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Abstract 
Clustering is the task of assigning a set of instances into groups in such a way that is dissimilarity 
of instances within each group is minimized. Clustering is widely used in several areas such as da-
ta mining, pattern recognition, machine learning, image processing, computer vision and etc. 
K-means is a popular clustering algorithm which partitions instances into a fixed number clusters 
in an iterative fashion. Although k-means is considered to be a poor clustering algorithm in terms 
of result quality, due to its simplicity, speed on practical applications, and iterative nature it is se-
lected as one of the top 10 algorithms in data mining [1]. Parallelization of k-means is also studied 
during the last 2 decades. Most of these work concentrate on shared-nothing architectures. With 
the advent of current technological advances on GPU technology, implementation of the k-means 
algorithm on shared memory architectures recently start to attract some attention. However, to 
the best of our knowledge, no in-depth analysis on the performance of k-means on shared memory 
multiprocessors is done in the literature. In this work, our aim is to fill this gap by providing theo-
retical analysis on the performance of k-means algorithm and presenting extensive tests on a 
shared memory architecture. 
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1. Introduction 
Clustering is grouping similar objects according to their resemblances. It is widely used in several areas of 
computer science such as data mining, pattern recognition, image processing, computer vision, and etc. The 
k-means algorithm is one of the most popular techniques for clustering. Simplicity, speed of convergence, and 
its easily parallelizable nature makes k-means an attractive clustering technique. 

Parallelization of clustering techniques is receiving an increasing attention due to ever-increasing data sizes 
today. Many parallel implementations of various clustering techniques [2] is studied in the literature and 
k-means algorithm is one of them. Being a very simple iterative clustering algorithm that relies on Lloyd’s itera-
tion, the k-means algorithm has an almost “embarrassingly parallel” nature.  

During the last two decades, due to the advances in computer networking, heterogeneous and geographically 
distributed computational resources become available for both scientists and developers. Thus, shared-nothing 
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architectures become the more popular parallel paradigm of this era. The computer science literature followed 
this trend and most of the efforts on parallelizing the k-means algorithm were also based on shared-nothing ar-
chitectures. However today, with the new advances in GPU technologies huge computational resources are also 
become available in the form of shared memory multiprocessors. In order to get the most out of the new tech-
nologies, careful analysis must be done before developing new parallel solutions to already existing algorithms. 

In this paper, we will focus on the k-means algorithm; the implementation and analysis of a parallel k-means 
algorithm for shared memory multiprocessors. In Section 2, the previous work on the efforts of parallelizing the 
k-means algorithm is presented. In Section 3, sequential algorithm is mentioned in detail. The parallel algorithm 
will be presented in Section 4, while extensive analytical analysis will be provided in Section 5. The results of 
the conducted experiments will be presented in Section 6 and we will conclude in Section 7. 

2. Related Work 
In the scope of data mining, clustering is the task of partitioning a set of instances in such a way that the dissi-
milarity between instances that belong to the same partition is minimized. K-means algorithm is a clustering 
technique that specifically aims to find disjoint partitions where instances are defined within a numeric domain. 
The similarity of instances belonging to a partition, namely a cluster, is ensured by defining the cluster with a 
centroid (center of the cluster), and assigning instances to partitions with respect to their relative euclidean dis-
tances to cluster centroids. 

One of the first works on the k-means algorithm is presented in [3], where the optimality of grouping in-
stances into clusters with respect to their similarities is examined. [4] extends this work, and give a detailed 
analysis of the algorithm. In the author’s own words, “the k-means algorithm is an easily programmable and 
computationally economical” method. By then, numerous studies concerning the k-means algorithm are pub-
lished in the literature. [5] and [2] present extensive surveys about such works. 

Due to its simplicity, parallel implementations of the k-means algorithm is also studied extensively in the lite-
rature. [6] presented a parallel implementation of k-means on a shared-nothing architecture using message pass-
ing interface (MPI). Their work mainly concentrates on the speed up and scalability aspects of the algorithm. [7] 
propose another implementation for the same setting using a master-slave paradigm. [8] and [9] presents two 
variations of the k-means algorithm for shared-nothing architectures where, in both studies MapReduce frame-
work is used. In [10], authors propose a generic methodology for creating parallel data mining algorithms for 
shared-nothing multiprocessors including the k-means algorithm. 

Most studies in the literature consider the iterative nature of k-means algorithm as the computational bottle-
neck. There are also numerous efforts for improving the performance of parallel k-means algorithm in the lite-
rature. [11] present an optimal adaptive k-means algorithm where the learning rate of the algorithm can be dy-
namically change. In their work, the authors show that their work can achieve near-optimal clustering solutions. 
In [12], authors propose a parallelization of the k-means algorithm, where two different formulations for centro-
id recalculation step is given. [13] present a work on a new initialization method for k-means algorithm. The 
proposed method also selects the initial centroids in a parallel fashion. [14] present a pruning method for shared 
memory multiprocessor systems. In their work, the authors use a method that avoids computation of distances to 
redundant cluster centroids. In a recent article, [15] present a new method for avoiding the unnecessary distance 
calculations using triangle inequality technique. They also address the load imbalance problems for their 
framework when such computations are eliminated. 

3. Sequential K-Means Algorithm 
For sake of clarity, this section is divided into two subsections. In the first subsection, the sequential k-means 
algorithm is presented in detail as a preliminary for further discussions. In the second subsection, in order to 
present a more accurate analysis, the details of the sequential implementation is discussed. Assumptions and re-
strictions that are put on the experimental setup are clarified for more consistent test results. 

The purpose of k-means clustering algorithm is to partition instances defined in numeric domains into disjoint 
clusters with the objective of minimizing the dissimilarities of instances within partitions. The similarity or dis-
similarity of two instances is defined as the euclidean or manhattan distance between pairs. More formally, giv-
en a set of n instances I = {mi, 0 < i < n}, a set of k initial cluster centroids C = {cj, 0 < j < k}, and a distance 
function D(mi, cj), k-means algorithm minimizes the function: 
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In other words, k-means algorithm finds k data points on the instance space such that the mean square error 
(that is, the total distance of all instances to the nearest cluster center) is minimized. The sequential version of 
the k-means algorithm is depicted in Algorithm 1. 

In order to calculate the minimized solution, {\em k}-means algorithm follows a 4-step process: 
• Initialization: This step consists of selecting k starting points C = {cj, 0 < j < k} from the instance space. as 

it will become obvious in the forthcoming steps of the algorithm, the quality of the results highly depend on 
the quality of this selection. The reason that initialization plays a critical role on the quality of the results of 
the k-means algorithm is twofold. First, finding n clusters with minimal mean square error is NP-complete. 
The k-means algorithm only finds local minima’s based on the initial centroid selection. Second, the number 
of iterations required to reach to a stable solution usually depends on the initial selection of the centroids. 
Since computational cost of k-means algorithm is dominated by the cost of the iterations, selecting more ac-
curate initial centroids also plays an important role in the computational complexity of the overall algorithm. 

• Distance Calculation: This step is the computational bottleneck of k-means algorithm. It involves calcula-
tion of finding the nearest cluster center for each instance and computing the distance to it. The naive solu-
tion to this step involves computing distances from all instances to all centroids. 

• Centroid Recalculation: After executing the first two steps, for the given cluster centers, a set of clusters 
with minimum variance is found. However, at this point centroids, the data points that denote the center of 
each cluster, has been selected in an arbitrary fashion. Thus, they cannot be seen as the descriptors of the 
clusters that they belong to. As a consequence, in this step, the centers of clusters are re-calculated. This is 
done by taking the mean of each attribute for all instances within the cluster. In the literature, two distinct 
methods are proposed for re-calculating the cluster centers. In the first method, upon finishing distance cal-
culation for an instance, the centroids are recalculated. It is claimed that this method prevents k-means algo-
rithm from getting stuck at a local minima, resulting on better global optimization. In the second method, 
centroid recalculation is followed by the distance calculation step, computing distance calculation for all in-
stances in the dataset. This method is also called h-means, providing faster convergence. In this work, the 
second method will be adopted in order to exploit parallelism better. 

• Convergence: The clusters found after the above three steps are actually not optimized since the cluster cen-
troids are re-calculated and shifted on the instance space. That is, refinement for individual instances is still 
possible. In order to find a minimal mean square error steps 2 and 3 must be iterated until the results become 
stable. The stability condition can be defined threefold. Steps 2 and 3 are iterated until: no instance changes 
clusters, the total shift of cluster centroids is smaller than some threshold, or a pre-determined number of 
iterations has passed. 

When the above algorithm is examined, k-means algorithm has two undesirable properties. First, k-means is a 
local optimization algorithm which cannot guarantee a global optima. The result quality usually depends on the 
selection of initial centroids. In the literature, there are several studies that concentrate on selecting better cen-
troids for k-means algorithm. Second, k-means algorithm is iterative which is undesirable when dealing with  
 

 
Algorithm 1. The pseudocode for the sequential k-means algorithm. 
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large amounts of data. Although the complete stabilization of cluster centroids usually requires a large number 
of iterations, the convergence rate of k-means is what makes it a still-popular data mining algorithm for the 
problems where the quality of results within some proximity to a global optima is sufficient. 

During implementation of the adopted sequential algorithm, several assumptions are made. These are: 
• K-means is local optimization algorithm whose results heavily depend on the initial centroid selection. In 

order to test parallel implementation without any bias, the first k instances from the dataset are selected as 
the candidate cluster centroids in all experiments. 

• Whether the processed dataset can fit into memory or not would affect the performance of both parallel and 
sequential algorithm. In this work, our experiments will be based on a disk-based assumption. That is, it is 
assumed that the dataset is assumed to be larger than the total memory and reside on the physical disk. 

• Disk access latency could be a detrimental factor on the performance for both parallel and sequential imple-
mentations. In our experiments, each time the disk is accessed 1000 instances are read from the disk. In the 
parallel implementation, the data retrieved after each disk access is assigned as a task for the shared memory 
multiprocessors. 

4. The Parallel Implementation 
In this section, implementation of a k-means algorithm based on shared memory multiprocessors on a disk-based 
setting is discussed. For this purpose, first a brief discussion about the shared memory architecture is given, then, 
the parallel implementation is presented in detail. 

4.1. The Shared Memory Architecture 
A shared memory architecture is a multi-processor computer system, where multiple processors can access a 
single block of memory simultaneously. In this architecture, processing units are connected to a single physical 
memory block via a shared bus or a switching network.  

The basic advantage of a shared memory architecture is twofold: First, there is negligible cost associated with 
inter-process communication. That is, processors can use the physically-shared memory to pass information to 
other processors. Second, shared memory systems prevent the need for creating redundant replications of data 
between processors. Since processors can physically share information, there is no need to store redundant/ un-
used copies of data partitions. In fact, any data assigned to a processor is also accessible by all other processors 
within the system. 

However, shared memory architectures also suffer from some serious drawbacks. First in many state-of-the- 
art systems, a processor has an associated cache. In a shared memory architecture, coherence between the phys-
ically shared memory and CPU caches must be maintained. Ensuring this coherence is a candidate for becoming 
a bottleneck of the performance of the system. Also, shared memory systems are not scalable in terms of the 
number of processors. Increasing the number of processors would either create a bottleneck in the interconnec-
tion network that is connecting the processors, or create performance degradation due to contention when mul-
tiple processors try to access to the same memory location. Last, shared memory systems are also not scalable in 
terms of problem size. Since such systems contain a single memory block, increasing the total memory is usual-
ly not possible for these systems when the problem size grows larger. 

On shared memory systems, in order to maintain constant coherency of data the widely accepted method is to 
use a locking mechanism on the memory locations that are accessible by multiple processors. By this way, pro-
cessors read and write globally available data in a mutually exclusive way. However, locking the contents within 
the shared memory will degrade the parallel system performance since multiple processors have to sequentially 
complete tasks if access to such memory blocks is required.  

4.2. K-Means Algorithm Based on Shared Memory Multiprocessors 
The parallel version of the k-means algorithm is depicted in Algorithm 2 below. Similar to the sequential algo-
rithm discussed in Section 3, the parallel k-means algorithm can be divided into 4 steps. These steps are initiali-
zation, distance calculation, centroid recalculation, and convergence. The first step of k-means is initialization of 
centroids. Potentially, this first step is not parallelizable; each centroid must be assigned globally. However, by 
exploiting the shared memory architecture, each processor could be assigned to the task of selecting C/P centro-
ids. At the end of this operation a set of globally accessible centroids will be decided among processors. 
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Algorithm 2. The pseudocode for the parallel k-means algorithm. 

 
The computational bottleneck of k-means algorithm is step 2, where each processor computes a distance for 

all instances assigned to itself and all cluster centroids. If Euclidean distance function is used, each distance cal-
culation will cost 2d+c floating point operations where, the first term constitutes to calculating the distance, and 
the second term constitutes to finding the closest centroid. This step of the algorithm can be easily parallelized 
by assigning n/P instances to each processor, where processors compute the closest centroid each instance in a 
parallel fashion.  

After concluding step 2, each instance is assigned to a cluster according to their proximity to each cluster cen-
troid, and thus, membership information of all instances to each cluster is established. In step 3, k-means algo-
rithm computes new cluster centroids by calculating the total mean square error, in other words the relative dis-
tance, of all cluster instances to the initial cluster centroids. Although calculation of individual mean square er-
ror for each individual instance, or each individual batch can be done in parallel, the task of calculating the new 
cluster centroids must be done in parallel. Thus after each iteration of centroid recalculation, the processors 
should be synchronized. In this work, in order to maximize the parallelization, the data is divided into computa-
tional batches called threads, where, for each batch a mean square error is calculated in parallel. After all threads 
finish computation, parallel tasks got synchronized in order to compute new cluster centroids. For this purpose 
again, cluster centroids are assigned to one of the existing threads, and computations are carried out in parallel. 
However, convergence condition must be executed sequentially. 

Although shared memory systems do not induce any communication costs to a process there are two addi-
tional costs for executing a parallel task on these systems. First, allocating system resources to a new thread re-
quire additional time. Also if at any time, there is more threads than the number of processors, the computational 
resources must be shared between threads. Thus, a successful parallelization should either: take into account 
computational power sharing, or make sure that the maximum number of threads active at any is not larger than 
the total number of processing components. The main cost component of a shared memory system is due to the 
need of maintaining concurrency over the globally accessible data. Since it is not acceptable for a shared data to 
be manipulated by multiple processors at the same time, processes must maintain a lock on the data during any 
manipulation. Consequently, operations that need to be carried out on shared data would inevitably be serialized. 
In this work, for maximizing the performance of the parallel k-means algorithm, each instance and each cluster 
centroid is assigned to one of the processors. In order to reduce the processor-wait time during synchronization 
at step 3, computational load balancing is also ensured. The number of instances and centroids assigned to each 
processor are kept at roughly equal sizes. 
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5. Numeric Analysis 
In this section, in order to compare the theoretical results with experimental results an in-depth analysis of the 
sequential algorithm is provided. The notation used throughout this section is as follows: 
• n: The number of instances in the dataset. 
• d: The number of attributes for each instance. 
• k: The number of clusters. 
• T: The total number of iterations required for k-means algorithm to finalize. 
• P: The total number of processors. 
• Tflop: The time required to execute a floating point operation. 
• Tthread: The time required to allocate and manage a thread. 
• z: The total number of instances assigned to a thread during parallel execution. 

The sequential algorithm consists of 4 steps. The first step consists of selecting k cluster centroids. In the 
second step, the algorithm first computes the distance for each instance with each centroid. This operation in-
volves nk pair wise distance calculation, where each distance calculation requires 2d floating point operations. 
At step 3, the algorithm compares the computed distances for each instance-centroid pair and find the closest 
centroid to each instance. This comparison will require nk floating point operations to be performed. Before, 
checking whether the algorithm terminates or not, the algorithm computes the means square error for the whole 
dataset and calculate the new cluster centroids. The former operation would take kd floating point operations and 
the latter would require nd floating point operations, given that all the previous steps are already carried out. 

Assuming that it would take T iterations for the k-means algorithm to terminate, the total computational com-
plexity of the sequential algorithm can be depicted as in Equation (2): 

( )2       flopnkd nk nd kd T T+ + + × ×                              (2) 

If the dataset is sufficiently large, the fourth term of the above equation would incur negligible overhead. thus 
the time complexity of the sequential k-means algorithm would converge to: 

( )2 flopnkd nk nd T T+ + × ×                                 (3) 

Equation (3) summarizes the execution time of the sequential k-means algorithm. For a shared memory paral-
lel implementation, the same operations will be carried out on P processors. However, all such operations will 
be carried out as batches using threads, and every thread must write partial mean square error contributions to 
the disk which takes kd floating point operations per thread per iteration. Thus, the execution time for a shared 
memory implementation of the k-means algorithm can be formulized as: 

( )2     flopnkd nk nd P nkd z T T+ + + × ×                             (4) 

Since z is a constant and should be selected fairly large, one may assume that z >> P. Thus the dominating 
factor of this equation would still be the first partial term.  

Another cost of the shared memory parallel implementation is the thread allocation and scheduling in the 
event queue. Taking this into account, the computational complexity of a shared memory parallel system can be 
summarized as Tpar = Tcomp + Tthread, where Tcomp is derived from Equation (4) and Tthread is proportional to the 
number of active threads per iteration since at the end of each iteration the algorithm should syncronize for all 
processing nodes for updating cluster centroids. That is, 

( )2     flop threadnkd nk nd P nkd z T T n z T T+ + + × × + × ×                     (5) 

6. Experiments 
During our evaluations we conducted extensive experiments on both sequential and the parallel implementations 
of the k-means algorithm. in these experiments, both versions are tested on an Intel Nehalem-EX Xeon 7550 
with 8 cores running at 2.0 GHz.  

The dataset and the instances are synthetically created for our experiments. All attributes for each instance in 
the dataset is a floating point with 3 digits of precision. If not mentioned during this section, the default setting is 
as follows: The dataset consists of 10,000 instances, where each instance has 30 attributes. The default k-means 
algorithm is run for finding 3 clusters. 
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During our experiments, we put limits to both number of active threads and the total number of instances a 
thread can process. For the sequential implementation, the whole algorithm is run as a single thread on a single 
processor. For the parallel implementation the maximum number of active threads is limited by the number of 
processors, and each such thread has a capacity to process maximum 5.000 instances. Every time the capacity of 
a thread is completed, the thread is killed and a new thread is created. 

Figure 1 shows the performance of sequential k-means algorithm for varying data sizes. The experiment is 
conducted for datasets of size 10, 20, 40, 100, 200 thousand and 1 million instances. Our experiments show that 
when the size of the dataset increases the execution time also increases proportionally, conforming the theoreti-
cal results. 

In order to evaluate the performance of the parallel k-means algorithm we did 3 sets of experiments. These are: 
varying thread capacity, varying number of clusters, and varying number of attributes. 

Varying thread capacity: In order to evaluate whether the performance of parallel k-means algorithm con-
forms our theoretical results, we used two different thread capacities. In the first set of experiments the thread 
capacity is set to 5.000 and in the second set, the thread capacity is set to 10.000 instances. 

Figure 2 presents the results of our experiments. When the total number of instances is less than 40.000, the 
parallel algorithm perform almost constant. However when the total number of instances is greater than 40.000 
the execution time start to increase linearly for both cases. The reason for this behavior is that, for small number 
of instances since all threads are not active adding new instances result in creation of new threads. Since all 
threads run in parallel, we cannot observe any performance loss. However, for instances above 40.000, all 
threads become saturated and instances need to wait threads to terminate before getting processed.  
 

 
Figure 1. Performance of sequential k-means with respect to data size. 

 

 
Figure 2. Performance of sequential and parallel k-means algorithm with varying 
thread capacities. 
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Also, the performance of experiments with 10.000 thread capacity is slightly better than experiments with 
5.000 thread capacity, since less threads are created, and thus less time is consumed for allocating new threads, 
and locking global data. Finally, as expected the execution the increase rate for parallel algorithm is less than the 
sequential version. In fact, the parallel algorithm’s execution time scales with 1/8 of the sequential version. 

Varying number of clusters: Our theoretical results show that the execution time of k-means algorithm also 
depend on the number of clusters. In order to evaluate the effects of varying number of clusters we conducted 
experiments using 2, 3, 4, 5, and 10 clusters. 

Figure 3 presents the results of these experiments. Our theoretical analysis results in 2 conclusions. First, al-
though the performance of the k-means algorithm depends on the number of clusters, the execution time in-
crease rate should be lesser than that of varying number of instances. Second, the theoretical analysis on the pa-
rallel implementation shows that in the parallel version, the speed up proportional to the number of processors 
should be expected.  

The experimental results conform to our theoretical analysis. However, due to overheads the performance of 
the parallel implementation cannot achieve the performance of the sequential implementation if the number of 
clusters is less than 10.  

Varying number of attributes: Our theoretical results show that the effect of varying number of attributes 
should be similar to that of varying number of clusters. In order to test this claim we conducted experiments 
with varying number of attributes. We conducted 5 experiments, where the number of attributes is set to 20, 30, 
40, 50, and 100 respectively. 

As stated in Figure 4, our experiments show that, the performance of the parallel algorithm increases with a 
shallower slope than that of the sequential algorithm. And when the total number of attributes is around 90 the 
parallel implementation start to perform better than the sequential version.  
 

 
Figure 3. Performance of parallel and sequential k-means algorithms with 
varying number of clusters. 

 

 
Figure 4. Performance of parallel and sequential k-means algorithms with 
varying number of attributes. 
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Comparing these results with the results presented in Figure 3, it is possible to see that the results also con-
form to the theoretical results; the performance of the parallel algorithm scales similarly with both varying 
number of cluster and attributes. 

7. Conclusions 
In this work, a parallel k-means algorithm on shared memory multiprocessors is presented and detailed analysis 
has been performed. In this work, our contributions are as follows: 

A detailed implementation of the parallel k-means algorithm is presented. This algorithm is optimized in a 
way that the total number of memory locks performed by the processors is minimized. In our algorithm, the cen-
troid recalculation step is divided into two parts. In the first part, each processor finds partial mean square errors 
for all centroids in parallel, eliminating the need for global locks on the memory, and in the second step the par-
tial results are accumulated where processors synchronize. To the best of our knowledge this technique has not 
been used in the literature before. 

We give a detailed analysis of both sequential and shared memory based parallel implementations. This anal-
ysis show that in terms of computational complexity both number of instances, number of clusters, and the 
number of dimensions on the dataset holds almost equal importance. 

We evaluate our theoretical results by performing detailed experiments. The results show that our theoretical 
results hold if the dataset is sufficiently large. 
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