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Abstract 
Efficient solvers for optimization problems are based on linear and semidefinite relaxations that 
use floating point arithmetic. However, due to the rounding errors, relaxation thus may overesti-
mate, or worst, underestimate the very global optima. The purpose of this article is to introduce 
an efficient and safe procedure to rigorously bound the global optima of semidefinite program. 
This work shows how, using interval arithmetic, rigorous error bounds for the optimal value can 
be computed by carefully post processing the output of a semidefinite programming solver. A low-
er bound is computed on a semidefinite relaxation of the constraint system and the objective func-
tion. Numerical results are presented using the SDPA (SemiDefinite Programming Algorithm), 
solver to compute the solution of semidefinite programs. This rigorous bound is injected in a 
branch and bound algorithm to solve the optimisation problem. 
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1. Introduction 
We consider the standard primal semidefinite program in block diagonal form: 

* T
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. . , 0,
m

i i
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p c x

s t X F x F X
=

=

= −∑ 
                              (1) 

where ( )T
1, , m

mc c c= ∈   is the cost vector, ( )T
1, , m

mx x x= ∈   is the variables vector and the matrices 
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for 0, ,iF S i m∈ =   are matrices in nS . Recall that nS  denotes vector space of real symmetric n n×  ma-
trices and 0X   means that nX S+∈ , the cone of positive semidefinite matrices in nS . *p  is the optimal 
value of the primal objective function. The standard inner product on nS  is: 

( ) ( ) ( ) ( )( )T , where trace , with  a .nd nA B tr AB tr A B tr A A A B S⋅ = = = ∈  

The dual semidefinite program of (1) is: 

( )

* *
0max max

. . , 1, , , 0,i i

d d F Y
s t F Y c i m Y

⋅

⋅

= =

= =  
                           (2) 

with nY S+∈  and *d  is the optimal value of the dual objective function. ( ),x X  is a feasible (minimum) and 
(or optimal) solution of the primal semidefinite problem (1) and Y  is a feasible (maximum) and (or optimal) 
solution of the dual semidefinite problem (2). The duality theory for semidefinite programming is similar to its 
linear programming counterpart, but more subtle (see for example [1]-[3]). The programs satisfy the weak dual-
ity condition: * *d p≤ . 

Interior point methods are a certain class of algorithms to solve most of semidefinite programs [4]-[7]. How-
ever, due to the use of floating point arithmetic, these algorithms may produce erroneous results. That is to say, 
when run on a computer, the result of these algorithms could be an overestimation or, worst, an underestimation 
of the very global optima. The purpose of this article is to show how rigorous error bounds for the optimal value 
can be computed by carefully post processing the output of a semidefinite programming solver. We use interval 
computation to rigorously bound the global optima. Thus the use of outward rounding allows a safe bounding of 
the global optima. There exist many solvers of semidefinite programs which provide tight bounds as pointed out 
in Roupin et al. (see, e.g., [8]), however they are unsafe. That is why we propose here to embed safe semidefinite 
relaxations in an interval framework. 

Before going into details, let us show, in a small example, a flaw or lack of rigor on the computation of the 
optimal value of the objective function [9]. Consider the following optimization problem: 

( )
[ ]

2

2 5

min

. . 0

2 10 0

, 10, 10

x
s t y x

y x x

x y

−

− ≥

− − + ≤

∈ − +

                               (3) 

As shown in Figure 1, the solution of problem (3) lies in the neighbourhood of point 3, 9x y≈ ≈ . This point 
is the unique intersection of curve 2y x=  and curve ( )2 52 10y x x −= − − . However, at point 0, 0x y= = , 
two curves are only separated by small distance of 10−5. Using Baron (6.0 and 7.2) [9], a solver based on the 
techniques of relaxations, in particular linear and convex relaxations, quickly it finds 0 as global minimum even 
if the precision is enforced up to 1210− . Such a flaw is particularly annoying: as pointed out in [10], there are 
many situations, like safety verification problem or chemistry, where the knowledge of the very global optima is 
critical. 
 

 
Figure 1. Geometrical representation of Problem (3).     
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The rest of this paper is organized as follows. The next section contains notations. In Section 3 an overview of 
the use of a procedure to compute a rigorous semidefinite bound is considered, and Section 4 contains numerical 
results. Finally, in Section 5, we provide some concluding remarks. 

2. Notations, Interval Arithmetic 
We require only some elementary facts about interval arithmetic, which are described here. There are a number 
of textbooks on interval arithmetic and selfvalidating methods that we highly recommend to readers. These in-
clude Alefeld and Herzberger [11], Moore [12], and Neumaier [13]. [ ] { }, mx x x x x x= = ∈ ≤ ≤x ∕  is called 
an interval vector with lower bound x  and upper bound x . x , y  denote indifferently intervals and vectors 
of intervals, also called boxes. The width ( )w x  of the interval x  is the quantity x x− . The interval evalua-
tion of a real-valued function ( )f x  is an interval f . *f  and *f , respectively, denote lower and upper 
bounds of *f , the optimal value of the objective function f . For interval vector A  we define 

{ }max 0,A A+ =  and { }max 0, .A A− =  All interval operations can be easily executed by working appro-
priately with the lower and upper bounds of the intervals. 

3. Rigorous Lower Bound 
Semidefinite programs are typically used in branch-and-bound algorithms, to find lower bounds on the objective 
that allow one to decide whether a given node in the branch tree can be fathomed. For reliable results, it is 
therefore imperative that the computed lower bound is rigorously valid. However, the output of semidefinite 
programming routine is the result of an approximate calculation and hence is itself approximate. Obtaining ri-
gorous error bounds for the solution of semidefinite problems is a difficult task [14]. Fortunately, it is possible to 
post process the approximate result to obtain rigorous bounds for the objective with reasonable effort, using di-
rected rounding and interval arithmetic. The most famous implementation of this approach with linear relaxa-
tions are documented by many applications and a number of survey papers (for example Lebbah et al. [9]). Re-
cently, Neumaierand Shcherbina [15] proposed in the context of linear programming a safe procedure mathe-
matically proven witch computes bound and guarantees its rigor. We introduce in this paper an extension of this 
procedure on semidefinite programming. 

As pointed out in Neumaier and Shcherbina [15], using directed rounding and interval arithmetic, cheap post 
processing of the linear programs arising in branch and bound framework can guarantee that no solution is lost. 
In mixed integer programming, linear programs are typically used to find lower bounds on the objective that al-
low one to decide whether a given node in the branch tree can be fathomed. For reliable results, it is therefore 
imperative that the computed lower bound is rigorously valid.  

However, the output of a linear programming routine is the result of an approximate calculation and hence is 
itself approximate [16]. Obtaining rigorous error bounds for the solution of linear programming problems is a 
difficult task (cl. KRAWCZYK [17], JANSSON [18], JANSSON & RUMP [19]). 

Fortunately, it is possible to post process result to obtain rigorous bounds for the objective with reasonable 
effort, provided that reasonable bounds on all variables are available. Such bounds are frequently computed 
anyway in a preprocessing phase using a limited form of constraint propagation, and if the latter is done with 
sufficient care (using directed rounding to ensure the mathematical validity of each step of the process) [20] [21], 
these bounds on the variables are rigorously valid. 

We begin by looking at the simpler case where the linear program is given in the standard form. 
Tmin

. . , 0.
c x

s t Ax b x= ≥
                                   (4) 

Its dual is  
T

T

max

. . , 0.

b y
s t A y c y≤ ≥

                                  (5) 

Thus a rigorous lower bound µ  for Tc x  is obtained as follows. 

roundup :  
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T ;bµ +=  
T ;r A y c= −                                       (6) 

roundup :  

( )Tmax , ;r r A c= − +  

( )T T max , ;b r x xµ µ−= − + −  

;µ µ= −  

Of course, there are a variety of other ways of doing the estimates, e.g., using suitable case distinctions, and a 
high quality implementation would have to test which one is most efficient. 

We use the extension of this result to semidefinite program. We solve the semidefinite program (8) below and 
its dual (9) with the SDPA [4], a software package for solving semidefinite programs. It is based on a Mehrotra- 
type predictor-corrector infeasible primal-dual interior-point method [5] [6]. We post process the output of the 
solver to obtaining rigorous error bounds for the optimal value. 

To simplify the formulas, we use: 

( )

1

2

m

F X
F X

F X

F X

⋅
⋅

⋅

 
 
 =
 
 
 



                                    (7) 

So the primal semidefinite program (1) is written: 

( )

T

0

min
. . , 0.

c x
s t F x F X X− = 

                               (8) 

And the dual semidefinite program (2) is written: 

( )
0max

. . , 0.
F Y

s t F Y c Y=

⋅


                                 (9) 

The corollary below gives a rigorous value of the approximate optimal solution of the semidefinite program. 
Corollary 3.1. 

( )T T
0c x F Y X Y r x

−
≥ + −⋅ ⋅                                (10) 

With [ ],x x x∈ =x  where x  and x  are finite real numbers, and [ ],r r r∈ =r . 
Proof: Solving the problem with the SDPA solver, we obtain ( ),x X  an approximate solution of the primal 

program (8) and Y  an approximate solution of the dual program (9). We obtain the corollary as follows:  

( ) ,r F Y c= −  r  is the residuel ( )( )F Y c− , so we obtain: 

( )c F Y r= −  

( )( )TTc F Y r= −  

( )( )TTc x F Y r x= −  

( )( )TT Tc x F Y x r x= −  

We replace F(Y) with its expression (7), we obtain: 

( ) ( ) ( ) ( )( )T T
1 2 3 mc x tr FY tr F Y tr F Y tr F Y x r x= −  

Knowing that ( ) ( ) ( ) ,tr A tr B tr A B+ = +  we obtain:  
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( ) ( ) ( ) ( )( )T T
1 1 2 2 3 3 m mc x tr F x Y tr F x Y tr F x Y tr F x Y r x= −  

( )T T
1 1 2 2 3 3 m mc x tr F x Y F x Y F x Y F x Y r x= + + + + −  

( )( )T T
1 1 2 2 3 3 m mc x tr F x F x F x F x Y r x= + + + + −  

( )( )T T
1

m
i iic x tr F x Y r x

=
= −∑  

From the problem (1), we have 01
m

i ii F x F X
=

= +∑ , so we obtain: 

( )( )T T
0c x tr F X Y r x= + −  

( ) ( )T T
0c x tr F Y tr XY r x= + −  

And thus: 
T T

0c x F Y X Y r x= ⋅ + ⋅ −                                 (11) 

Extending (11) on the intervals, and assuming that rigorous two-sided bounds [ ],x x  on x are available, and 
the two-sided bounds [ ],r r  on r are obtained by simple interval computation. We obtain the final formula that 
provides a rigorous lower bound of Tc x  

[ ] [ ]( )TT
0 , ,c x F Y X Y r r x x

−
⋅ ⋅≥ + −                            (12) 

Inexact arithmetic, r = 0, and we have at the optimum 0XY =  (complementary slackness between X  and 
Y  from the optimality conditions). Then in (12) we obtain T

0c x F Y= ⋅  which is consistent with the duality 
theorem (at the optimum, the primal objective Tc x  is equal to the dual objective 0F Y⋅ ). 

This result is used to have a lower bound of the objective function and then we assumed the completeness of 
the algorithm branch and bound. 

4. Global Optima 
To solve optimization problem, the branch-and-bound procedures sequentially generate semidefinite program-
ming relaxations. However, due to the rounding errors, relaxation thus may overestimate, or worst, underestimate 
the very global optima [22]. A consequence is that the global optima may be cut off. To avoid this disadvantage 
we can apply the algorithms for computing rigorous bounds described in the previous sections. Therefore, the 
computation of rigorous error bounds, which take account of all rounding errors and of small errors, is valuable 
in practice. 

Therefore the experimentation results show that by properly post processing the output of a semidefinite solv-
er, rigorous error bounds for the optimal value can be obtained. 

The relaxation is solved with the SDPA which handles the standard form of the SDP problem and its dual. 
The quality of the error bounds depends on the quality of the computed approximations and the distances to dual 
and primal infeasibility. By comparing these bounds, one knows whether the computed results are good. 

5. Experimentations Numerical Results 
In this section, we present some numerical experiments for solving rigorously semidefinite problems. The results 
were obtained by using the solver SDPA witchhandles the standard form of semidefinite program and its dual 
[4].  

To test our procedure of correction, we generated linear programs automatically and particular quadratic pro-
grams, for which we know the primal objective value. We thus allow to validate our procedure in experiments 
with comparison. The solver SDPA solves the semidefinite relaxation of the problem considered and then we 
apply our procedure to the results.  

The motivation to consider these examples is to show the effectiveness and the realizability of our procedure. 
We consider the linear program: 



O. Derkaoui, A. Lehireche 
 

 
298 

( )
1min

. . 3 1, 1, , .

m
ii

i

x
LP

s t x i m
=




− = =

∑


                             (13) 

And we consider the quadratic program: 

( )
1

2

min

. . 2, 1, , .

m
ii

i

x
QP

s t x i m
=




= =

∑


                             (14) 

We use the standard format of the Input Data File. In [23] the structure of the input SDP problem file is given 
as follows: 

Title and comments 
m—number of the primal variables ix  
nBLOCK—number of blocks 
bLOCKsTRUCT—block structure vector 
c  

0F  
1F  

. 

. 

. 
mF  

SDPA handles iF  matrices blocks. This strategy minimizes the computational cost during SDP problem 
solving. It uses the term number of blocks noted Nblock. 

The SDPA stores computational results in the output file such as an approximate optimal solution, the total 
number of iteration, the primal objective function value, the dual objective function value and other final infor-
mations. 

Table 1 and Table 2 present the results of our experimentations. In these tables, Prob is the problem (13) in 
Table 1 and the problem (11) in Table 2, m is the number of variables, P is the approximate objective function 
( )*p  of the problem (10) gives by SDPA solver, PC is the rigorous objective function ( )*p  gives by our 
procedure , safe is a flag that indicates whether the objective function is rigorous (+) or not (−), Ex is the exact 
value of objective function and Ec is the gap (Ex – PC). 

Below, some results are presented, obtained on some well-known benches with the branch and bound solver. 
Audet’s problems come from his thesis [24]. The presented results can be viewed as a further development of 
similar methods for linear programming. 

Table 3 presents the results of our experimentations of global bound. In this table, Prob is the problem to 
solve, m is the number of variables, n is the number of constraints, Ntot is the total of nodes, Nopt is the optimal 
node, Lower is the rigorous objective function of the problem gives by our procedure with SDPA solver, Upper 
is the upper bound, and CPU is the time in second required to solve the problem. 

We note that throughout the test database, our solver supervises the actual optimal solution always correctly. 
This rigor in resolution with the SDPA solver is crucial because it guarantees us completeness.  

Therefore, their integration into the branch and bound algorithms is plausible. 
These results show that the use of interval arithmetic computation gives rigorous bounds. We can always use 

filtering techniques and parallelism to optimize the quality of the solution and the CPU time. 
 
Table 1. Rigorous lower bound of problem (13).                                                               

Prob m 
SDPA SDPA + correction 

Ex Ec 
P safe PC safe 

LP 10 

LP 100 

LP 300 

LP 400 

10 

100 

300 

400 

3.33333339 

3.33333339 

100.000001 

133.333335 

− 

− 

− 

− 

3.333333333331 

3.33333333330 

99.99999999992 

133.33333333332 

+ 

+ 

+ 

+ 

10/3 

100/3 

100 

400/3 

2.23e−13 

2.33e−12 

0.00000000007 

1.33e−11 
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Table 2. Rigorous lower bound of problem (14).                                                               

Prob m 
SDPA SDPA + correction 

Ex Ec 
P safe PC safe 

QP 10 

QP 100 

QP 300 

QP 400 

10 

100 

300 

400 

−14.142135464476482 

−141.42135464476488 

−424.26406393429477 

−565.68541857905973 

− 

− 

− 

− 

−14.1421362557497349 

−141.421362557495911 

−4274.264087672501047 

−565.6854502300093372 

+ 

+ 

+ 

+ 

10 2−  
100 2−  

300 2−  

400 2−  

6.32e−7 

6.32e−6 

1.89e−5 

2.52e−5 

 
Table 3. Global optima Audet’s problems.                                                                    

Exemple m n Ntot Nopt Lower Upper  CPU 

Audet 140 a 

Audet 140 a0 

Audet 140 b 

Audet 141 

Audet 142 

Audet 145 

Audet 146 

Audet 147 

Audet 149 

4 

5 

3 

4 

3 

9 

17 

22 

24 

5 

6 

4 

6 

4 

7 

10 

16 

10 

349 

349 

349 

349 

349 

349 

349 

349 

349 

221 

67 

119 

25 

16 

341 

91 

7 

34 

−4.539305707658855900e+002 

−4.678171282852730400e+002 

8.574005320128242600e+003 

2.218693168143023500e+000 

−6.654110694046532400e+003 

−1.222050857361459700e+003 

6.512230733117274900e+001 

1.44012460794244500e+002 

3.869747570739851900e−003 

−4.499999990971213e+02 

−4.649489795900000200e+002 

1.012664433619846e+004 

1.701631618840739e+01 

−5.450750000000000000e+003 

−9.688446461405747000e+002 

6.64865039370471322400e+01 

1.577915241468272100e+002 

4.332831646192127900e−001 

2.00e+001 

2.56e+000 

5.87e+000 

3.00e−001 

6.00e−002 

7.00e+001 

8.53e+000 

7.00e−002 

1.58e+000 

6. Conclusion and Future Works 
The computation of rigorous error bounds for semidefinite optimization problems can be viewed as a carefully 
post processing tool that uses only approximate solutions computed by a semidefinite solver. In this paper, we 
have introduced a safe and efficient framework to compute a rigorous solution of semidefinite relaxation of a 
nonlinear problem. Our numerical experiments demonstrate that, roughly speaking, rigorous lower bounds for 
the optimal value are computed even for semidefinite programs. The numerical results show that such rigorous 
error bounds can be computed even for problems of large size. 
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