
Journal of Modern Physics, 2014, 5, 1402-1411 
Published Online September 2014 in SciRes. http://www.scirp.org/journal/jmp 
http://dx.doi.org/10.4236/jmp.2014.515141  

How to cite this paper: Giardino, S. (2014) Axisymmmetric Empty Space: Light Propagation, Orbits and Dark Matter. Journal 
of Modern Physics, 5, 1402-1411. http://dx.doi.org/10.4236/jmp.2014.515141  

 
 

Axisymmmetric Empty Space: Light  
Propagation, Orbits and Dark Matter 
Sergio Giardino 
Instituto de Matemática, Estatística e Computação Científica, Universidade Estadual de Campinas,  
Campinas, Brazil 
Email: giardino@ime.unicamp.br  
 
Received 6 July 2014; revised 2 August 2014; accepted 26 August 2014 

 
Copyright © 2014 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
This study presents an axisymmetric solution of the Einstein equations for empty space. The geo-
metry is studied by determining its Petrov classification and killing vectors. Light propagation, or-
bital motion and asymptotic and Newtonian limits are also studied. Additionally, cosmological ap-
plications of the geometry are also outlined as an alternative model for the inflationary universe 
and as a substitute for dark matter and quintessence. 
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1. Introduction 
Axial symmetry, which comprises both spherical symmetry and cylindrical symmetry, is widely used to simplify 
a variety of physical problems. Spherical symmetry is the most preferred option to simplify a physical problem, 
because its highly symmetrical content. In many cases, a cylindrically symmetric problem has a dynamic 
character associated with a rotation, and a limit without rotation is a spherically symmetric situation. One could 
suppose that such situation occurs in general relativity, where the Schwarzschild solution is found in the rest 
limit of the rotating Kerr black hole. However, both have two Killing vectors, one time-like Killing vector and a 
axisymmetryc Killing vector, and then have the same symmetry. A similar situation occurs through a 
deformation of spherical symmetry. Another example occurs between the 5

5AdS S×  and Lunin-Maldacena [1] 
space-time solutions. Both spaces are ten-dimensional and consist of a five-dimensional anti-de Sitter space. The 
difference between them occurs in the five-dimensional spherical sector. In the Lunin-Maldacena solution, this 
sector consists of a deformed sphere, whose deformation is parametrized. When the parameter is set to zero, the 
deformed sphere becomes the usual five dimensional sphere and consequently the Lunin-Maldacena space 
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recovers 5
5AdS S×  in this limit. Some other axisymmetric space-times have been used in semi-classical string 

theory [2] [3]. 
In general relativity, the Schwarzschild empty space is the simplest spherically symmetric solution, and 

probably the most important, and there are also many cilindrically symmetric solutions [4]. The Weyl class, for 
example, has the general form  

( )2 2 2 2 2 2 2 2 2d e d e e d d d ,U U Vs t r z r φ−  = − + + +                               (1) 

with ( ),U U r z=  and ( ),V V r z= . These solutions have been known since the 1930s and have been applied 
to a variety of problems, like asymptotically flat space-times in terms of multipole expansions [5]-[7] and 
( )f R  gravity [8]. First attempts to build cylindrically symmetric solutions and develop generation techniques 

are reviewed in [9]. Some of these older solutions, like the Lewis and the van Stockum solutions are not 
asymptotically flat, a property that we will consider in the solution reported here. More recently, cylindrically 
symmetric solutions in general relativity have been studied, like black hole solutions [10] [11], Brans-Dicke 
theory [12] and black strings in Chern-Simons modified gravity [13]. 

In this article, we present a axisymmetric solution which is analogous to the spherically symmetric empty 
space. This means that the Einstein tensor, and consequently the Ricci tensor, vanish. The solution is not new, 
but the form in which it is presented here certainly is. The solution is quite simple, but it also has some 
interesting features. The first feature is that it is not asymptotically flat in the region very far from the origin of 
the coordinate system, but it is flat in the region closely around the origin of the coordinate system. This local 
flatness is, of course, a property of every point of a differential manifold. However, the farther the distance from 
the center of the coordinate system, the higher the gravitational field. Accordingly, the Kretschsmann scalar 
presents a divergence in the r →∞  limit. This counter-intuitive fact suggests that there is some gravitational 
source at an infinite distance from the origin of the coordinate system. As the symmetry of the problem is axial, 
this source may be a ring, a cylinder or some revolution surface. The net effect is that every mass would be 
attracted to the far region of this universe. The similarity with inflationary cosmological models is possible, and 
then such a geometry may be an alternative to other modes that predict an expansion of the universe, like 
inflation, quintessence and cosmological constant [14] [15]. From this standpoint, the role played by the 
cosmological constant or a scalar field can be changed by a point at infinity, which has a mass associated with it, 
such as the case of the Schwarzshild solution. On the other hand, there is a big difference between the solution 
presented and the Schwarzschild solution: there is no event horizon. This r →∞  point, if it is singular, may 
not violate the cosmic censorship hypothesis. As the point is located at infinity, it is not visible with or without 
an event horizon. Even if there was an event horizon, this would be located at infinity, and the result would be 
the same. Of course, these possibilities require careful analysis in order to be tested, but the solution presented 
herein seems simple enough to be a model for these theories. 

This article is organized as follows: in Section 2, we present the solution, its Petrov classification and its 
Killing vectors and we calculate the Kretschmann scalar. In Section 3, we study light propagation in space time. 
In Section 4, we study the existence of orbital planetary motion in the metric. In Section 5, we propose a 
Newtonian limit to the geometry and Section 6 the author’s conclusions are presented. 

2. The Metric  
We seek an empty space solution, so that the Einstein tensor  

1
2

G R g Rµν µν µν= −                                        (2) 

is identical to zero, which is equivalent to 0Rµν = . The axisymmetric ansatz is  

2 2 2 2 2 2 2
2 4 2

1 1d d d d d ,us c t r z r
v v uv

φ= − + + +                               (3) 

where ( )u u z=  and ( )v v r=  and c  is the speed of light. The rrR  component of the Ricci tensor provides 
the equation for v , namely  

0.rr rrv v− =                                         (4) 

Solving (4) and using its solution in the metric, we discover that the solutions of Einstein equations for the 
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ansatz involve  
2 2

1 2 3 4 1 24 and ,u C C z C z C v C C r= + + = +                             (5) 

where 1,2,3,4iC =  are integration constants. We immediately see that the metric is almost flat around the point 
0z r= =  when 1 4 1C C= = . Local flateness is a property of every point of the manifold, and hence every 

property of this point can be extended to the whole space by a coordinate translation. 
In order to characterize the metric (3), we need to study its characteristics, which do not depend on the coordi- 
nate system. The symmetries can be determined through the Killing vectors, whose components satisfy  

( , ) , 0,g gκ κ
λ µ ν µν κξ ξ+ =                                        (6) 

where the comma means a derivative and κξ  are the Killing vector components. In this solution, 0r zξ ξ= =  
and tξ  and φξ  are constants. This results confirms the expectation that the solution is axisymmetric, as the 
Killing vector in the angular direction commutes with the null vector of the other spatial. 

Another important characterization of the solution is obtained through the Petrov classification. Defining the 
tetrad  

( ) ( ) ( ) ( )00 11 22 33,0,0,0 , 0, ,0,0 0,0, ,0 and 0,0,0, ,u g r g z g gµ µ µ µφ= = = =     (7) 

we build the null tetrad ( ), , ,e l n m mµ µ µ µ µ=   

( ) ( ) ( ) ( )1 1 1 1and ,
2 2 2 2

l u z n u z m r i m r iµ µ µ µ µ µ µ µ µ µ µ µφ φ= + = − = + = −      (8) 

which satisfies  

1, 0 and .l n m m e e l m l m m n m n g l n n l m m m mµ µ µ µ µ µ µ
µ µ µ µ µ µ µ µν µ µ µ ν µ ν µ ν= − = = = = = = = + − −  

Thus, using the Weyl tensor Cµνκλ  we calculate the Weyl scalars  

0 0,C l m l mµ ν κ λ
µνκλΨ = =                                        (9) 

1 0,C l m l nµ ν κ λ
µνκλΨ = =                                        (10) 

3
2 22 ,C l m n m C vµ ν κ λ

µνκλΨ = − =                                    (11) 

3 0,C n m n lµ ν κ λ
µνκλΨ = =                                       (12) 

4 0.C n m n mµ ν κ λ
µνκλΨ = =                                        (13) 

This result means that the solution has Petrov classification D , the same classification as the empty space 
solutions of Schwarzschild and Kerr, and this may be understood as a confirmation that empty space solutions 
belong to the Petrov-type D . On the other hand, the axisymmetric solutions may belong to various Petrov 
classes [16], and what is most interesting, the solutions of Lewis and van Stockum, which are also nonasym- 
ptotically flat, belong to either class I  or class II . Only Lewis and van Stockum solutions that are reducible 
to the Weyl class belong to type D . In spite of that, Petrov D  solutions have already been extensively studied 
in [17], although some shortcomings has been pointed up [18] [19]. In any case, the metric here presented in this 
form has never been studied with the proposal of this article. 
At least we can calculate the Kretschmann scalar  

2 6
296 ,K R R C vµνκλ

µνκλ= =                                   (14) 

which is divergent in the limit r →∞ , as v  is a quadratic function on r . This divergence has a profound 
meaning in the discussion that follows. We believe that it acts as a source of the gravitational field, and 
consequently mantains some resemblance to the Scharzschild solution. 

3. Light Propagation 
We use the Lagrangian  
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2 2 2 2 2 2
2 4 2

1 1 1 ,
2

u c t r z r
v v uv

φ = − + + +  




                                (15) 

where the dot represents the derivative respective to a proper time parameter τ . The Lagrangian is independent 
of t  and φ , and thence we obtain the conserved energy,  , and the angular momentum,  , so that  

2 2
2 and .u c t r

v
φ= =

                                     (16) 

From the line element, a first integral of the equations of motion is obtained  

2 2 2 2 2 2 2
2 4 2

1 1 ,u c t r z r c
v v uv

φ− + + + = −



                               (17) 

which, with the conserved quantities, permits us to write  
2 2 2 2 2

2
2 4 2 2 ,v r z c

u c v uv r
− + + + = −

 
                                   (18) 

which encodes the conservation of energy and momentum of a moving particle. This expression permits us to 
study the paths of particles and light in the geometry. As a reference, we consider a light ray in the plane space.  

3.1. Plane Space 

For a light ray, 2d 0s = , and the right hand side of (18) is zero. On the other hand, the proper time τ  is under- 
stood as an affine parameter only. If 1u v= = , the metric describes a plane space, and from (18) we obtain  

2 2
2 2

2 2 0.r z
c r

− + + + =


 

                                       (19) 

Imposing the constraint z rα β= + , where α  and β  are constants, we integrate (19) to obtain  

( )
2 4

2 2
2 2 2 4 2

1.
1

r
c c

τ
α

− =
+



                                    (20) 

Although τ  is only a parameter and not the physical time, we can interpret the above ratio such that τ  and 
r  are in a relativistic “light cone”, in accordance with special relativity. On the other hand, looking at light  

from a direction parallel to the z  axis, so that r  and φ  are constants, we obtain, as expected, z
c
τ=


.  

The same occurs fixing by z  and φ  and varying r , and the relationship between the affine parameter and 
the coordinate is of course linear. Another aspect that must be considered is the pathway of light rays in the 
geometry. In the plane space-time, light rays are expected to travel in straight lines. In order to confirm this, we 
make z rα β= +  and ( )r r φ= , and use the conservation laws (16) in (19) to obtain  

( )
2 2 2

2 2
4 2 21 ,r

r c r
α

′
+ = −





                                      (21) 

where the prime denotes a φ  derivative, whose integration yields  

2

1 sin .
1r c
φ

α
=

+

                                       (22) 

This equation represents a straight line distant c   from the origin of the coordinate system. The 
parameters α  and β  are irrelevant for geometrical interpretation, as the plane space is isotropic. Now we will 
consider the deviation from the linearity of light rays in curved space.  

3.2. Curved Space 
The choice z rα β= +  in Equation (18) with the right hand side set to zero enables us to obtain  
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4 2 2 2
2

2 2 2 2 .v u vr
uu v c rα

 
= − +  





                                        (23) 

As the equation is too complex, we look for an approximate solution in order to obtain a comprehension of 
the effect of the geometry in the deviation from linearity in light rays. The plane geometry is obtained when 

1 4 1C C= =  and 0r z= = , then we also set 0β =  and expand the geometrical elements of (23) in a 
McLaurin series, obtaining  

2 2 2

4 2 22 2

2 2 2 2 2
2

2 2

1

1

v r
v u ucr

u v c rr
c

α

−
= ± −

+
−













 

( )
( )

2 63 2 4 2 2
2 23

2 32 2 2 2 222

42 2 11 .
2 1 1 18 1

C
r r C C r

c r

α αα α α
α α αα

  ++ +  − − − ≈ −  + +  ++   





              (24) 

It is important to discuss the meaning of the above expansion, in order to mantain confidence in the result. 
The expansion has been carried out for the geometrical terms only, namely the functions u  and v  that come 
from the metric tensor. In fact, an expansion around 0r =  of (23) would have no meaning, because of the 
divergence at this very point. Thus the expansion has been carried out in order not to affect the singularity and to 
obtain an equation that represents the propagation of light in a space-time which is approximately identical to 
the flat space in the vicinity of the point 0r z= =  of the original metric. Of course, as the singularity has not 
been affected by the expansion, it remains in the final equation and the more terms we add to the expansion, the 
greater the effects of the singularity in the almost-flat metric. As we have just replaced one space-time with 
another, we are not restricted to the region around 0r =  when we integrate (24). This can be seen from the flat  

space solution (20), where the r  coordinate has a minimum value of c


, and this condition remains valid for 

(24). 
Now, we integrate Equation (24), which represents the motion of a light ray in a approximately flat space that  

recovers the flat space Equation (19) if 2 3 0C C= = . Using adimensional variable x r
c

=


 , we obtain from 

(24)  

( )
( )

2 6 23 2 4 2
23

2 32 2 2 22 22

42 2 11
2 1 11 18 1

Cxx cx cxC C
cx

α αα α α
α α αα

  ++ +    − − − =   + +   − ++   



 




 

            (25) 

and consequently  

( ) ( )
( )

2

2 2 2

2 2 6 23 2 4 2
23

2 32 2 22 2

1
1 1

ln 1 42 2 2
4 31 11 8 1

c x

x xC c c xx C C
x

τ

α

α αα α α
α α α

−
+ −

   + − ++ + +    = + + −     + +   − +    



 



 

       (26) 

As the flat space-time is recovered at 2 3 0C C= = , and as the right hand side of (26) is zero in this limit, the 
right hand side of Equation (26) measures the difference between the points that could be reached in the flat 
space and in the curved space using the same parametrization. This means that a light ray reaches a point at an 
equal distance r  at different values of the affine parameter τ  depending on the curvature of the space. The 
sign of the constants 2C  and 3C  defines whether the difference of the point reached in the curved space can 
be reached either at a greater or at a smaller value of τ . In the simplest situation where the light ray moves in 
the pure radial direction, such that 0α = , the difference τ∆  is just  
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( )2 22
2

2
2 1,

3
C x x

c
τ∆ = + −



  

and we see that what defines whether the difference is either positive or negative is the sign of 2C . In other 
words, the sign of this constant decides whether the distance in the curved space needs either more or less time 
to be crossed. 

We now study the deviation of the light ray in curved space from the straight line observed in plane space.  

Using that ( )r r φ=  and the change of variable x r
c

=



 , it is obtained around 0r =  that  

( )
( )

2 6 23 2 4
23

2 32 2 22 22

42 2 11 ,
2 1 11 18 1

Cx cx cxC C
x x

α αα α α
α α αα

  +′ + +    − − − = −   + +   − ++   

 

 
   (27) 

where the prime denotes the φ  coordinate derivative and the minus sign on the right hand side gives the 
straight line in the plane limit. The integration gives  

( ) ( )
( )

2 6 23 2 4
2 2 23

2 32 2 22 2 2

41 2 2arctan ln 1 1.
2 1 11 1 8 1

C c cx x C C x
x

α αφ α α α
α αα α

 ++ +   − = + − + − −  + +   − + + 

 

 
 (28) 

In order to understand the effect of the curvature, we expand the above series around 1x = , and obtain  

( )
( )
( )

2 6 23 2 4
23

2 32 2 22 2

4π 2 22 1 1 .
2 2 1 11 8 1

C c cx C C
α αφ α α α

α αα α

  ++ +    = − − − − −    + +   + +   

 

 
     (29) 

At π
2

φ = , we have the minimum distance between the light ray and the origin of the system or coordinates.  

We see the effect of the curvature of the space in the terms that depend on 2C  and 3C . Similar to what occurs 
with the affine parameter, the sign of 2C  and 3C  determines whether the light ray on the curved space will 
deviate in one direction or another. In order to understand this behavior, let us consider the flat space solution 
(22) with a small variation δ   

π π .
2 2

r r rδ δ δ   = − + =   
   

                                 (30) 

Of course, as π
2

φ =  is a minimum, every deviation, regardless of its sign, increases the r  coordinate. If  

the curvature makes the deviation larger than the plane space, the light ray will bend to become farther from the 
base line, where 0φ = . On the other hand, if the change rδ  caused in the curved space is smaller than the 
deviation expected in the flat space, then the light ray will bend in the opposite direction and become closer to 
the base line 0φ = . As an example, if 0α = , and the light ray is parallel to the 0z =  plane, we obtain 

( )
2

2
π 2 1 1 2 .
2

cx Cφ
  = − − −  

   




                                (31) 

When 2 0C < , the curved space makes δ  greater than in the curved space, and in this situation the light 
ray will be farther than the base line 0φ =  line contained in the 0z =  plane. This effect may be understood 
as if an anti-gravitational mass were contained in the origin of the coordinate system. On the other hand, when 

2 0C >  the light ray draws nearer the 0z =  plane after passing near the origin, so that the distance between 
them diminishes after this point. 

4. Orbital Motion 
We proceed as in the light ray case, and consider a Newtonian planetary motion before studying the curved case.  
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4.1. Newtonian Theory 
In order to have a standpoint to study the curved case, we now tackle the well-known equations of the 
Newtonian planetary motion. The orbital motion of massive objects around a massive source of gravity is 
described by [20]  

2

2 ,MCs s′′ + =


                                       (32) 

where 1s r= , the prime denotes an angular derivative and M  is the mass of the source. Using the conserved 
angular momentum, we integrate (32) and then change the variable back to r , obtaining the energy relationship  

2 2
2

2

2 ,Mcr
r r

= −


                                        (33) 

so that the right hand side of (33) is interpreted as minus the potential. We can also study the force that acts on 
the particle using the time derivative of (33)  

( )2 2
3

1 .r Mc r
r

= −

                                        (34) 

The stable point of the dynamic system is obtained at 0r = , and for this case it is  
2

0 2 .
2

r
Mc

=
                                            (35) 

At this very point, the potential is either a maximum or a minimum, so that the non-zero force that acts on the 
particle is given by  

2

3
0

.
2

r
r

=


                                            (36) 

This result is important as a guarantee that the particle will not escape from orbit. In order to determine 
whether 0r  is a maximum or a minimum of the potential, we calculate  

( )
2 2 2

04 4
0

d 2 3 d 2, so that .
d d
r Mc r r r
r rr r

−
= = −

 

                            (37) 

The second derivative at the point is negative, consequently the second derivative of the potential is positive, 
and 0r  is a minimum of the potential. Thence the particle oscillates around 0r  for slightly higher energy than 
the minimum potential, and its movement is elliptical, as in the solutions of (32). 

4.2. Curved Space 
In this section, we discuss whether closed orbits are possible in the proposed space-time (3), but do not calculate 
them explicitly. We set 0z =  in (18), and obtain the equations that govern the radial dynamics of the motion  

2 2
2 4 2 2

2 2r v v c
c r

 
= − − 

 





                                      (38) 

2 2 2
3 2 2

2 22 4 26 4vr v r C v C c
c r r

  
= + − +  

   

 




                              (39) 

The equation 2 0r =  can be satisfied for 0v =  if 2 0C < . In the case of positive 2C , we isolate 2v  from 
0r =  and substitute its value in r  obtaining  

( )
4 2 2

2 4
23 2 20 1 2 .vr r C vr

r c
 

= = + 
 



 



                                (40) 

The polynomial of sixth order inside the brackets can be solved in terms of a third order polynomial and it has 
at least one real root. Then the sixth order polynomial may have real solutions, depending on the values of the 
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parameters. This proves that there is at least one equilibrium point in the system for each sign of 2C  without 
any approximation on r . In order to decide if 0r  is a maximum or a minimum, we write 3r v rf= , so that f  
is the expression inside brackets in the definition of r  in (38). Using this notation, we obtain  

3d 3 d 1 1 d .
d d d
r v fv r f
r v r r f r

 
= + + 

 



                                (41) 

In order to have a minimum of the potential, we know from the Newtonian case that the sign of (41) must be 
negative. From the positivity of r , it follows that ( )0 0f r > , and the only way to have a negative sign in (41) 
comes from the derivative or f . As (38) shows, the potential has a singular value at 0r = , and then it is 
highly positive at this point. For higher values of r , the polynomial dominates and changes the sign of the 
potential to a negative value. If the derivative of r  is positive and denotes a maximum of the potential, its 
value is finite and greater than the value of the potential at a point close enough to 0r = . Then, there is 

necessarily a minimum between this maximum and 0r = . As the derivative has a term which depends on 5

1
r

  

with the negative sign, we conclude that there is a minimum there and consequently there are closed orbits in the 
metric. The complete characterization of these orbits and the values in the parameters that generate them is not 
of our interest here, the proof of its existence is enough to qualitatively characterize the metric. If there were no 
closed orbits, this model would be of almost no use in gravitation. 

5. The Newtonian Limit 
The metric (3) is flat if 0z r= =  and 1 4 1C C= = . The other integration constants can be determined by using 
a weak field approach, so that the metric must give the approximate Newtonian gravity when the gravitational 
field is weak. Considering that the geodesic equation is given in terms of the proper time derivatives xµ

  by  

,x x xµ µ ν λ
νλ= −Γ                                             (42) 

and that the gravitational field is generated by static particles, so that ( ),0,0,0x cµ = , we get  
2

00 .x cµ µ= −Γ                                           (43) 

In the weak field approach, the metric tensor gµν  is a correction of the the Minkowski metric tensor µνη  
so that  

.g hµν µν µνη= +                                        (44) 

Using µνη  to move the indices and considering hµν  time independent, we obtain  
2

00 .
2
cx hµ µν

νη= − ∂                                        (45) 

On the other hand, the movement of a particle due to a gravitational potential Φ  is given by  
.r = −∇Φ                                            (46) 

In the specific case of a gravitational potential  
0 ,φΦ = Φ +                                           (47) 

where 0Φ  is a constant, we obtain  
2

00 .
2
c hφ = −                                          (48) 

Until now, we have followed the usal procedure. Now, we can proceed to the specific case of the weak field 
generated by (3). Considering the axial symmetry of the model, we suppose that in the Newtonian limit the 
gravitational field is generated by a massive ring. Analogously as the electric potential generated by a charged 
ring [21], the gravitational potential generated by a ring of radius R  and mass m  is  

( )
( ) ( )2 22 2

2 1 4, ,
π
Gm Rrr z K

r R zr R z

 
 Φ = −
 + ++ +  

                        (49) 
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where K denotes an elliptic integral and G  is the Newton constant. Setting 0r = , we have around 0z =  that  

( )
2

2, 1 ,
2

mG zr z
R R

 
Φ = − + 

 
                                       (50) 

and then (48) implies  

2 32 3 and 0.
4
mGC C
c R

= =                                        (51) 

It is important to note that the expansion of the potential (48) around 0r =  generates a series whose first 
term depends on the first order in r , and that the expansion of the metric element around 0r =  produces a 
first term of second order in r . Then, the metric has a weaker dependence on the radial coordinate than the 
massive ring. We can understand that the calculated metric may be generated by a axially symmetric structure, 
but not necessarily a ring. On the other hand, the massive ring is located at infinity, and this can explain why the 
field generated by such an object is weaker than the gravitational field generated by a finite one. The exact form 
of this ideal object is a subject for future research. 

On the other hand, this analysis shows that, if the r →∞  is a singular point, it is indeed naked, because 
2 0C >  and the metric has no singular point at a finite value of r . As discussed in the introduction, this space 

has the interesting effect of producing a gravitational field that increases with the increasing the value of the 
coordinate. This means that a massive point in a freely fall towards the r →∞  describes an increase in the 
distances between the massive points. This seems an interesting topic for future application on cosmological 
models, where inflation and dark matter are the most studied models which describe such an effect. 

6. Conclusion 
In this article, we have described a space-time which is empty and axisymmetric. Its Petrov classification is D , 
the same of the spherical empty space solutions of Kerr and Schwarzchild, something that establishes a 
connection among these solutions. This geometry cannot be transformed into the well-known Weyl type of 
cylindrical symmetry, and cannot also be put into an isotropic coordinate system like Schwarzschild geometry. 
The moral of this case is that this curious object has potential importance as a model for possible applications in 
inflationary cosmology and also because it is a simple solution, and physics needs simple and well-known 
objects in order to model more complex systems. Future directions of research are many and varied. From the 
mathematical standpoint, it is interesting to determine whether there are space-time singularities in the metric. 
There are the obvious applications in cosmology and there are also other possibilities for discovering new exact 
solutions. Solutions involving electric charge or angular momentum are the most obvious examples in the latter 
direction. 
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