 600.6 0.0939Sin 1000u t t t t= − + − +  

(d) 
1FmU = ; 0.8ur = ; 0.6ux = ; ( ) ( )0 0, 0,0du u =  2.57hmU =  1.95pmU =  max 4.52u ≈  dmax 3704.5u =  

[ ] [ ] [ ] [ ]1 1.17Cos 683 1.17Cos 1000 2.285Sin 683 1.561Sin 1000u t t t t= − + − +  

(e) 
10FmU = ; 8.66ur = ; 5ux = −  ( ) ( )0 0, 0,0du u =  7.63hmU =  10.07pmU =  max 17.7u ≈  dmax 21680u =  

[ ] [ ] [ ] [ ]1 5.035Cos 1000 5.035Cos 1522 8.72Sin 1000 5.73Sin 1522u t t t t= − − +  

(f) 
50FmU = ; 40ur = ; 30ux =  ( ) ( )0 0, 0,0du u =  11.1hmU =  16pmU =  max 27.1u ≈  dmax 41136u =  

[ ] [ ] [ ] [ ]1 9.6Cos 1000 9.6Cos 2262 12.8Sin 1000 5.65Sin 2262u t t t t= − + − +  
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There is no transient process in the linear zero-loss circuit. It will enter steady state in the first instant when 
excited source switches on, so does in the non-linear zero-loss circuit. The phase portrait Figure 7 and Figure 8 
are not attractor, but bounded space curve. There is a difference between boundedness and attractiveness.  

Van der Pol oscillation with variable damping elements is a limit cycle, called attractor. It can attract adjacent 
orbit leaving limit cycle. This is because there is an energy dissipation element with variable resistance, which is 
capable of converging orbital changes caused by external disturbance. Its fundamental wave solution of stable 
state is independent of initial conditions. 

Some of chaos are not attractor, for example, chaos generated in zero-loss system is different from chaos sys-
tem with variable damping. Energy sent by excited source within an excitation period is zero, and the system is  

 

   
(a)                                                         (b) 

   
(c)                                                         (d) 

   
(e)                                                         (f) 

Figure 7. Phase portrait of Table 1, Horizontal means u  and vertical means d du t  (a) 3 0a = ; (b) 3 1a = ; (c) 3 3a = ; 
(d) 3 10a = ; (e) 3 120a = ; (f) 3 300a = .                                                                    
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not capable of converging changes of energy storage in circuit caused by external disturbance because there is 
no energy dissipation element. Its trajectory is partially unstable under disturbance in small scope. Its stability in 
big scope is dependent on limited initial energy storage, which is overall stability. Therefore, chaos oscillation 
composed with zero-loss circuit is not an attractor, which means that there is distinguish between boundedness 
and attractiveness in continuous system. 

The bounded oscillation solutions include chaotic and periodic state, they can all be sought by using the har-
monic analysis and the power balance theorem. The Table 1 and Table 2 are main harmonic component of os-
cillation solution, it approximate the simulate solution displayed in phase portraits Figure 7 and Figure 8 
[14]-[17]. 
 

 
(a)                                                         (b) 

     
(c)                                                         (d) 

  

 
(e)                                                         (f) 

Figure 8. Phase portrait of Table 2, Horizontal means u  and vertical means d du t  (a) 0FmU = ; (b) 0.02FmU = ; (c) 
0.1FmU = ; (d) 1FmU = ; (e) 10FmU = ; (f) 50FmU = .                                                            
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(a)                                                         (b) 

Figure 9. Phase portraits of plane projection of the space curve (17). (a) plot ( ),u u ; (b) plot ( ),u u  .                  

5. Sixty-Six Plane Phase Portraits of Lorenz Chaos Equation 
There are six variables ( ), , , , ,x y z x y z    in any three-dimension state equation. If marking ,u xz=  v yz= , 
w xy= , six new variables ( ), , , , ,u v w u v w    can be worked out, three new equations can be built up. For exam-
ple, the famous Lorenz equation is shown in (18). Another three new equations can be built up as shown in (19), 
they jointly constitute a six-dimension state equation. 

( ) 10, 8 3, 25x a x y y u cx y z w bz a b c= − − = − + − = − = = =             (18) 

( ) ( ) ( ) 2 21 1u u a b av xw v uc uz v b yw w w a ay xu cx= − + + + = − − + + = − + + − +             (19) 

According to above-mentioned work, so there are twelve variables in total, when combining them in pairs, 
sixty-six different plane phase portrait can be drawn from an output of chaos equation. When above-mentioned 
phase portraits are drawn, parameters and initial values in state equation, as well as all data in system, should 
keep invariant, version number of simulation software adopted in computer and algorithm, step size, simulate 
time set in operation, should also be invariant. Then it is shown that sixty-six plane phase portraits will keep 
completely consistent at any time [18]. 

Total sixty-six phase portraits of plane projection are all circumstantial evidence. The mutual relations among 
twelve variables completely obey mathematic theories and laws including various arithmetical operations, such 
as sum, product, difference and differential, integral. There is no singular manifestation at all. If the twelve va-
riables are expressed as functions of time t  and recorded as ( )s t , it can be found that they are all common 
continuous functions in mathematics. Analytical expression of the function cannot be concretely expressed, but 
we can draw phase portraits by numerical simulation and show the time waveform ( )s t  by oscilloscope. Equ-
ation balance must be satisfied when substitute determined solution ( )s t  into equation (if not, it’s not solution 
of equation). The basic theory of differential equation must be obey when the solution is worked out or substi-
tuted into the equations. 

The chaos is neither random nor seemingly random. Taking Lorenz equation as an example, It shows that 
these sixty-six plane projection diagram all are uniquely certain and invariant rather than random. If chaos is 
random, which means chaos signal emitted this time is quite different from the next, the chaos cannot be applied 
in engineering practice at all. It’s not seemingly random also, the butterfly effect of seemingly random does not 
exist in phase trajectory composed by set of phase points, but in particular critical point. Random phase point 
cannot stay and be displayed in the phase portraits. For example, the set of all phase points of unstable limit 
cycles are seemingly random, which cannot be displayed as an orbit. 

6. Conclusions—Basic Properties of Chaos 
Selecting properly three dynamic variables in nonlinear systems constitute a three-dimension phase space, the 
continuous chaos can be described by a bounded space curve. If nonlinear systems contain n > 3 dynamic va-
riables, a n-dimension Euclidean space can be constituted. According to above-mentioned three examples, the 
characteristics of the bounded space curve can be comprehensively summarized as follow: 
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1) The solutions of Chua’s circuit and Lorenz equation cannot be constituted by proper harmonic component, 
while the main basic part of chaotic solution of lossless circuit can be represent by two properly main harmonic 
components. They are all belong to that there is no unique fundamental wave solution in this dynamic system. 

2) Continuous chaos systems exist in the nature universally and commonly. It has not slightest singularity, but 
it is also very complicate. Chaotic functions are the universal term of variously bounded nonlinear aperiodic os-
cillation. There are thousands of functions of this kind, rather than limited several examples. Chaotic functions 
possess character of continuous oscillation. The periodic function is its degenerate forms.  

However, the relationship among several variables in nonlinear equations cannot be expressed into concretely 
explicit formulations. They can only be expressed by using general parametric forms (20) or phase portraits. The 
( ), ,x y z  is dynamic variable in nonlinear systems, the ( ), ,e e ex y z  are stable equilibrium points. The boun-
dedness of nonlinear function (20a) can be shown in (20b). 

( ) ( ) ( ) ( ) ( ), , , , 0e e ex x t y y t z z t x y z x y z t= = = ≠ ∀ >                   (20a) 

( )2 2 2 whenx y z t+ + < ∞ →∞                    (20b) 

3) Sensitivity and dependence on initial value, solutions of any differential equation are all dependent on ini-
tial value, while the sensitivity is just at some particular points, instead of all the point sets. It is not unique cha-
racter of chaos. Such sensitivity can also be found in many mathematic equations, even in some linear equations. 

4) Certainty of chaos oscillation. There is no inner randomness in chaos oscillation because the numerical si-
mulation solution is unique. Each equation corresponds only to a phase diagram. 

5) The simulation time Td must be defined before explaining aperiodicity of chaos. 
Chaos has two characteristics, aperiodicity and continuous oscillation, which make it differ from both period-

ic oscillation and non-oscillation solution. It is a kind of non-linear oscillation equation. If oscillation is aperiod-
ic in certain time of analogic simulation, the system solution will be chaotic. No unique fundamental wave solu-
tion can be determined in chaos system family, such as Chua’s circuit, Lorenz system, Chen system, Lu system, 
Liu system, Qi system, etc., because their solutions cannot be expressed in Fourier series. When aperiodicity of 
time domain corresponds to spectral continuity of frequency domain, the solution in the system possesses Fouri-
er transformation. 

Periodicity or aperiodicity is dependent on the nature of non-linear system itself that is differential equation 
expressing this system, including its initial conditions. Infinitely or sufficiently long periodic system may exist 
in the nature. Therefore, the answer to this problem is ( ]0,T ∈ ∞ . 

We have to consider carefully about the value of Td. Is there any established rule or connotative regulation in 
academic world for the value in different subject areas? Development history of physics shows the Td may pos-
sess different magnitude orders (computing unit may be second or million years). For example, computing unit 
in circuit, information communication technology may be second, while that in celestial mechanics may be up to 
hundred years. Therefore, different values of Td should be defined in different subject areas.  
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