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Abstract 
The inevitability of arising in equations of kinetics and hydrodynamics irreversibility not con-
tained in original equations of classic mechanics is substantiated. It is established that transfer of 
information about the direction of system evolution from initial conditions to resulting equations 
is the consequence of losing information about the position of an individual particle in space, 
which takes place at roughening description. It is shown that the roughening with respect to im-
pact parameters of colliding particles is responsible for appearance of the irreversibility in re-
sulting equations. Direct equations of kinetics and hydrodynamics are the result of roughening 
distribution functions with respect to impact parameters of particles, which have not yet reached 
the domain of their interaction. The direct equations are valid for the progressive direction of 
timing on the time axis pointing from the past to the future. Reverse equations of kinetics and hy-
drodynamics are the result of roughening distribution functions with respect to impact parame-
ters of particles, which have already left the domain of their interaction. The reverse equations are 
valid for the progressive direction of timing on the time axis pointing from the future to the past. 
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1. Introduction 
The detailed comparison of the results of direct numerical integration of the Navier-Stokes equations with the 
experimental data in the problem on flow around a sphere is given in [1]. The comparison demonstrated that the 
solutions to the classic hydrodynamics equations interpret successfully the experiment until a first critical Rey-
nolds number value is reached. However, after passing first critical Reynolds number value, these solutions be-
come inapplicable to interpreting the instability [1]. In accordance with ideas given in [1]-[3] the solutions to the 
classic hydrodynamics equations attain successfully the boundary of the instability field. However, these solu-
tions are unable to cross this boundary and, consequently, enter the instability field. 
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The problems encountered by classic hydrodynamics when interpreting observed evolution of unstable 
process, are proposed to be solved on the way toward an increase in the number of principle hydrodynamic val-
ues [4]. In [5]-[8], the multimoment hydrodynamics equations are used to study the phenomena of instability 
appearance and development in problem on flow around a solid sphere at a wide range of Reynolds number 
values.  

The studies [5]-[8] demonstrated that when interpreting each of unstable regimes in problem on flow around a 
sphere the need emerges to involve the so-called reverse multimoment hydrodynamics equations [9]. The evolu-
tion of the system after losing its stability that is described by the direct hydrodynamics equations advances in 
direction of the system departure from the statistical equilibrium state. The evolution of the system after losing 
its stability that is described by the reverse hydrodynamics equations advances in direction of the system ap-
proaching the statistical equilibrium state.  

Both the direct and the reverse multimoment hydrodynamics equations are irreversible. The main purpose of 
the present work is to elucidate the physical meaning of appearance of the irreversibility in equations of kinetics 
and hydrodynamics. A. Einstein believed that irreversibility is not a fundamental law of nature, as far as it is not 
incorporated in the basic laws of physics represented by original equations. He saw no reasons for emergence of 
the irreversibility in the resulting equations as a result of any transformation of original equations because the 
initial conditions are responsible for one or another direction of evolution. Thus, A. Einstein believed that ap-
pearance of the irreversibility in resulting equations is not sufficiently substantiated [10]. Unlike A. Einstein, I. 
Prigogine treated, the irreversibility, as a fundamental law of nature. I. Prigogine introduced the irreversibility 
into original equation, thereby, like A. Einstein, he denied the feasibility of achieving the irreversibility when 
starting with the original equations [11]. 

The present work shows that during transition from the classic mechanics equations to equations of kinetics 
and hydrodynamics the irreversibility is incapable not to appear, it must appear. By another words, the present 
work substantiates appearance of the irreversibility in resulting equations. Section 2 recounts the ideas on levels 
and stages that specify the degree of accuracy for medium description. Section 3 represents the only roughening 
operation, which is responsible for appearance of the irreversibility in kinetics and hydrodynamics equations. 
The necessity to introduce this roughening operation is substantiated.  

2. Medium Description Levels and Stages 
Suppose that some physical system consists of N structureless particles. Let ( )i tx , ( )i tξ , 1, ,i N=  , 
represent respectively the coordinates and velocities of the particles, i.e., the point in 6N-dimensional phase 
space. The evolution of the variables ( )i tx , ( )i tξ , 1, ,i N=  , is calculated in the frameworks of the equa-
tions of classic mechanics. Let us carry out at some time t the inversion in velocity space and in time, i i→ −ξ ξ , 

1, ,i N=  , t t→ − . It turns out that the classic mechanics equations are invariant with respect to this operation, 
that is, the equations of classic mechanics are reversible. This means the following. Let at time t0 the initial con-
ditions ( )0i t t=x , ( )0i t t=ξ , 1, ,i N=  , are specified. Let by the time 0 ht t+  the equations of classic me-
chanics transfer them into ( )0i ht t+x , ( )0i ht t+ξ , 1, ,i N=  , respectively. Then, after inversion at time 

0 ht t+ , the equations of classic mechanics transfer the conditions ( )0i ht t+x , ( )0i ht t− +ξ , 1, ,i N=  , into 
the conditions ( )0i tx , ( )0i t−ξ , 1, ,i N=  , by the time t0. Having once more the operation of inversion, make 
sure that the equations of classic mechanics returned the system to the same point of the phase space from which 
they took her. 

Having described by classic mechanics equations the motion of each system particle, we will be able to cal-
culate any macroscopic characteristic of system at any time moment, i.e., to describe the evolution of system as 
a whole. This description corresponds to the dynamic deterministic level. This level is the most complete and 
overly detailed. As a rule, the necessity in such a detailed description does not occur. When solving practical 
tasks we need information not about the velocities and coordinates of individual particles but about the macros-
copic properties of a system. It is therefore advisable to switch from the equations of classic mechanics, which 
describes the motion of each system particle, to equations for macroscopic characteristics. 

The first step on this way is the transition from the dynamic deterministic level of description to the statistical 
deterministic one, see Figure 3 from [3]. Let us choose the Liouville formalism among the famous formalisms 
of classic mechanics equations (Newton, Hamilton, Lagrange, and Liouville) [12]. In terms of the Liouville 
formalism, the classic mechanics equations have the form: 
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The ( )1 1 2 2, , , , , , ,N N NtΨ x ξ x ξ x ξ  dynamic distribution function has a meaning of reliability at some time t 
to find the particle that occupies the trajectory ( )1 tx , ( )1 tξ  in phase space point 1x , 1ξ ,  , and the par-
ticle that occupies the trajectory ( )N tx , ( )N tξ , in phase space point Nx , Nξ , 
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In (2.1), m is the mass of the particle, ,i jΦ  is the force of action of the i-particle on the j-particle. From the 
point of view of dynamics one scalar Equation (2.1) for function ( )1 1 2 2, , , , , , ,N N NtΨ x ξ x ξ x ξ  is equivalent 
to 6N Newton (Hamilton, Lagrange) equations [12]. 

To reach the statistical deterministic level at some time t it is necessary to describe the set of systems (Gibbs 
ensemble) rather than single concrete system. The systems in ensemble differ from each other by values of 
coordinates and velocities of particles that form the system. The variables ( )K

i tx , ( )K
i tξ , 1, ,i N=  , of an 

arbitrary K-system of ensemble, 1, ,K L=  , possess such values, under which the macroscopic characteristics 
of the K-system of ensemble differ from the corresponding characteristics of any other ensemble system within 
the order of magnitude of fluctuations typical for time t: 
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The ( )1 1 2 2, , , , , , ,N N NF t x ξ x ξ x ξ  statistical distribution function has a meaning of probability to find at 
some time t one of medium particles within the unit element of phase space near point 1x , 1ξ , another particle 
near point 2x , 2ξ ,  , and the last particle near point Nx , Nξ  [12]. The ( )1 1 2 2, , , , , , ,N N NF t x ξ x ξ x ξ  sta-
tistical distribution function is a linear combination of the ( )1 1 2 2, , , , , , ,K

N N NtΘ x ξ x ξ x ξ , 1, ,K L=  , dy-
namic distribution functions. The ( )1 1 2 2, , , , , , ,K

N N NtΘ x ξ x ξ x ξ  distribution function is invariant with respect 
to permutation of any pair of arguments ix , iξ , 1, ,i N=  . It is the cardinal difference between  

( )1 1 2 2, , , , , , ,N N NtΨ x ξ x ξ x ξ  and ( )1 1 2 2, , , , , , ,K
N N NtΘ x ξ x ξ x ξ  dynamic distribution functions. The distri-

bution functions ( )1 1 2 2, , , , , , ,K
N N NtΘ x ξ x ξ x ξ  and ( )1 1 2 2, , , , , , ,N N NF t x ξ x ξ x ξ  are governed by the Liou-

ville Equation (2.1). The difference between the ( )1 1 2 2, , , , , , ,N N NF t x ξ x ξ x ξ  function and the  
( )1 1 2 2, , , , , , ,K

N N NtΘ x ξ x ξ x ξ  function described specifically the K-system of ensemble constitutes the fluctua-
tion of the N-particle distribution function.  

The ( )1 1 2 2, , , , , , ,N N NF t x ξ x ξ x ξ  function contains statistical information about all N particles of the sys-
tem. The reduction of the ordinal number of the particle distribution function accompanies by the loss of infor-
mation about the position in phase space of the particle in turn. The s-particle distribution function  

( )1 1 2 2, , , , , , ,s s sF t x ξ x ξ x ξ  has a meaning of the probability that at some time t one particle, say particle 1, 
finds itself within unit element of phase space near point 1x , 1ξ , another particle, say particle 2, within unit 
element near point 2x , 2ξ ,  , and particle s-near point sx , sξ , regardless of the position in phase space of 
the remaining N s−  particles. The ( )1 1 2 2, , , , , , ,s s sF t x ξ x ξ x ξ  function obeys the s-equation of the BBGKY 
hierarchy [12]: 
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The ( )1 1 1, ,F t x ξ  function obeys the first equation of the hierarchy (2.4). The ( )1 1 1, ,F t x ξ  function contains 
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statistical information about particle 1 regardless of the position in phase space of the remaining 1N −  par-
ticles. Every equation of the BBGKY hierarchy (2.4) is invariant with respect to inversion of velocities and time, 

i i→ −ξ ξ , 1, ,i N=  , t t→ − , that is, every equation of the BBGKY hierarchy is reversible. The BBGKY 
hierarchy is closed by the Liouville equation for ( )1 1 2 2, , , , , , ,N N NF t x ξ x ξ x ξ . In the thermodynamic limit, 
N →∞ , V →∞ , yet N V  is a finite, V is the volume of the system.  

Analyzing the hierarchy (2.4), N. Bogolyubov [13] introduced a concept of characteristic intervals (scales) in 
gas medium. Three temporal intervals were distinguished in [13]: 0τ , kτ , and hτ . Interval 0τ  is equivalent 
to the characteristic time of particle collisions 0θ . The spatial scale l0 corresponding to it is identical to the cha-
racteristic particle size d. Interval kτ  is the characteristic time between collisions τ . The spatial interval lk 
corresponding to it is identical to the characteristic free path length λ . Temporal interval hτ  and spatial inter-
val lh corresponding to it are equivalent to the characteristic temporal scale of flow Θ  and the characteristic 
spatial scale of flow L correspondently. The above three intervals specify three Bogolyubov accuracy stages of 
gas description: initial l0 scale, kinetic lk scale, and hydrodynamic lh scale. Initial stage equations are the most 
detailed. The solutions to these equations describe the system at the finest initial stage as well as at the kinetic 
and hydrodynamic stages. Passage to less detailed kinetic description stage is implemented by neglecting the 
information about a sharp change of the distribution functions on the initial scale. Namely, the distribution func-
tion governed by the equations of kinetic description stage, varies slightly on l0 scale. After transition to the 
most coarse hydrodynamic description stage the distribution function varies strongly on lh scale only.  

The BBGKY hierarchy (2.4) describes the medium with accuracy that satisfies the initial stage. The  
( )1 1 2 2, , , , , , ,s s sF t x ξ x ξ x ξ , 1, ,s N=  , distribution functions contain the excessively detailed information 

about the system under consideration.  
At the kinetic and hydrodynamic stages, the gas is described by the one-particle distribution function 
( )1 1 1, ,f t x ξ  governed by the Boltzmann equation. The Boltzmann equation is direct corollary to the reversible 

first equation of the BBGKY hierarchy (2.4) for the ( )1 1 1, ,F t x ξ  distribution function. The first equation of the 
BBGKY hierarchy is not closed. The integral term contains two-particle distribution function ( )2 1 1 2 2, , , ,F t x ξ x ξ  
responsible for interaction of particle 1 with some particle 2. There are several variants of the derivation of the 
Boltzmann equation directly from the first equation of the BBGKY hierarchy [12]. Each of them reaches inevit-
ably the equation: 

( ) ( ) ( )1 1 1 1 1 1 2 2
1

, , 1 , , , dF t N J t
t

 ∂ ∂
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∫ξ x ξ x ξ ξ ξ
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The collision integral ( )1 1 2, , ,J t x ξ ξ  assumes the form: 
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Equations (2.5), (2.6) are valid for a rarefied gas medium, where d λ ,  
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In (2.6), (2.7), vector d±
vρ  has the cylindrical coordinates b, ε , d±  in reference frame with the Z axis 

parallel to 1 2= −v ξ ξ , 1 2−=ρ x x . If the ( )1 1 1, ,F t x ξ  function varies slightly on the l0 scale, the 
( )1 1 1, ,NF t x ξ  product differs by the negligibly small value from:  

( ) ( )1 1 1 1 1 1, , , ,f t NF t=x ξ x ξ                               (2.8) 

Otherwise, let the ( )1 1 1, ,F t x ξ  function varies strongly on the l0 scale. Then, in order to transit from the ini-
tial description stage to the kinetic one, namely, in order to obtain the equation for ( )1 1 1, ,f t x ξ  from the first 
equation of BBGKY hierarchy, it is necessary to carry out additionally the spatial averaging (2.7). The integra-
tion (2.7) with respect to a within domain W having the characteristic linear size d l λ   removes strong 
spatial dependence of the ( )1 1 1, ,F t x ξ  function on the l0 scale. Therefore, when passing the kinetic and hydro-
dynamic description stages, information about spatial position of an individual particle is lost. The ( )1 1 1, ,f t x ξ  
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distribution function has a meaning of a probable number of particles, which are concentrated in a unit volume 
element near x1 and velocities, in unit interval near 1ξ  at time t. The x1 argument of the ( )1 1 1, ,F t x ξ  distribu-
tion function is the coordinate of particle 1. The 1x  argument of the ( )1 1 1, ,f t x ξ  distribution function is not 
the coordinate of individual particle. The x1 argument of the ( )1 1 1, ,f t x ξ  function marks the place in space in 
the vicinity of which a set of particles is concentrated within init volume. The Boltzmann equation is not inva-
riant with respect to inversion of velocities and time: i i→ −ξ ξ , 1, 2i = , t t→ − , that is, the Boltzmann equa-
tion is irreversible. The operation responsible for appearance of the irreversibility is represented in Section 3.  

The second equation of the BBGKY hierarchy (2.4), like the first one, is not closed. The integral term of the 
second hierarchy equation contains a three-particle distribution function responsible for the interaction of par-
ticles 1 and 2 with some third particle. The absence of closeness of the second hierarchy equation prevents us 
from the transition to the hydrodynamic stage from the phase space of two particles. It was, however, found that 
in the gas medium without the triple collisions of particles ( )d λ , the necessity of taking the third particle 
into account can be obviated. This possibility opens up prospects for the transition to the hydrodynamic descrip-
tion stage without invoking additional hypotheses. 

If the ( )2 1 1 2 2, , , ,F t x ξ x ξ  partial distribution function obeying the second equation of BBGKY hierarchy (2.4) 
described two particles occupying positions in the 2µ -space arbitrary with respect to each other, the  

( )2 1 1 2 2, , , ,pF t x ξ x ξ  partial distribution function describes two particles occupying quite definite positions with 
respect to each other. The reversible equation for ( )2 1 1 2 2, , , ,pF t x ξ x ξ  has the form: 

( )12 21
1 2 2 1 1 2 2

1 2 1 2

, , , , 0pF t
t m m

 ∂ ∂ ∂ ∂ ∂
+ + + + = ∂ ∂ ∂ ∂ ∂ 
ξ ξ x ξ x ξ

x x ξ ξ
Φ Φ                (2.9) 

The idea that leads to the concept of a pair of particles is given in [14] [15]. In [15], Equation (2.9) describing 
the evolution of a pair of particles is derived directly from the main statistical mechanics postulates. The heuris-
tic derivation of Equation (2.9) was given in [3]. 

The ( )div , , ,pf t x G v  and ( )app , , ,pf t x G v  pair distribution functions are implemented based on the  
( )2 1 1 2 2, , , ,pF t x ξ x ξ  function. Let us pass from the 12-dimensional phase space of particles 1 and 2 constructed 

on the 1x , 1ξ , 2x , 2ξ  vectors to the 12-dimensional space constructed on the x, G , ρ , v  vectors, where 
( )1 2 2= +x x x , 1 2= −ρ x x , ( )1 2 2= +G ξ ξ , 1 2= −v ξ ξ . Then, 
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       (2.12) 

In (2.12), ( ) ( )2 2 1 1 2 2, , , , , , , ,p pF t F t=x G v ρ x ξ x ξ . The integration of 2
pF  with respect to ρ  (2.12) within 

cylindrical volume C+  limits ( )0 ,  0 2π,  b d dε η λ≤ ≤ ≤ ≤ ≤ ≤  collects all the positions of particles 1 and 2 
with respect to each other in which they turn out to be after a collision with each other. The integration of 2

pF  
with respect to ρ  (2.12) within cylindrical volume C−  limits ( )0 ,  0 2π,  b d dε η λ≤ ≤ ≤ ≤ − ≤ ≤ −  collects 
all the positions of particles 1 and 2 with respect to each other in which they turn out to be before a collision 
with each other, see Figure 3 from [2]. The integration of ( )div app

pF  (2.11) with respect to a within region W 
having the characteristic linear size d l λ   removes strong spatial dependence of the functions on the ini-
tial scale having the particle size d. The multiplication of ( )div app

pF  by the number of methods for selecting a 
pair from a set of N particles, ( )1 2N N − , (the permutation of particles does not create a new pair) leads to 
pair distribution functions. It follows that operations (2.10) - (2.12) collect all pairs of particles which either in-
evitably collide during an interval that does not exceed the characteristic time between collisions τ , or fly apart 
after a collision during an interval not longer than τ . The ( ) ( )div app , , ,pf t x G v  pair function has the meaning of 
a probable number of pairs flying apart (approaching each other) the centers of mass of which are concentrated 
in a unit volume element near x and velocities, in a unit interval near G, v at time t. The arguments of the 
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( )2 1 1 2 2, , , ,pF t x ξ x ξ  distribution function are 1x  and 2x , which are spatial coordinates of particles 1 and 2. 
The x argument of the ( )2 , , , ,pF t x G v ρ  distribution function is the coordinate of the center of mass of particles 
1 and 2.  

The x argument of ( ) ( )div app , , ,pf t x G v  pair distribution functions is not the coordinate of the center of mass 
of some pair. Indeed, the centers of mass of all the pairs described by the ( ) ( )div app , , ,pf t x G v  functions have the 
coordinate x. The x argument of ( ) ( )div app , , ,pf t x G v  functions marks the place in space in the vicinity of which 
a set of centers of mass of pairs of particles is concentrated in unit volume. It follows that operations (2.10) - 
(2.12) remove the dependence of pair distribution functions on the coordinates of individual particles. The 

( )div , , ,pf t x G v  and ( )app , , ,pf t x G v  pair distribution functions obey the irreversible equations obtained in [15]. 
The hl  and hτ  are the characteristic scales for changing the ( )div , , ,pf t x G v  and ( )app , , ,pf t x G v  functions. 
Why the irreversibility is appeared in equations for pair functions is investigated in Section 3. 

At the hydrodynamic stage, the description of gas medium may be carried out not in terms of distribution 
function but in terms of hydrodynamic values that are the moments of distribution functions. In order to derive 
the hydrodynamics equations from the equations for the distribution functions it is necessary to refuse the study 
of behavior of the distribution function on the kinetic scale, kl , kτ  kinetic scale. Under the hydrodynamic de-
scription, the Knudsen layers, the initial layers and the shock waves, where the scale of the change of the distri-
bution function is kl , kτ , are excluded from consideration. 

3. Inevitability of Appearance of the Irreversibility 
To understand the physical meaning of appearance of the irreversibility in equations of kinetics and hydrody-
namics, two concepts discussed above should be compared. First, since the time of L. Bolzmann, the responsi-
bility for direction of evolution of the system rests with the initial conditions, namely, the set of initial values of 
coordinates and velocities of all the particles [16]. At a certain mutual arrangement of the particles, the system 
evolves in the direction that we see everywhere and every second. However, there exist such arrangements of 
particles that send the system along an extremely unlike, rarely realized direction. Refer to the example. Let af-
ter removal of partition at the time 0t t′=  isolated system of 1N  particles, 1 1,N 

 relaxes from non-equili- 
brium state (Figure 1(a)) to the state of statistical equilibrium (Figure 1(b)) that is achieved by the time 1t t′= . 
The mutual arrangement of particles at the time 0t t′=  sends the system along the usually observed direction 
that corresponds to approaching the state of statistical equilibrium. However, mutual arrangement of the par-
ticles at the time 1t t′=  after inversion in velocity space (Figure 1(c)) sends the system along extremely unlike 
direction that corresponds to departure from the state of statistical equilibrium. Even a negligible change in mu-
tual arrangement of the particles (on distance much smaller than particle size d) can change the direction of 
evolution [17]. 

Secondly, after transition from the initial to the kinetic and hydrodynamic description stages the distribution 
functions lose the information about spatial position of individual particle and hence, about mutual arrangement 
of particles. The variables xi, 1, ,i s=   both in the s-particle distribution function ( )1 1 2 2, , , , , , ,s s sF t x ξ x ξ x ξ , 

1, ,s N=  , and in the initial conditions of the initial description stage are the spatial coordinates of separate 
particles. It means that the functions ( )1 1 2 2, , , , , , ,s s sF t x ξ x ξ x ξ , 1, ,s N=  , contain the information about 
direction of evolution. The x1 variable in distribution functions and initial conditions of the kinetic and hydro-
dynamic stages specifies the location in space. It means that distribution functions and initial conditions of ki-
netic and hydrodynamic stages lose the information about the direction of evolution. If the roughening opera-
tions, transforming the equations and the initial conditions of the initial stage into equations and the initial con-
ditions of the kinetic and hydrodynamic stages, are performed correctly, the information about direction of evo-
lution of the system must somehow be preserved. And this information preserved, it disappeared from the coarse 
distribution functions and the initial conditions, but appeared in the coarse equations of the kinetic and hydro-
dynamic stages. The equations of the kinetic and hydrodynamic stages acquired a new characteristic property 
that is not contained in the classic mechanics equations as well as in the BBGKY hierarchy equations. The irre-
versibility identified with the direction of the system evolution appeared there. 

To clear up the mechanism of appearance of the irreversibility in equations of kinetics and hydrodynamics let 
us carry out the roughening the reversible Equation (2.9) that describes the motion and interaction of two par-
ticles of pair. Suppose that ( ), ,b ε′v v  is the velocity of relative motion of particles which after an elastic colli-
sion with the impact parameter b and azimuth angle ε  acquire velocity v. Trajectories of relative motion of  
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(a) 

 
(b) 

 
(c) 

 
Figure 1. (а) non-equilibrium state of isolated system; (b) 
state of statistical equilibrium of isolated system; (с) inver-
sion in velocity space without changing the positions of par-
ticles. 

 
two particles in the interaction domain at a fixed ε  are illustrated in Figure 2. The particles with parameters 

1b  and 1′v  pursue trajectory 1 and leave the interaction domain with parameters 1b  and 1v , ( )1 1 1 1,b′ ′=v v v . 
In order to leave the interaction domain with the same velocity 1v , and parameter 2 1b b≠ , particles should en-

ter it with 2b  and ( )2 2 2 1,b′ ′=v v v , (trajectory 2 in Figure 2). If the particles have velocity 1′v  and 1nb b≠  
at the point of entry, they will emerge from the interaction domain with parameters nb  and 1n ≠v v , such that  

( ) ( )1 1 1 1 1, ,n nb b′ ′ ′= =v v v v v . 
Let us recast Equation (2.9) in the trajectory form. The newly obtained equation is then integrated with re-

spect to η  between the limits of variation of two-particle distribution functions ( )app , , , , ,pF t b εx G v  and 

( )div , , , , ,pF t b εx G v . These limits are represented in Equation (2.12): 

( )( ) ( )

( ) ( )

app div

div
2

, , , , , , , , , , , , ,

, , , , , , , , , , , d .

p p

p
p

d

F t b b F t b

F t b F t b
λ

ε ε τ τ ε

τ τ ε τ τ ε η η

′ = +

+ = +∫

x G v v x + G G v

x + G G v x + G G v

              (3.1a) 
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Figure 2. The interaction domain of two particles: 

( ) ( )1 1 1 1 1, ,n nb b′ ′ ′= =v v v v v , ( )2 2 2 1,b′ ′=v v v , constε = . 

 
( ) ( )( )

( ) ( )

app div

app app

, , , , ,π , , , ,π , , ,π ,

, , , , ,π , , , , ,π , d .

p p

d

p p

F t b F t b b

F t b F t b
λ

τ τ ε ε ε

τ τ ε τ τ ε η η
−

−

′′− − + = + +

− − + = − − +∫

x G G v x G v v

x G G v x G G v
          (3.1b) 

Here, ( )d vτ λ= + . Velocities of relative motion of particles appearing in Equation (3.1) are displayed in 

Figure 3, ( ) ( ), , ,π ,b bε ε′ ′′= +v v v v . Equation (3.1) convey distinct physical meaning. They imply that after a  
lapse of time τ , all pairs of approaching particles, indiscriminately, become the pairs of diverging particles. Let 
us pass on from trajectory Equation (3.1) to differential equations, 

( ) ( )( ) ( )div app div

1
, , , , , , , , , , , , , , , , ,

!

k
k

p p p
k

F t b F t b b F t b
k
τ ε ε ε ε

∞

=

′∇ = −∑ x G v x G v v x G v         (3.2a) 

( ) ( ) ( )( ) ( )app div app

1
, , , , ,π , , , ,π , , ,π , , , , ,π

!

k
k

p p p
k

F t b F t b b F t b
k
τ

ε ε ε ε
∞

=

−
′′∇ + = + + − +∑ x G v x G v v x G v   (3.2b) 

Here, ( )t∇ ∂ ∂ + ∂ ∂G x= . Reversibility of the equations for pair functions will be examined in the seven- 
dimensional space tC C C= ×Gv . The seven-dimensional space is a combination of the CGv  six-dimensional 
space of velocities defined by vectors G and v and the tC  one-dimensional time space. The positive direction 
of the time axis runs from the past to the future. 

Suppose that at some instant of time, we have a chance to reverse the directions of the velocities of all the 
particles, → = −+G G G , +→ = −v v v , without changing the directions of the reference axes in space CGv . 

In space tC , time t may be reckoned in the direction of its increase: 0,1, 2, , while time t+ , in the return di-  
rection: 0, 1, 2,− −  , so that t t+ = − . Inverting the velocities, → = −+G G G , +→ = −v v v , we reverse the 
direction of motion of particles which, according to the laws of classic mechanics, retreat to their starting posi-
tions. Now let us alter orientation of the time axis, directing it from the future to the past. Reckoning time in the 
new frame of reference tC∗  in the direction: 0, 1, 2,− −  , we, as previously, move from the past to the future. 

Let us reverse the signs of particle velocities, → = −+G G G , +→ = −v v v , and reckon time in the direc-
tion of its decrease, t t t+→ = − . As the velocities are inverted, pairs of approaching particles become the pairs 
of diverging particles, and vice versa. For every pair function cylindrical coordinates of vector ρ  are specified 
in the frame of reference with Z-axis oriented in the direction of vector v (Figure 4), 

 

( ) ( )
( )

( )( ) ( )( )
( ) ( )( )

div +app

app div

div app +

app div +

, , , , , , , , , ,π ,

, , , , ,π ( , , , , , ),

, , , ,π , , ,π , , , , , , , ,

( , , , , , , , ) , , , ,π , , ,π .

p p

p p

p p

p p

F t b F t b

F t b F t b

F t b b F t b b

F t b b F t b b

ε ε

ε ε

ε ε ε ε

ε ε ε ε

+

+ +

+ +

+ +

→ +

+ →

′′ ′′+ + →

′ ′→ + +

+ +

+ +

+ +

+ +

x G v x G v

x G v x G v

x G v v x G v v

x G v v x G v v

           (3.3a) 
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Figure 3. Velocities of relative motion of two particles at the 
inlet and outlet of their interaction domain, appearing in Equa-
tion (3.1). Velocities are displayed in the frame of reference 
CGv , ( ) ( ), , ,π ,b bε ε′ ′′= +v v v v . 

 

 
Figure 4. In the Cartesian frame of reference XYZ with Z axis 
parallel to v vector, vector ρ has cylindrical coordinates b, 

ε , η ; in the Cartesian frame of reference X Y Z+ + + with 

Z + axis parallel to + = −v v  vector, vector ρ has cylindrical 
coordinates ,π ,b ε η+ − . 

 
Superscript + marks the pair distribution functions +app

pF  and div
pF + , which evolve with regressive direction  

of timing along the time axis pointing from the past to the future. Inversion of time and velocities fails to alter 
the number of pairs of diverging particles which at time t start approaching each other and the number of pairs 
of approaching particles which at time t start diverging each other, 

( ) ( )div +app, , , , , , , , , ,π ,p pF t b F t bε ε+= ++ +x G v x G v  

( ) ( )app div, , , , ,π , , , , , ,p pF t b F t bε ε+ ++ = + +x G v x G v                     (3.3b) 

( )( ) ( )( )div app +, , , ,π , , ,π , , , , , , , ,p pF t b b F t b bε ε ε ε+ +′′ ′′+ + = + +x G v v x G v v  

( ) ( )( )app div +( , , , , , , , ) , , , ,π , , ,π .p pF t b b F t b bε ε ε ε+ +′ ′= + ++ +x G v v x G v v  

Now substitute operations (3.3a) into Equation (3.2). Let us take Equation (3.3b) into account. These actions 
reduce Equation (3.2a) to Equation (3.2b) and Equation (3.2b) to Equation (3.2a). Hence, Equation (3.2) are in-
variant with respect to the change of variables → = −+G G G , +→ = −v v v , t t t+→ = − :  
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( ) ( ) ( )

( )( ) ( )

app

1

div + app

, , , , ,π
!

, , , ,π , , ,π , , , , ,π .

k
k

p
k

p p

F t b
k

F t b b F t b

τ
ε

ε ε ε

∞
+ + +

=

+ + + +

−
∇ +

′= + + − +

∑ + +

+ + + +

x G v

x G v v X G v
             (3.4a) 

( ) ( )

( )( ) ( )

div

1

app + div

, , , , ,
!

, , , '' , , , , , , , , , .

k k

p
k

p p

F t b
k

F t b b F t b

τ ε

ε ε ε

∞
+ + +

=

+ + + +

∇

= −

∑ + +

+ + + +

x G v

x G v v x G v
                 (3.4b) 

Here, ( )t+ +∇ = ∂ ∂ + ∂ ∂+G x . The formal criterion [12] of reversibility of Equation (3.2) is thus established.  

Let us go beyond the scope of formal analysis and examine Equation (3.la). Inversion of time and velocities, 
t t→ − , →−G G , → −v v , yields: 

( )( ) ( )( )
( ) ( )

app div

div app

, , , , , , , , , , ,π , , ,π ,

, , , , , , , , , ,π .
p p

p p

F t b b F t b b

F t b F t b

ε ε ε ε

τ τ ε τ τ ε

+

+

′ ′→ − − − + − +

+ → − + − − +

x G v v x G v v

x + G G v x + G G v
            (3.5a) 

Inversion of time and velocities fails to alter the number of pairs of diverging particles, which at time t τ+  
start approaching each other, 

( ) ( )div app, , , , , , , , , ,πp pF t b F t bτ τ ε τ τ ε++ = − + − − +x + G G v x + G G v               (3.5b) 

Now substitute operations (3.5a) into Equation (3.1a). Let us take Equation (3.5b) into account. From the re-
sulting equation it follows that the number of pairs ( )( )div , , , ,π , , ,πpF t b bε ε+ ′− − − + − +x G v v  that reverted to 

unit volume around point x by time t−  equals the number of pairs ( )( )app , , , , , , ,pF t b bε ε′x G v v  that left this 
volume at time t. It turned out that Equation (3.la) is reversible. Reversibility of Equation (3.lb) can be proved in 
the same way. 

Let us pass on from differential Equation (3.4) to trajectory equations,  

( ) ( )( )app div +, , , , ,π , , , ,π , , ,πp pF t b F t b bτ τ ε ε ε+ + + + ′− − + = + ++ + + + +x G G v x G v v        (3.6a) 

( )( ) ( )app + div, , , , , , , , , , , ,p pF t b b F t bε ε τ τ ε+ + + +′′ = ++ + + + +x G v v x + G G v            (3.6b) 

The sets (3.1) and (3.2) are written for the progressive direction of timing along the time axis pointing from 
the past to the future. The sets (3.4) and (3.6) are written for the regressive direction of timing along the same 
time axis.  

To comply with the physical scenario by which the system attains the kinetic and hydrodynamic stages and 
the peculiarities of this stage, let us dispose of the variables defining the mutual arrangement of particles. To this 
end, integrate Equation (3.la) with respect to b and ε : 

( )( ) ( )
2π

app div

0 0

, , , , , , , d d , , ,
d

p pF t b b b b F t τ τε ε ε′ = +∫ ∫ x G v v x + G G v                (3.7) 

Integration “collects” all the trajectories of types 1 and 2 (Figure 2) differing by their b and ε  values at the 
outlet of the interaction domain at a fixed v. However, integration with respect to b and ε  failed to eliminate 
these parameters, because the distribution function on the left hand side of Equation (3.7) depends on b and ε  
both explicitly and implicitly (via ( ), ,b ε′v v ). 

Let us next integrate ( )( )app , , , , , , ,pF t b bε ε′x G v v  with respect to b and ε  at a fixed ′v , 

( )( ) ( )( )
2π

app app

0 0

, , , , , , , d d , , , , ,
d

p pF t b b b b F t bε ε ε ε
′

′ ′=∫ ∫ v
x G v v x G v v                (3.8) 

Here, integration is over the trajectories of types 1 and n (Figure 2) differing by their b and ε  values at the 
entry of the interaction domain at a fixed ′v . Now replace ( )( )app , , , , , , ,pF t b bε ε′x G v v  in Equation (3.7) by 
its average over b and ε  (3.8), 
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( )( ) ( )( )app app 21, , , , , , , , , , , ,       πp pF t b b F t b dε ε ε σ
σ

′ ′⇒ =x G v v x G v v               (3.9) 

Equation (3.7) assumes therewith the following form: 

( )( ) ( )
2

app div

0 0

1 , , , ' , , d d , , ,
d

p pF t b b b F t τ τ
σ

π

ε ε = +∫ ∫ x G v v x + G G v                 (3.10) 

Figure 5 is a pictorial representation of operations (3.7)-(3.10). Column A portrays the integrand function on 
the left hand side of Equation (3.7) modeling pairs of approaching particles at fixed G and ε . Each rectangle in 
A corresponds to app

pF  with some particular values of b and ′v . Rectangles have different areas, each area be-
ing proportional to the number of pairs with the appropriate values of b and ′v . Replacing (3.9) translates A 
into B. The A В→  transition is equivalent to replacing app

pF  with given b and ′v  by its average over all b 

values at a fixed ′v , app
pF σ  (3.8). The result of this transition is that rectangles in column B, corresponding 

to different values of b and identical values of ′v  have equal areas. Thus, the A В→  transition brings us to a 
less accurate description of the system.  

The B C→  transition in Figure 5 is mediated by integration of the left hand side of Equation (3.10). The 
solid arrows connecting columns B and C correspond to the trajectories of types 1 and 2 (Figure 2) along which 
the left hand side of Equation (3.10) is integrated. The “collected” trajectories then experience the C D→  
transition to yield pairs of diverging particles with identical velocities v. Column D depicts pairs of diverging  
particles div

pF  modelled by the right hand side of Equation (3.10). It is worth emphasizing that each rectangle in 

column D derives from the isometric triangle in column B, corresponding to an approximate value of app
pF σ . 

Dashed arrows between B and C are the trajectories of types 1 and n (Figure 2). It is these trajectories that 
were “collected” by integrating (3.8) to switch from the exact value of app

pF  with some b and ′v  (depicted by 

the appropriate rectangle in column A) to its average app
pF σ  having the same ′v  and appearing in column B 

as a rectangle of a different area.  
Reversibility of Equation (3.10) will be analyzed in the same informal manner as that of Equation (3.la). Let 

us reverse the signs of particle velocities and reckon time in the direction of its decrease: t t t+→ = − ,  
 

 
(A)                  (B)                   (C)                     (D) 

Figure 5. Graphic representation of operations (3.7)-(3.10). 
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→ = −+G G G , +→ = −v v v . Variation of the left and right hand sides of Equation (3.10) is given by opera-
tions (3.5a) from which the explicit dependence on G and ε  is omitted. Substituting Equation (3.5b) indepen-
dent explicitly of G and ε  into Equation (3.10) yields the equation for transition from column D at time t τ+ +  
to column B at time t+  in the direction of decreasing time. Equation (3.10) fails to account for the reverse tran-
sition to column A and therefore is irreversible. 

Thus, at time t, we replace the exact initial functions modeling pairs of particles which have not collided yet 
(left hand side of Equation (3.7)) by their approximations. From these approximations app

pF σ  to the true func- 

tions at time t we derive the functions div
pF  modeling already collided particles at time t τ+  (Equation (3.10)). 

Operation (3.9) eliminated all information about the initial functions (left hand side of Equation (3.7)) from the 
left hand side of Equation (3.10). This information cannot be replenished by inverting time and particle veloci-
ties: t t t+→ = − , → = −+G G G , +→ = −v v v . Equation (3.10) is irreversible and valid only in the direc-
tion of increasing time. Note that operations (3.8) and (3.9) are by no means a sort of manipulation with impact 
parameters b and ε . They are a logical and consistent means of deriving the approximation that contains no in-
formation unnecessary in the kinetic stage of gas medium modeling.  

Let us integrate Equation (3.lb) with respect to b and ε ,  

( ) ( )( )
2π

app div

0 0

, , , , , , ,π , , ,π d d
d

p pF t τ τ F t b b b bε ε ε′′− − = + +∫ ∫x G G v x G v v             (3.11) 

By analogy with operation (3.9) we replace the initial function by its average, 

( )( ) ( )( )div div1, , , ,π , , ,π , , , ,π ,p pF t b b F t bε ε ε
σ

′′ ′′+ + ⇒ +x G v v x G v v              (3.12) 

where 

( )( ) ( )( )
2π

div div

0 0

, , , ,π , , , , ,π , , ,π d d
d

p pF t b F t b b b bε ε ε ε
′′

′′ ′′+ = + +∫ ∫ v
x G v v x G v v  

In Equation (3.11), function div
pF  models pairs of particles which have collided by time t and depends exclu-

sively on function app
pF  modeling pairs of particles approaching each other at time t τ− . Replacing the exact 

function div
pF  on the right hand side of Equation (3.11) by its average over b and ε , div

pF σ  (3.12), is inad-

missible with progressive direction of timing. Really, after replacing (3.12), function app
pF  at time t τ−  de-

pends exclusively on average function div
pF σ  at time t. Hence, Equation (3.11) with its right hand side re-  

placed by operation (3.12) is unsuitable for modeling evolution of distribution functions in the direction of in-
creasing time. Thus, an attempt to do away with the explicit dependence of distribution functions on b and ε  in 
Equation (3.11) has not met with success with the progressive direction of timing. Let θ  and ϕ  be the spher-
ical coordinates of vector v. Integration of Equation (3.11) with respect to θ  and ϕ  spares us the information 
useless in the kinetic stage of description, 

( ) ( )app div, , , , , ,p pF t v F t vτ τ− − =x G G x G                        (3.13) 

Equation (3.13) is reversible. This inference stems from an informal analysis similar to analysis of Equation 
(3.la). 

Following the procedure proposed in [15], we average Equation (3.10) and (3.13) over x within domain W of 
linear size d l λ  , Equation (2.11), multiply two-particle distribution functions by the number of ways in 
which a pair of particles can be chosen among N panicles, and switch from the trajectory form of the equations 
to their differential form, 

( ) ( ) ( )

( ) ( ) ( )

2π
div app div

0 0

app app div

1, , , , , , , , , d d ,

1, , , , , , , , , .

d

p p p

p p p

f t f t f t b b
t

f t v f t v f t v
t

ε
τσ

τ

∂ ∂   ′+ = −   ∂ ∂ 
∂ ∂   + = −   ∂ ∂ 

∫ ∫G x G v x G v x G v
x

G x G x G x G
x

        (3.14) 
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Equation (3.14) were previously derived heuristically in [14] and immediately from the Liouville equation in 
[15]. The functions div

pf  and app
pf  were defined by Equations (2.10), (2.11), and (2.12). 

Now we switch from space CGv  to space C∗
Gv , C C∗→Gv Gv . All the axes of the six-dimensional frame of 

reference C∗
Gv  are in opposition to the axes of CGv . Inversion of the reference axes of the velocity space CGv  

has no effect on the physical pattern: particles keep moving. In going to C∗
Gv , the superscript of pair distribution 

functions remains invariant. However, in frame of reference C∗
Gv , the arguments of distribution functions G and 

v reverse their signs: → = −+ +G G G , → = −+ +v v v , Figure 6, ( ) ( ),π , , ,b bε ε′ ′′+ =v v v v . Now we switch 

from space tC  to space tC∗ . The time axis in space tC∗  points towards the past. In space tC∗ , t t t+ ∗ +→ = − , 

τ τ→ − . The set (3.6) assumes the following form in frame of reference tC C C∗ ∗ ∗= ×Gv : 

( ) ( )( )app div, , , , ,π , , , ,π , , ,πp pF t b F t b bτ τ ε ε ε∗ ∗ ∗ ∗ ′− − + = + +x G G v x G v v           (3.l5a) 

( )( ) ( )app div, , , , , , , , , , , ,p pF t b b F t bε ε τ τ ε∗ ∗ ∗ ∗′′ = + +x G v v x G G v               (3.l5b) 

Superscript * marks the pair distribution functions app
pF ∗  and div

pF ∗ , which evolve with progressive direc-
tion of timing along the time axis pointing from the future to the past. Let us integrate Equation (3.l5a) with re-
spect to b and ε ,  

( ) ( )( )
2π

app div

0 0

, , , , , , ,π , , ,π d d
d

p pF t F t b b b bτ τ ε ε ε∗ ∗ ∗ ∗ ′− − = + +∫ ∫x G G v x G v v           (3.16) 

Let us carry out the replacing,  

( )( ) ( )( )div div1, , , ,π , , ,π , , , ,π ,p pF t b b F t bε ε ε
σ

∗ ∗ ∗ ∗′ ′+ + ⇒ +x G v v x G v v            (3.17) 

where 

( )( ) ( )( )
2π

div div

0 0

, , , ,π , , , , ,π , , ,π d d
d

p pF t b F t b b b bε ε ε ε∗ ∗ ∗ ∗

′
′ ′+ = + +∫ ∫ v

x G v v x G v v         (3.18) 

Equation (3.16) with replacing (3.17) assumes the form:  

( ) ( )( )
2π

app div

0 0

1, , , , , , ,π , d d
d

p pF t F t b b bτ τ ε ε
σ

∗ ∗ ∗ ∗ ′− − = +∫ ∫x G G v x G v v             (3.19) 

In Equation (3.19), average function div
pF σ∗  models pairs of particles which have collided by time t∗ .  

 

 
Figure 6. Velocities of relative motion of two particles at 
the inlet and outlet of their interaction domain, appearing 
in Equation (3.15). Velocities are displayed in the frame 
of reference C∗

Gv , ( ) ( ),π , , ,b bε ε′ ′′+ =v v v v . 
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Function app
pF ∗  models pairs of particles approaching each other at time t τ∗ −  and depends exclusively on 

average function div
pF σ∗  at time t∗ . Replacing (3.17) the exact function div

pF ∗  on the right hand side of Eq-

uation (3.16) by its average over b and ε , div
pF σ∗  (3.18), is responsible for the irreversibility of Equation 

(3.19). Equation (3.19) is suitable for modeling evolution of distribution functions in the direction of increasing 
time along the time axis pointing from the future to the past. Let us carry out the replacing, 

( )( ) ( )( )app app1, , , , , , , , , , , ,p pF t b b F t bε ε ε
σ

∗ ∗ ∗ ∗′′ ′′⇒x G v v x G v v                 (3.20) 

where  

( )( ) ( )( )
2π

app app

0 0

, , , , , , , d d , , , , ,
d

p pF t b b b b F t bε ε ε ε∗ ∗ ∗ ∗

′′
′′ ′′=∫ ∫ v

x G v v x G v v  

Let us integrate Equation (3.l5b) with respect to b and ε , and use the replacing (3.20), 

( )( ) ( )
2π

app div

0 0

1 , , , , , d d , , ,
d

p pF t b b b F tε ε τ τ
σ

∗ ∗ ∗ ∗′′ = +∫ ∫ x G v v x + G G v              (3.21) 

In Equation (3.21), function div
pF ∗  models pairs of particles which have collided by time t τ∗ +  and depends 

exclusively on average function app
pF σ∗  modeling pairs of particles approaching each other at time t∗ . Hence, 

replacing the exact function app
pF ∗  by its average over b and ε , app

pF σ∗  (3.20), is inadmissible with  
the progressive direction of timing on the time axis pointing from the future to the past. So, Equation (3.21) is 
unsuitable for modeling evolution of distribution functions in the direction of increasing time along the same 
time axis. Integration of Equation (3.15b) with respect to b and ε , θ  and ϕ , spares us the information useless 
in the kinetic stage of description: 

( ) ( )div app, , , , , ,p pF t F t vτ τ∗ ∗ ∗ ∗+ =x + G G v x G                      (3.22) 

As previously in [15], we average Equations (3.19) and (3.22) over x within domain W of linear size 
d l λ  , Equation (2.11), multiply the distribution functions by the number of ways in which a pair of par-
ticles can be selected from an ensemble of N particles, and switch from the trajectory form of equations to their 
differential form: 

( ) ( ) ( )

( ) ( ) ( )

2π
app app div

0 0

div app div

1, , , , , , , , , d d ,

1, , , , , , , , , .

d

p p p

p p p

f t f t f t b b
t

f t v f t v f t v
t

ε
τσ

τ

∗ ∗ ∗ ∗ ∗ ∗
∗

∗ ∗ ∗ ∗ ∗ ∗
∗

∂ ∂   ′+ = −   ∂∂ 
∂ ∂   + = −   ∂∂ 

∫ ∫G x G v x G v x G v
x

G x G x G x G
x

      (3.23) 

Equation (3.23) are valid in the direction of increasing time along the time axis pointing from the future to the 
past. Equation (3.23) are called the reverse equations for pair distribution functions. In [9], Equation (3.23) are 
derived directly from the Equation (3.14) by means of inversion of velocities and time supplemented with inver-
sion of the reference axes of the velocities and time space. 

The basic property of pair functions ( )app , , ,pf t vx G  and ( )div , , ,pf t vx G  is also good for the reverse func-

tions. Hence, pair functions ( )div , , ,pf t v∗ ∗ x G  and ( )app , , ,pf t v∗ ∗ x G  remain unchanged at time along the tra-
jectory of the center of mass of the pair for progressive direction of timing on the time axis pointing from the 
future to the past,  

( ), , , 0pf t v
t

∗ ∗
∗

∂ ∂ + = ∂∂ 
G x G

x
                            (3.24) 

here,  
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( ) ( ) ( )

( ) ( )

( ) ( )

app div

2π π
app app

0 0
2π π

div div

0 0

, , , , , , , , , ,

, , , , , , sin d d ,

, , , , , , sin d d .

p p p

p p

p p

f t v f t v f t v

f t v f t

f t v f t

θ θ ϕ

θ θ ϕ

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

= =

=

=

∫ ∫

∫ ∫

x G x G x G

x G x G v

x G x G v

 

Reverse multimoment hydrodynamics equations can be derived from Equation (3.23) within the formalism of 
[4]. It turned out that the form of the resulting equations of conservation (55) and (56) from [4] is invariant with 
respect to the direction of the time axis,  

1 1 0,
2 2

1 1 1 0.
3 2 2

v v
ij ij

j

Gv v v v
i i i j ij

i

p p
x

q q U p U p
x

δ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∂  + = ∂  

∂  + + + = ∂  

                       (3.25) 

However, expressions for the non-principal hydrodynamic values (52) and, hence, (53) from [4] undergo 
transformations: 

( ) ( )

app app

div

div

0    0,

2 4 22 ,
3 33

2 82
5 15

v Gv
ij i

vv v
j jv i k i k

ij ij ijv
j i k j i k

G v
ijGv v v v

i i jk j ik k ijv v
i j

p q

U qU U q q
p

x x x x x xp

p T UT mq q q q
x x kp p

ηη δ δ

λ λλ δ δ δ

∗ ∗

∗ ∗∗ ∗ ∗ ∗∗
∗ ∗

∗

∗ ∗∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗

= =

   ∂ ∂∂ ∂ ∂ ∂
= + − + + −      ∂ ∂ ∂ ∂ ∂ ∂   

∂ ∂∂
= + + + +

∂ ∂





 

 .k

jx

∗

∂

          (3.26) 

Then, 

( )

1 1 ,
2 2

2 2 2 ,
3 33

1 5 ,
2 6

4
5 15

G v
ij ij ij

vv v
j jv i k i k

ij ij ijv
j i k j i k

G v Gc
i i i i

G v
ijGv v v

i i jk j iv v
i j

p p p

U qU U q q
p

x x x x x xp

q q q q

p TT mq q q
x x kp p

ηη δ δ

λ λλ δ δ

∗ ∗ ∗

∗ ∗∗ ∗ ∗ ∗∗
∗ ∗

∗

∗ ∗ ∗ ∗

∗ ∗∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗

= +

   ∂ ∂∂ ∂ ∂ ∂
= + − + + −      ∂ ∂ ∂ ∂ ∂ ∂   

= + +

∂∂
= + + +

∂ ∂





 

 ( ) .v k
k k ij

j

U
q

x
δ

∗
∗ ∂

+
∂

           (3.27) 

Thus, the reverse Equation (3.23) give the expressions for the stress tensor v
ijp∗  and heat flux vector Gv

iq∗  
differ from their counterparts (Equation (53) in [4]) stemming from direct Equation (3.14) by their sign. Princip-
al hydrodynamic values ( ),n t∗ ∗ x , ( ),t∗ ∗U x , ( ),Gp t∗ ∗ x , ( ),vp t∗ ∗ x , ( ),G

ijp t∗ ∗ x , ( ),G t∗ ∗q x , and 

( ),v t∗ ∗q x  are the moments of pair function ( ), , ,pf t v∗ ∗ x G . Expressions for the moments of the reverse pair 

function ( ), , ,pf t v∗ ∗ x G  are identical to expressions for the moments of the pair function ( ), , ,pf t v∗ ∗ x G  pre-
sented in [4]. 

Let us recast replacing (3.9) in terms of two-particle distribution functions. Invoking relationship (10a) from 
[4], we obtain: 

( )( ) ( )( )app
2

1, , , , , , , , 1 , , , , , , ,
2

p
pF t b b d F t b b

v
τε ε ε ε

τ
 ′ ′− = − ∇ + 
 

x G v v x G v v


          (3.28) 

Let us integrate Equation (3.28) first with respect to b and ε , 
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( )( ) ( )( )
2π 2π

app
2

0 0 0 0

1, , , , , , , , d d 1 , , , , , , , d d
2

d d
p

pF t b b d b b F t b b b b
v

τε ε ε ε ε ε
τ

 ′ ′− = − ∇ + 
 ∫ ∫ ∫ ∫x G v v x G v v

    (3.29) 

and then with respect to b and ε  at a fixed ′v , 

( )( ) ( )( )app
2

1, , , , , , 1 , , , , ,
2

p
pF t b d F t b

v
τε ε

τ
 ′ ′− = − ∇ + 
 

x G v v x G v v


              (3.30) 

where 

( )( ) ( )( )
2π

2 2
0 0

, , , , , , , , , , , , , , d d
d

p pF t b d F t b b d b bε ε ε ε
′

′ ′− = −∫ ∫ v
x G v v x G v v               (3.31) 

Let us next apply operation (3.9) to Equation (3.29). From Equations (3.30) and (3.31) we obtain that opera-
tion (3.9) is equivalent to:  

( )( ) ( )( )2 2
1, , , , , , , , , , , , , ,p pF t b b d F t b dε ε ε
σ

′ ′− ⇒ −x G v v x G v v                  (3.32) 

Invoking relationships between two-particle distribution functions [4], let us recast replacing (3.32) in terms 
of functions 2

pF , written in the 1 1,  ,  ,  x ξ ρ v  variables,  

( )( ) ( )( )2 1 1 2 1 1
1, , , , , , , , , , , , , ,p pF t b b d F t b dε ε ε
σ

′ ′ ′ ′− ⇒ −x ξ v v x ξ v v 

                  (3.33) 

here, 

( )( ) ( )( )

( )( ) ( )

2π

2 1 1 2 1 1
0 0

2 1 1 2 1 1 1 2

, , , , , , , , , , , , , , d d ,

, , , , , , , , , , .

d
p p

p d p d

F t b d F t b b d b b

F t b F t

ε ε ε ε

ε

′

− −
′ ′

′ ′ ′ ′− = −

′ ′ ′ ′= −

∫ ∫
v

v v

x ξ v v x ξ v v

x ξ ρ v v x ξ x ρ ξ

 

 





            (3.34) 

In Equation (3.34) 1 2′ ′ ′= −v ξ ξ , 1 2′ ′= +ξ G v , 2' '/2= −ξ G v . Following to Equation (2.11), let us elim-
inate strong spatial dependence of the distribution functions from replacing (3.33) on the initial scale,  

( )( ) ( )( )2 1 1 2 1 1
1, , , , , , , , , , , , , ,p pF t b b d F t b dε ε ε
σ

′ ′ ′ ′− ⇒ −x ξ v v x ξ v v 

                 (3.35) 

In accordance with Equation (10) from [15], two-particle distribution functions 2
pF  and 2F  have identical 

physical meaning within interaction domain and governed by the same equations when triple collisions are neg-
lected, d λ . Hence,  

( ) ( ) ( )2 1 1 1 2 2 1 1 1 2, , , , , , , ,p d dF t F t O d λ− −
′ ′′ ′ ′ ′− = − +v vx ξ x ρ ξ x ξ x ρ ξ                 (3.36) 

Boundary condition (3.36) remains valid for functions 2
pF  and 2

pF .  
To analyze reversibility of Equation (2.5) with collision integral (2.6) let us reverse the signs of velocities, 

i i i→ = −+ξ ξ ξ , 1, 2i = , and reckon time in the direction of its decrease, t t t+→ = − . As the velocities are in-
verted, pairs of particles at the inlet of the interaction domain become the pairs of particles at the outlet of this 
domain, and vice versa, 

( ) ( )
( ) ( )

2 1 1 1 2 2 1 1 1 2

2 1 1 1 2 2 1 1 1 2

, , , , , , , , ,

, , , , , , , , .

d d

d d

F t F t

F t F t

− + + + + +

+ + + + − +

− → −

− → −

+

+

v v

v v

x ξ x ρ ξ x ξ x ρ ξ

x ξ x ρ ξ x ξ x ρ ξ
                  (3.37) 

Inversion of time and velocities fails to alter the number of pairs of diverging particles which at time t start 
approaching each other and the number of pairs of approaching particles which at time t start diverging each 
other. In this case, operations (3.37) remain true with respect to replacement of the symbol → by the symbol =. 
As a result, Equation (2.5) with collision integral (2.6) is invariant with respect to inversion: t t t+→ = − , 

i i i→ = −+ξ ξ ξ , 1, 2i = , that is, Equation (2.5) with collision integral (2.6) is reversible. The reversibility of 
Equation (2.5) is true for any analytical representation of two-particle distribution functions in the collision 
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integral (2.6). Hence, the Bogolyubov boundary condition for correlation failure [13],  

( ) ( ) ( )2 1 1 1 2 1 1 1 1 1 2, , , , , , , ,d dF t F t F t± ±− = −v vx ξ x ρ ξ x ξ x ρ ξ                   (3.38) 

does not eliminate the reversibility of Equation (2.5) with collision integral (2.6). The second component of col-
lision integral (2.6) corresponds to pair of particles at the entrance to their interaction domain. The first compo-
nent of collision integral (2.6) describes pair of particles at the exit from this domain. Let us express function 

( )2 1 1 1 2, , , ,dF t +− vx ξ x ρ ξ  in terms of the two-particle distribution function at the entrance to interaction domain. 
Invoking relationships derived in [18], we obtain: 

( ) ( )
2π

1 1 2 2 1 1 1 ' 2 2 1 1 1 2
0 0

( , , , ) , , , , , , , , d d
d

d dJ t v F t F t b b ε− − ′ ′= − − − ∫ ∫ v vx ξ ξ x ξ x ρ ξ x ξ x ρ ξ         (3.39) 

here, 

( ) ( )
+

2 1 1 1 2 2 1 1 1 2 1 13

1, , , , , , , , d     
2 2

d d
d d

W

F t F t
l

−
− − ′
′ ′

 
′ ′ ′ ′ ′ ′ ′− = + + − = − − 

 
∫ v v

v v
ρ ρ

x ξ x ρ ξ x a ξ x a ρ ξ a x x  

Let us recast collision integral (3.39) in terms of two-particle distribution functions 2F , written in 1x , 1ξ , 
ρ , v variables, 

( ) ( ) ( )
2π

1 1 2 1 1 2 1 1
0 0

, , , , , , , , , , , d d
d

d dJ t v F t F t b b ε− −
′

 ′ ′= −  ∫ ∫ v vx ξ v x ξ ρ v x ξ ρ v  

               (3.40) 

here, 

( ) ( )

( ) ( )
1 1 1 1 2

2 1 1 2 1 13

, , , , , , ,
1, , , , , , , , d .d d

W

J t J t

F t F t
l

− −
′ ′

=

′ ′ ′ ′ ′= +∫v v

x ξ v x ξ ξ

x ξ ρ v x a ξ ρ v a





 

 

 

Equation (2.5) with collision integral (3.39) remains invariant with respect to inversion of time and velocities, 
t t t+→ = − , i i i→ = −+ξ ξ ξ , 1, 2i = , that is, Equation (2.5) with collision integral (3.39) is reversible. Equa-  
tion (2.5) with collision integral (3.40) is also reversible. Invoking boundary condition (3.36) for the 2

pF  dis-  
tribution function, let us replace the first component in the collision integral (3.40) by its average over b and ε  
(3.35). Then, 

( ) ( )1 1 1 1, , , , , ,J t J t⇒x ξ v x ξ v


 

                               (3.41) 

here, 

( ) ( )( ) ( )
2π

1 1 2 1 1 2 1 1
0 0

1, , , , , , , , , , , , , d d
d

J t v F t b d F t d b bε ε
σ

 ′ ′= − − −  ∫ ∫x ξ v x ξ v v x ξ v


  

            (3.42) 

Let us invoke replacing (3.41) to obtain Equation (2.5) with collision integral (3.40) in the form:  

( ) ( ) ( )1 1 1 1 1 1
1

, , 1 , , , dF t N J t
t

 ∂ ∂
+ = − ∂ ∂ 

∫ξ x ξ x ξ v v
x





                     (3.43) 

In terms of two-particle distribution functions 2F , written in 1x , 1ξ , 2x , 2ξ  variables, collision integral 

( )1 1, , ,J t x ξ v




  (3.42) assumes the form: 

( ) ( )( ) ( )( )
2π

, ,
1 1 2 2 1 1 1 2 2 1 1 1 2

0 0

, , , , , , , , , , , d d
d

d dJ t v F t F t b b ε′− − ′ ′= − ∫ ∫ v vx ξ ξ x ξ x ξ x ξ x ξ


          (3.44) 

here, 
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( ) ( )
( )( ) ( )( )
( )( ) ( )

1 1 2 1 1

,
2 1 1 1 2 2 1 1

,
2 1 1 1 2 2 1 1

, , , , , , ,
1, , , , , , , , , , ,

1, , , , , , , , .

d

d

J t J t

F t F t b d

F t F t d

ε
σ

σ

′−

−

=

′ ′ ′ ′= −

= −

v

v

x ξ ξ x ξ v

x ξ x ξ x ξ v v

x ξ x ξ x ξ v

















 

In Equation (3.43), 1 1 2d d d d=ξ v ξ ξ . Equation (3.43) with collision integral (3.42) is irreversible. Replacing  
(3.32) is equivalent to replacing (3.9). Operations (3.9) and (3.32) are true for particles of pair which have not 
collided yet. That is why Equation (3.43) with collision integral (3.42) is valid for the progressive direction of 
timing along the time axis pointing from the past to the future. Analogously, Equation (3.43) with collision 
integral (3.44) is also valid with progressive timing along the same time axis. Following to Boltzmann, let us  
factorize two particle distribution functions in the ( )1 1 2, , ,J t x ξ ξ



 collision integral (3.44), 

( )( ) ( ) ( )
( )( ) ( ) ( )

,
2 1 1 1 2 1 1 1 1 1 2

,
2 1 1 1 2 1 1 1 1 1 2

, , , , , , , , ,

, , , , , , , , .

d

d

F t F t F t

F t F t F t

−

′−

=

′ ′ ′ ′=

v

v

x ξ x ξ x ξ x ξ

x ξ x ξ x ξ x ξ
                     (3.45) 

The factorization of two particle distribution functions, that is, their representation in the form of product of 
two one-particle functions, closes Equation (3.43) with collision integral (3.44). The obtained classic kinetic eq-
uation for the ( )1 1 1, ,f t x ξ  one-particle function is called the Boltzmann equation: 

( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 2
1

, , , , , , , , , , d d df t v f t f t f t f t b b
t

ε
 ∂ ∂ ′ ′+ = −    ∂ ∂ 

∫ξ x ξ x ξ x ξ x ξ x ξ ξ
x

    (3.46) 

Boltzmann hypothesis (“Stosszahlansatz”) (3.45) transforms irreversible Equation (3.43) with collision 
integral (3.44) into irreversible Boltzmann Equation (3.46). So, Boltzmann hypothesis (3.45) is not responsible 
for appearance of the irreversibility in the kinetic equation. Let us factorize two particle distribution functions in 
the ( )1 1 2, , ,J t x ξ ξ  collision integral (3.39),  

( ) ( ) ( )

( ) ( ) ( )
2 1 1 1 2 1 1 1 1 1 2

2 1 1 1 2 1 1 1 1 1 2

, , , , , , , , ,

, , , , , , , , .

d
v

d
v

F t F t F t

F t F t F t

−

−
′

− =

′ ′ ′ ′− =

x ξ x ρ ξ x ξ x ξ

x ξ x ρ ξ x ξ x ξ
                   (3.47) 

The factorization (3.47) transforms the reversible Equation (2.5) with collision integral (3.39) also into the ir-
reversible Boltzmann Equation (3.46). It follows that the factorization (3.47) masks the true cause for appear-
ance of the irreversibility in the kinetic Equation (3.46). 

The stated ideas about the transition of information from initial conditions to resulting equations allow sub-
mitting additional argument in favor of strong spatial dependence of the one-particle distribution function 

( )1 1 1, ,F t x ξ  on the scale of particle size. Suppose that the ( )1 1 1, ,F t x ξ  function weakly varies upon x1 on l0 
scale. In this case, the ( )1 1 1, ,NF t x ξ  function can be identified with number of 1ξ -particles in unit volume 
element near point x1. Then, it will be impossible to distinguish one direction of evolution from another by 
means of initial conditions for the ( )1 1 1, ,F t x ξ  function, because, in accordance with the assumption, the 

( )1 1 1, ,F t x ξ  function will not contain the information on mutual arrangement of particles. The ( )1 1 1, ,F t x ξ  
one-particle distribution function obeys the first reversible equation of BBGKY hierarchy (2.4). Thus, having 
disappeared from the initial conditions, direction of evolution identified with irreversibility does not appear in 
the equation. That is why, the assumption made will not allow for a description of both directions of evolution in 
the terms of the ( )1 1 1, ,F t x ξ  function. Appearance of this possibility as a result of further roughening, which 
ensures the transition to the kinetic stage, is excluded because the roughening able to lose, but not to introduce 
new information about the system. Thus, the loss of the possibility of interpretation of both directions of evolu-
tion in terms of the ( )1 1 1, ,F t x ξ  function disproves the assumption was made. 

4. Discussion  
Evolution of function called entropy is the indicator of reversibility of equation. Every function presented above, 
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Equations (2.3), (2.8), (2.10), allows to form own entropy. At the dynamic description level the system is cha-
racterized by the dynamic entropy, 

( ) ( ) ( )1 1 1, , , ln , , , d d     ,    1, ,K K K
D D N D N N i i iS t k t t i N= − Θ Θ = =∫ z z z z z z z x ξ            (4.1) 

The ( )K
DS t  function corresponds to the K-system of Gibbs ensemble, k is the Boltzmann constant. At the in-

itial description stage of the statistical level the system is characterized by the ( )GS t  Gibbs entropy, 

( ) ( ) ( )1 1 1, , , ln , , , d d     ,    1, ,G N N N N N i i iS t k F t F t i N= − = =∫ z z z z z z z x ξ            (4.2) 

At the kinetic and hydrodynamic description stages the system is characterized by the ( )1S t  Boltzmann en-
tropy. Besides the ( )1S t  entropy, the ( )pS t , ( )pS t∗ ∗  pair entropy may also characterize the system,  

( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1 1 1 1, , , ln , , d     , d .S t k f t f t S t S t= − =∫ ∫x x ξ x ξ ξ x x               (4.3) 

( ) ( ) ( ) ( ) ( )app app, , , , ln , , , d d      , d .p p p p pS t k f t f t S t S t= − =∫ ∫x x G v x G v G v x x          (4.4) 

( ) ( ) ( ) ( ) ( )div div, , , , ln , , , d d     , d .p p p p pS t k f t f t S t S t∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗= − =∫ ∫x x G v x G v G v x x        (4.5) 

Evolution of the ( )S t  function, ( ) ( ) ( ) ( ) ( ) ( )1,  ,  ,   K
D G p pS t S t S t S t S t S t∗ ∗=  is defined by two factors, by 

the ( )IN S t∆  entropy production in the system and the ( )EX S t∆  entropy outflow through the surface confin-
ing the system [12] [19], 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )EX IN 1        ,  ,  ,   K
D G p p

S t
+ S t S t S t S t S t S t S t S t

t
∗ ∗∂

∆ = ∆ =
∂

          (4.6) 

The system does not produce the dynamic entropy, ( )IN 0DS t∆ = , regardless of characteristic features of 
processes within it. The Gibbs entropy also is not produced by the system, ( )IN 0GS t∆ = . Therefore, in accor-
dance with (4.6), the absence of entropy outflow through the surface confining the system ensures conservation 
in time both the ( )K

DS t  dynamic entropy and the ( )GS t  Gibbs entropy [12]. The absence of production of the 
dynamic entropy is the indicator of reversibility of the classic mechanics equations. The absence of production 
of the Gibbs entropy is the indicator of reversibility of equations of the BBGKY hierarchy. 

The irreversible equations of kinetics and hydrodynamics demonstrate qualitatively different behavior. De-
pending on the characteristic features of processes within non-equilibrium system the binary collisions of par-
ticles either generate or absorb the entropy, ( )IN 1 0S t∆ ≠ , ( )IN 0pS t∆ ≠ , ( )IN 0pS t∗ ∗∆ ≠ . Both the ( )1S t  
Boltzmann entropy (4.3) and the ( )pS t , ( )pS t∗ ∗  pair entropy (4.4), (4.5) have quite definite physical sense; 
they meet the volume which system occupies in the G-space [6] [19]. Thus, the system evolution is accompanied 
by change of its volume in the G-space.  

The temporal conservation of entropy for system that evolves to the state of statistical equilibrium at its de-
tailed description (at high accuracy level) is noted by J. Gibbs on the classical example with dye [20]. According 
to Gibbs, the temporal change of entropy is possible only when a coarse description. 

Among other things, the entropy specifies the degree of smearing system macroscopic state upon acceptable 
microscopic states. At the dynamic description level the microscopic state that corresponds to given macroscop-
ic state is quite concrete. At the initial stage of the statistical level, the absence of entropy outflow through the 
surface confining the system ensures the conservation of the degree of smearing system macroscopic state upon 
acceptable microscopic states. At the kinetic and hydrodynamic stages, the system evolution is accompanied by 
change of the degree of smearing due to non-zero entropy production.  

The transition from the classic mechanics equations to the hydrodynamics equations is a successive multistep 
process of loss of excess information about the system. During this transition a set of roughening operations is 
performed but only one of these operations transforms the reversible equations into the irreversible ones. At the 
first step of roughening the description of an individual system is replaced by description of the ensemble of 
systems. The ( )1 1 2 2, , , , , , ,N N NF t x ξ x ξ x ξ  ensemble distribution function (2.3) obeys the Liouville equation 
(2.4). The Liouville equation is reversible, that is, the first roughening step does not lead to appearance of the ir-
reversibility.  

The second roughening step reduces the ordinal number of partial distribution functions. The second step is 



I. V. Lebed 
 

 
317 

accompanied by loss of information about the position in phase space of the particles in turn. If the  
( )1 1 2 2, , , , , , ,N N NF t x ξ x ξ x ξ  distribution function contains the information about the position of all N particles 

in the phase space, then the ( )1 1 2 2, , , , , , ,s s sF t x ξ x ξ x ξ  function contains such information only about s par-
ticles of the system regardless of the position in phase space of the remaining N s−  particles. Every equation 
of the BBGKY hierarchy (2.4) is reversible, that is, the second step of roughening also does not lead to appear-
ance of the irreversibility.  

The irreversibility appears at the next roughening step after transition from the initial description stage to the 
kinetic and hydrodynamic stages. Equation (3.7) is invariant with respect to inversion of time and velocities. 
Replacing the exact function on the left hand side of Equation (3.7) by its average over impact parameters (3.9) 
eliminates the reversibility of Equation (3.7), that is, Equation (3.10) becomes irreversible. Replacing (3.9) 
closes one of two directions for time reckoning. It means that both Equation (3.10) and the direct set (3.14) are 
valid for the progressive direction of timing on the time axis pointing from the past to the future.  

Equation (3.16) is invariant with respect to inversion of time and velocities. Replacing the exact function on 
the right hand side of Equation (3.16) by its average over impact parameters (3.17) eliminates the reversibility of 
Equation (3.16), that is, Equation (3.19) becomes irreversible. Replacing (3.17) closes one of two directions for 
time reckoning. It means that both Equation (3.19) and the reverse set (3.23) are valid for the progressive direc-
tion of timing on the time axis pointing from the future to the past. Note that solutions to the set (3.23) are also 
suitable for modeling observed system evolution with regressive timing along the time axis pointing from the 
past to the future. 

The local pair entropy corresponding to the direct equations for pair distribution functions (3.14) and the mul-
timoment hydrodynamics equations they yield can only be produced in the system due to binary collisions at any 
space point x and at any instant t, ( )IN , 0pS t∆ ≥x  [6]. Thus, at any instant t binary collisions merely rise the 
pair entropy of the system, ( )IN 0pS t∆ ≥ . Such behavior of the entropy is in full accordance with the second 
law of thermodynamics. The solutions to the direct multimoment hydrodynamics equations describe the direc-
tion of evolution of the system that is everywhere and every second is found in nature.  

The local pair entropy corresponding to the reverse equations for the pair distribution functions (3.23) and the 
reverse multimoment hydrodynamics equations they yield can only be absorbed in the system due to binary col-
lisions at any space point x and at any instant t∗ , ( )IN , 0pS t∗ ∗∆ ≤x  [6] [9]. Thus, at any instant t∗  binary col-  
lisions absorb the pair entropy of the system, ( )IN 0pS t∗ ∗∆ ≤ . The solutions to the reverse multimoment hydro-  

dynamics equations describe the evolution of the system in the opposite direction, which, as is commonly be-
lieved, is extremely rare in nature. 

In [6], it is shown that production of the Boltzmann local entropy ( )IN 1 1,S t∆ x , generally speaking, is not a 
strictly positive value. The growth of the Boltzmann entropy due to binary collisions takes place only at a weak 
deviation of system state from the state of statistical equilibrium. In the problem on flow around a sphere [6], the 
space regions were discovered where the Boltzmann local entropy was absorbed due to binary collisions. The 
entropy absorption appeared in stable system at rather high values of Reynolds number. This property of the 

( )1 1,S t x  function is the main reason why the pair entropy should be preferred to the Boltzmann entropy when 
interpreting highly non-equilibrium phenomena.  

Let us refer again to the example, Figure 1. Suppose that at the time 1t t′=  the direction of the velocities of 
all the particles are reversed without changing the positions of particles (Figure 1(c)). This inversion is a hardly 
probable event. Then, by the time 2t t′= ( )2 1 1 0t t t t′ ′ ′ ′− = − , in accordance with the laws of classic mechanics, all 
the particles will return to the left side of the vessel. Since the time 1t t′= , let us reckon the time in the regres-
sive direction along the time axis pointing from the past to the future, 12t t t+ ′= − +  within 1 2t t t′ ′≤ ≤ . Begin-
ning from the time 0t t′=  up to the time 1t t′= , let some solution to direct set (3.14) describes the process of 
filling of the vessel. The inversion of velocities and time supplemented with inversion of the reference axes of 
the velocities and time space transforms the direct Equation (3.14) into the reverse Equation (3.23) [9]. Then, 
beginning from the time 1t t+ ′=  up to the time 0t t+ ′= , the corresponding solution to the reverse Equation 
(3.23) will describe the process of returning the gas into the left side of the vessel. Generally speaking, the 
process of returning the gas from the state realized at the time 1t t+ ′=  (Figure 1(c)) into the state achieved by 
the time 0t t+ ′=  (Figure 1(a)) has no relation with the choice of direction of timing. This process is determined 
exclusively by the system initial conditions.  

Let in closed vessel, by the time 3t t′=  the conditions completely identical to those, which occurred at the 
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time 1t t′=  after inversion in velocities space (Figure 1(c)), are established by itself. In principle, such an 
event is real, as it does not contradict the conservation laws. However, it is extremely unlike at a sufficiently 
large number of particles within the vessel. The durability of time interval 3 1t t′ ′−  is no importance in this case. 
Then, by the time 4t t′=  all the particles of gas will be concentrated in left side of the vessel, 

4 3 1 0 2 1t t t t t t′ ′ ′ ′ ′ ′− = − = − . The process of returning the gas occurs for the progressive direction of timing on the 
time axis pointing from the past to the future. This process is absolutely identical to that one, which occurred 
within time interval between 1t t+ ′=  and 0t t+ ′=  for the regressive direction of timing on the same time axis. 
Two identical processes should be described by the same equations. Therefore, returning the gas into the left 
side of the vessel occurred within time interval between 3t t′=  and 4t t′=  for the progressive direction of 
timing on the time axis pointing from the past to the future should also be described by the reverse Equation 
(3.23). So, the reverse Equation (3.23) are suitable for description of processes occurring with progressive tim-
ing on the time axis pointing from the past to the future. 

This example returns us to the days of L. Boltzmann, when there were controversial debates about the cor-
rectness of the Boltzmann equation and the H-theorem it yields. Opponents of L. Boltzmann, E. Zermelo and J. 
Loschmidt, gave examples of processes that are not described by the Boltzmann equation [21] [22]. Namely, J. 
Loschmidt proposed to reverse the sign of velocities of all the particles at the time 1t t′= , (Figure 1(c)), and E. 
Zermelo proposed to wait until the time 3t t′=  when the condition shown in Figure 1(c) will be established by 
itself. L. Boltzmann was unable to refute the arguments of the opponents. He was forced to acknowledge the ex-
istence of processes that can not be described in the frameworks of his theory. However, L. Boltzmann noticed 
that his theory predicts the direction of evolution for overwhelming majority of processes occurred in nature. At 
the same time, the processes that the opponents cited are extremely unlikely, i.e., almost unreal [16] [23] [24]. 

Indeed, at low deviation of the system state from the state of statistical equilibrium, as L. Boltzmann predicted, 
the conditions directed the system along the unlikely path arise extremely rarely. However, with the increase of 
departure from the state of statistical equilibrium the probability of occurrence of such conditions is growing. 
Penetration into the instability field confirmed this assumption. It turned out that in the instability field the 
probability of the occurrence of conditions that forces the system to move in the unlikely direction is about the 
value of basic order. The movement of unstable system in the unlikely direction becomes a regular event. The 
reverse movement provides the periodicity of unstable processes occurring in the system. It prevents the disinte-
gration of the system losing its stability [8].  

5. Conclusions 
The original equations of classic mechanics do not contain information about the direction of system evolution. 
This information is enclosed in the initial conditions and the direction of evolution is defined by the mutual ar-
rangement of system particles. Roughening the original equations together with the initial conditions is a suc-
cessive process to exclude the excessively detailed information and obtain coarse equations suitable for use. The 
information on the spatial position of an individual particle is lost at one of the roughening steps. Therefore, at 
this roughening step the initial conditions lost the information about the direction of system evolution. At the 
same time, at this roughening step the direction of evolution identified with the irreversibility appears in the eq-
uations. Therefore, the irreversibility did not appear from nothing in the coarse equations, it transited from initial 
conditions to equations by means of the roughening process. The substitutions (3.9) and (3.17) are responsible 
for appearance of the irreversibility in the kinetics and hydrodynamics equations. These substitutions are by no 
means a sort of manipulation with impact parameters b and ε . They are a logical and consistent means of de-
riving the approximation that contains no information unnecessary in kinetic and hydrodynamic description 
stages. The averaging (3.8) is carried out with respect to collision parameters of two particles, which are ap-
proaching each other before their collision. The direct equations of kinetics and hydrodynamics are the result of 
this roughening. These equations are true for the progressive direction of timing on the time axis pointing from 
the past to the future. The averaging (3.18) is carried out with respect to collision parameters of two particles, 
which are diverging after collision with each other. The reverse equations of kinetics and hydrodynamics are the 
result of this roughening. These equations are true for the progressive direction of timing on the time axis point-
ing from the future to the past. Solutions to the reverse equations of kinetics and hydrodynamics are also appli-
cable to interpret observed system evolution with regressive timing along the time axis pointing from the past to 
the future. 
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Suppose that each system in ensemble consists of N particles. Let the evolution of ensemble systems be de-
scribed by the direct set (3.14). At some time t, let us reverse the sign of velocities of all N particles of all the 
systems in ensemble, +

i i i→ = −ξ ξ ξ , 1, ,i N=  , and reckon time in the direction of its decrease, t t t+→ = − . 
As a result of this inversion, in accordance with the laws of classic mechanics, all the particles of all the systems 
in ensemble will move in the opposite direction. The reverse Equation (3.23) should describe the reverse move-
ment of particles. Indeed, reverse Equation (3.23) can be obtained from direct Equation (3.14) also by the inver-
sion of velocities and time. However, to implement the reverse movement in system, it is not necessary to 
change the direction of timing. It is enough to change the direction of velocities of all the particles of system, 
then, the system will move back with progressive direction of timing. 

Processes occurring in nature are objective events, while the choice of the direction of timing on the time axis 
is a subjective process. Time is reckoned by an observer, while processes occurring in nature are absolutely in-
sensitive to the direction in which the observer counts the time. Therefore, if the reverse Equation (3.23) are ca-
pable to describe the reverse motion of systems in ensemble for progressive direction of timing on the time axis 
pointing from the future to the past, then the same equations must describe the reverse movement of systems in 
ensemble for progressive direction of timing on the time axis pointing from the past to the future. 

This means the followings. Let us reckon the time in progressive direction both along the time axis pointing 
from the future to the past and along the time axis pointing from the past to the future. Let us begin to observe 
some phenomenon, agreeing upon the origin for two directions of timing. On finding solution to the reverse Eq-
uations (3.23), we obtain the distribution of hydrodynamic values, their spatial and temporal derivatives. Let the 
calculated values agree well with the values observed in the direction of increasing time on the time axis point-
ing from the future to the past. Then, we also find the agreement between the calculated reverse distributions of 
hydrodynamic values, their spatial and temporal derivatives and the values observed in the direction of increas-
ing time on the time axis pointing from the past to the future. However, there exist no direct equations that 
would satisfy the distributions of reverse hydrodynamic values, their spatial and temporal derivatives. 
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