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Abstract

By using Fubini theorem or Tonelli theorem, we find that the zeta function value at 2 is equal to a
special integral. Furthermore, we find that this special integral is two times of another special

1
integral. By using this fact we give an easy way to calculate the value of the alternating sum of —-
n

without using the Fourier expansion. Also, we discuss the relationship between Genocchi numbers
and Bernoulli numbers and get some results about Bernoulli polynomials.
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1. Introduction

. . w 1 . . -
Basel problem asks for the precise value of the progression ZH—Z. It was first posed by Pietro Mengoli in
-n

2

1644 and solved by Leonhard Euler in 1735 [1]. The value is known as %
There are more general results [2] about the progression,
+o0 b _sa
1 _ ||mjlt t

-1
n:l(n+a)2 Tbat hoa 1-t

Let a=0, it becomesthe ¢(2).
Moreover, using Fourier expansion of x?,
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we will get

= (L)

—Z( "

In the end of Section 5, we give another proof of (1.1) by using the relationship of two special integrals which
are introduced in Sections 3 and 4. Also, inspired by this, in Section 6, we discuss about Bernoulli numbers and
Genocchi numbers. We obtain some properties of Bernoulli numbers and Bernoulli polynomials.

2. Basic Properties

oo . » 1 . . . . .
The convergence of the infinite series Zn_l—z is obvious. We can use various methods to prove it. Especially,
~n

©

. . . 1 . .
when we consider Riemann-Zeta function, ¢ (s)=)." ,— (seR), the progression diverges when s<1,

n=1 ,.s
n
and converges when s >1. Also, we can use the estimate of the partial sum of the series.
1

gniz Z ( 1) =1 z(n 1 n] 1_ﬁ_)2

n=2

when N — +oo. Or we can use the Cauchy principle. In fact, for n>1,

thus

w1l owe 1 1) 1 1 1
o<zk_2<z(k1k)

k=n+1 k=n+1

when n — +oo. Then, the progression converges.

3. Calculation of ¢ (2)

There are various proofs of the Basel problem and Robin Chapman wrote a survey [3] about these. Some are
elementary and some will use advanced mathematics such as Fourier analysis, complex analysis or multivariable
calculus. Here we review the method of Jiagiang Mei [4], which is rather elementary and easy to understand.
There is also an elementary proof on the Wiki [1].

Repeated use of the equation

cos? X 4sin? X
1 2 1 1 1
-2 - -
SINTX 45in? = os? 4 ginz X gjp2 X
2 2
we get
1 1 1 1 1 1 1 1 1
in? :Z x+ T+ X :4_2 x+ 21r+x+ 1r+x+ 3n+X
sin™ x sin?Z  sin? sin?Z  sin? sin? sin?
2 4 4 (1.2)
1 & 1
= :T —
27 50 i anJnrx
Note that
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sin

_on k—2")m+x
2kn+X=Sin2 kn + X 2n+n =sin2( )
2" 2" 2"

we may rewrite the Equation (1.2) as

1 1 2n—171 1 2n—171 1
> =T ——— - =&t —
sinx 2" S sin? X;nkﬂ oot (X + kzt)2

where
1 Zn—l_l 1 1
En =2 % - 2
2 PR 2 X+ KI X+ km
2" on

Using the inequality

2
o<t L_geeex 1 vXe[—g,ﬂ,

we get the estimation

22n 2n
Let n— oo, we obtain the following equation
1 1
Sin®X & (x+kn)

0<E, <t L vXe[o,ﬂ.

>, X#Nm

The above progression is uniformly convergent in any closed interval not containing {nn} and can be

written as
1 1 & 1 1
=4 + . X#km
sin®x X2 nzi{(x+nn)2 (x—nn)2]

Especially, we have

1=|im( : -i]=2§: :

3 oolsin?x  x? nzl(nn)z'
Therefore,
21 g
2)=)Y —=—.
é/( ) =~ n2 6

4. As a Special Case of Power Series

. 2" . .
For the power series 2:71—2 x", we calculate the domain of convergence. Since
=n

2n
limy/la,| = lim 2= =2,
n—oo n—o n

the radius of convergence equals R =% f x= % the power series becomes the progression z

©

n:ln_Z which

. . © 1 S
is convergent. If x= —%, then the power series becomes Zn:l(—l)n —- which is also convergent. Therefore,

@)
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the domain of convergence is [—%ﬂ .

Suppose S(x)= 2:112—2 x" . We can do the derivation item by item in the inteval (—%%) . That is,
“n

/()= 3,2 x"
n=1 N
Multiply both sides by X,
xS’(x):iz—x”
n=1 n

Derivate both sides again, we get

Thus,
L(s/(x)+x87 () = S (2%)F ==
2 n=1 1-2x
We obtain a second order ordinary differential equation
2
S’ S"(x)= . 1.3
(x)+38" ()= = 1.3

If we set y(x)=S'(x), the Equation (1.3) is converted to a first order equation,

y+xy'=

1-2x
Multiplie both side by dx,
dx + xdy = dx.
y y 1-2x
Let h(x)=xy(x), we have
2
dh(x)= dx.
() 1-2x

Then
h(x)=-In(1-2x)+C.
Using the initial conditions y(0)=S'(0)=2, h(0)=0y(0)=0, we have
h(x)=-In(1-2x).
Then, if x=0,
In(1-2x)

<

—
>

~
Il

That is

Note that S(0)=0. Then,
Xay xln(l—zt)
S(x)=5(x)=-S(0)=s'(t)dt=—[ Lt
Particularly,
In(1-2 In(1-
S[lj:_j“udt:_r n(-u)  _ pdnu

2 0 t 0 u 01-u
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. . tInu . . 2
Therefore, for the improper integral '[Ul—du , we know its value is equal to —%.
-u

5. From the Special Integral to the Basel Problem

In this section, we will calculate the special integral arised in the last section, i.e.

.[o Inu

For n>0,
jlt” |ntdt=ijllntdt”+1 [t”” |nt| t””dlnt}
0 n+17 n+1
:L[o—|imt"+1|nt—j1t"dt}=— L
n+1 t—>0" 0 (n+1)
Thus

> =3[t Intjat.

n=1 n n=1
Let f, (t)=t"*|Int], te(0,1], n=12,--. Obviously, f, eL*([0,1],|-]), where ||| is Lebesgue measure.
For simplicity, we denote L*([0,1],|) by L.
By Minkowski inequality [5], we have

0 0

<3t (L4

n=1
Then,
00 00 0 l
f[Zt“ |Int|jdt <Yt intdt =Y 5 =¢(2).
o\ n? n=1N
We will prove the equality holds in our case. First we have the following lemma.
Lemma 1. | f+g|. =|f|:+]g]. if and only if there is a real valued function h that is nonnegative a.e.
such that when both f and g are not 0 then g =hf a.e.
Proof. Please refer to [6].
Lemma 1 can be generalized to infinite summation case.

Lemma 2. Hz:ilfn .
- L

functions g, which have the same signs suchthat f, =g,f a.e.
Proof. First, by induction, the lemma holds for finite sum. That is

N
foll = Z” f, "L1 :
L n=1

=> " If.]l: ifand only if there is a real valued function f and a series of real valued

Let E:={x|f,(x)have the same S|gn} Then,
Zf
n=1

Since the measure of E° is zero, we have

0

2

n=1

N
=2l — lef ey

L(E)

L'(E)

AN

B

Combine Equation (1.4), we complete the proof.
On the other hand, we observe that, for te(0,1)

LY Dt =1 Int.
1 t n=1
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Then we get

1||I’lt| 1 & S el =1
—dt = t"Int| [dt =) |t""|Int|dt =) ==
o= S o= e o= 32 - ¢ ),
We give a remark about the second equality of the above equation. It can be infered by Fubini theorem or
Tonelli’s theorem [7].
Infact,

I:nz:;t“’l|lnt|dt = [oul " Intldu(n)dv(t),

where 4 is the counting measure on N, and v is the Lebesgue measure on R. Obviously, they are both
o -finite measures. And since t"™* |Int| is non-negative, by Tonelli’s theorem,

0

gt Intldu(n)dv ()= [ f 4 int]du(n) ):;j:t“’l|lnt|dt.

There are other ways to get this relationship from this special integral to 5(2). First, recall the lemma
established by James P. Lesko and Wendy D. Smith [2].
Lemma 3. For re[-1,1), a>0 and b>0,we have
b

i _lpru du. (1.5)

n:1an+b a’tl-ru

Especially, when a=1 and b=0, (1.5) yields

© n 1 r

Zr_z

= N 01—-ru

du=-In(1-r).
By this lemma,
fmdt:(_l)j;mdr:(4){3[1.(_1)];1 . }d i

. w 1
Then by monotone convergence theorem, it equals to ZM—Z. See [3].
~n

Or, we can do it in this way,

Jlmdt - (-1) .[:wdr - (-1) J‘;F-(—l)i r }dr

01—t
L I RPN |
:J.O; . dr:;ﬁjor dr:;n_z'

6. Relationship between Two Special Integrals

We will use a result from ([8], Exer 20).
Lemma 4. Assume that the function f (x) is monotone on the interval (0,1). It need not be bounded at the

points x=0, x=1;we assume however that the improper integral jf dx exists. Under these conditions,

nllrpm%[f Gj+ f Gj+ f (”T_lﬂ = [f (x)dx

. Int . - . Int
Then for our case, the integral Eﬁdt exists and satisfies the conditions. In fact, let f (t) =—),

6(0,1),

then

@)
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~(1-t)=Int-(-1) 1-t+tint

Mo T ey

Let g(t)=1-t+tint, then
9'(t)=-1+Int+1=Int <0.

Since Itimg(t)zo, we have g(t)>0 for te(0,1). So f(t) is monotone on the interval (0,1). Then

by Lemma 4, we have

In—

n-1 n-1 _
fln—tdt_llmlz n_ji Ink—Inn
n
In(1-t
If we consider the improper integral j (t )dt Let f(t)= M €(0,1). Then
—t
———In(1-t)
' 1-t
Let g(t)=%—ln(1—t),then g'(t)=— " <0. Since

. . —t
tma(q - im0 -0

g(t)<0.Thus, f'(t)<0.So f(t) isalso monotone on the interval (0,1). By Lemma 4, we have

k k
In|1—— In|1-—
1In(1-t) o1y ( n) .o ( nj
dt=Ilim= — 2| N
J.0 t nmné k nmé k

n

w4 oo

n—o0 ﬂ%w

Next, we deduce the following equation and give another discription of (1.1),

jo'”—t dt =2 jo'”—tdt (1.6)

Lemma 5. Let h(x)zj‘oxm(%[_t)dt, xe[-1,1], then h(x)+h(—x):—h(x2).

Proof. Let ¢(x)=h(x)+h(—x)—%h(x2), it is easy to note that its derivate ¢'(x) equals to zero and

¢(0)=0.
By changing variables,

Then
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h(—1)=j:'n(lu+“)du - ['In(2+u)dinu

1l 1lnu
=In(1+u)lnu|0—'[Olnudln(l+u)=—Om
Here, note that lim In(1+u)Inu=0. By Lemma 5,
u—0*
1Int 1In(1—t) 1Int
Oﬁdt:jo ——dt=h(1)=-2n(-1)=2 —dt

. 1Int
For the integral Joﬁdt , we have a relevant result.
+

Lemma 6. Let h(x):jlxr—idt, x>0, then h(x)+h(%j:%(lnx)2.
+
Proof.
j'“—tdt [ intdin(1+1)
X =
xln(l+t)
=InxIn(1+ x)—j1 fdt,
then,
1
h(l)=lnlln(l+lj—_[xIn(1+t)dt.
X X X 1 t
Hence,
h(x)+h(l)=Inxln(1+x)—lnx(ln(1+x)—lnx)
X

{Lx In (1t+t) it +L§ In (1t+t) dt}

=(In x)2 —%(In x)2 =%(In x)z.

The second equality holds, because

« u=tt 1
J‘ In(l+t)dt — _J‘XMdt+l(ln X)Z.
1 t 1 t 2
Observe that
1In(1+t) 11 y t e S 21
a3 La-SE fra- Sk
Thus
. 11 aln(l+t) tint 1lnt
nZ:; _Z‘J d - 01+t jo_d -

Applying the same argument in beginning of this section, we get

n-1
J-In_tdt_I Ink—=Inn
= n+k

1
n—w
”k

and

jolln(lt—H)d =In nm]‘[(ukji.

n—oo
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. N . Int . .
Remark. It must be very interesting if we could calculate the integral J';ﬁdt not using the progression

w 1
Zn:l_z'

n

Int)°
Remark. Similarly, we can prove that J‘;%dt =£(3).

7. Bernoulli Numbers and Bernoulli Polynomials
Recall some facts of Bernoulli numbers, and for more information, please refer to [4] [9]-[12].
The Bernoulli numbers B, are defined by the power series expansion
z =B,

- = L z"
e‘-1 =n!

ez R 2R 2R

Thus we get a recursion formula for the Bernoulli numbers, namely
B, B, B, , {1, if n=1,

ot (n-1)w T n(n-1)1 |0, ifn>1.

Then

We get B, =1. From the identity

z
+1 z eP+e?? o

z z e'+1
26 -1 2 el gl

z
z +_
ef-1 2

tanh z
2

the function

z Z . . . - . .
1+E is an even function. Hence it has only even terms in its power series expansion.

LI o G
e’ -1 2 = (2n)

We have various ways to get the important equation.
Lemma 7.
et 22n—ln2n 22n—ln2n

L e e T T

Proof. By replacing z by 2mziz in the identity

z e?+e? & B,

E' o2 _g 12 = nzo(zn)! ",
we get
w 2 2n
nzcotnz=2(—1)"( ) B, z%"

= (2n)t
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Then by taking the logarithmic derivative of the product expansion for the sine,

. © z z
sinwz = nz 1-—— || 1+—,
(- )o+7)

we get the expansion of mzcotnz.

nzcotnz—1+2{—+—} 1-23 (20)2”

Z—N Z+n

Comparing the coefficents of z?", we get (7).
Another way is to take the logarithmic derivative of the identity [4]

sinhx 2
:H(kzz j xeR,

which yields
= 2(-1)" & (2m+2
xcothx =1+’ (-1) gﬂsszr )X2m+2'
m=0 T
Then we get (7) by comparing with
X 2X = 2°"B
thx = = — 2n Zn.
XCOothx == X g‘o(Zn)!X
Proposition 1.
2
- 3
_1nlB :7]:___
2 ()7 B =73
Proof.
g2 G
_dt = d == 1—_ n d
)n 18
-I Eds——f sde+ [ Z ) " s2ds
1 ( ) B 0 2n s
2|: [Ce s] z J‘
3 - ( )n IB
=—+ Ay,
2% (o
where

I, =fw52”esds.
It is easy to prove that 1, =(—1)k -k!' by induction. Therefore,
plnt g, 23y

01-t n=1

Let us consider the expansion

z . G
o=y
+1 = n!

where G, are Genocchi numbers. Then
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Thus, G, =0 and 2G, +G, =1, which infers that G, :—l .For n>1,

That is,

Note that

Taking expansion,

we have

n
This give a quick way to compute Bernoulli numbers since in (1.7) we have [

Iflet G, denote (-1)""G,,, then

Proposition 2.

Proof. By changing variables,

Note that

then

Set 1, = J'_wa"exdx ,then 1, =(-n)I,_,. By induction, we prove that 1, =(-1)" n!. Therefore,

1Int
01+t

S (218 =3 (v e, =T

=) 12

n=1

nll
”+
n! kZ:‘Jnl(

n-1
n=—1 ( n>1
2ico\k

Jo-
Jo

ann ann OOBn n

NI =N (22)

n_0n|z nZ_On!Z nzzon!( Z)
G, =-(2"-1)B,.

G, =-(2"-1)B,.

>

dx.

Int xe*
l_dt :jo
01+t =~1+e*

X _ +00 Gn n
e*+1 4 n!

0

dt = m(i% ”) edx = f x"e*dx.
n=1 - ﬂzl

1Int °°
J.°1+t )

n1

1.7

(1.8)
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Together with (1.6), we have

S(-1)e, =X

P 12

iN

Remark. Since B, =1 and G, = —% , the proposition can also be written as

& 1
22n _1 __ =
nZ:‘I( ) ZQ 12 2
Bernoulli polynomials B, (x) are defined by the formula
e” _&Bi(X)
= 2"
et -1 ,; n!
The functions B, (x) are polynomialsin X and
Bn(x):i(nj B, x"
o\ Kk
Similarly, we define G, (x) by the formula
e” &G, (x)_,
= . 1.9
e’ +1 nz,:_o n! ‘ (L9

The functions G, (x) are polynomialsin X. In fact,

s (- 5 )

Comparing the coefficients of z", we have

G, (x) = imenkxk - i@ekx"k, (1.10)

Gn(l):zn:(:ij zl[kje +G, =-2G, +G, =G,

k=0

On the other hand, by definition,

ze¥ R Gn(X) N zex+0)2 R Gn(X—l-l) N
e2+1_§) al ot e _Z;) N
Do the addition,
0 0 n
an(X+1)+G ( )Zn zzexz :ZX_Zml.
-0 o N!

Comparing the coefficients of z", we have
G (x+1)+G, (x) =k, k=2.

Let x=1,2,3,---,n and summation these equations, we get
G, (1)+2(G, (2)+--+G, (n))+G, (n+1) = kzl“

From the equation G, (1)+G, (0)=0, we infer that G, (1)=-G, (0) =-G,.
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G, (2)
G, (3)= -G, (2)+k2“* =k2“' k-G,
G, (4)

(2)=-G, (1)+k =k +G,
(4)=-G, (3)+ k3" =k3 "' —k2' +k + G,

G, (n)=-G, (n-1)+k(n-1)" =k(n-1)" =+ (-1)"G,.

Therefore,
36, (i) =k(n-1)* +k(n-3) " +k(n-5)"+....
i=2
If n=2m,
m k-1 k-1 k-1
DG (i)=k(2m-1)"" +k(2m-3) " +k(2m-5)" " +---+k+G,.
i=2
If n=2m+1,

2m+1

Y6 (i)=k(2m) ™ +k(2m-2) " +k(2m—4) " 4.+ k2“2
i=2
Whether n is odd or even, we always have the following trivial identity.
G, (1)+23G, (i)+G, (n+1)
i=2
=-G, +k [n"’l +(n-1)" +---+1k’1] +G, = kzn:ik’l.

i=1

By differentiating on X at both sides of (1.9), we also have
G|; (X) = nGn—l (X)
But being different from _[:Bn (x)dx =0, we have

(O g Cua)=Cus(0) 2

1
G dx = =- G,
JiGn (x)ex=]; n+1 n+1 n+l M
Proposition 3.i) G, (1-x)=(-1)""G, (x).
i) Gn(x):Bn(x)—Z”Bn(gj.
ii) Gn(x):Z”Bn(XTH)—Bn(x).
iv) B,(x)=2""|8B X—”j B(fj.
iv) B,(x) [”(2 +B,| 5
Proof. i)
© n (1-x)z (_Z)ex(—z) - (_1)n+1 7"
" ze
G, (1-X)—= _ e ,
HZ:(:J ol X)n! e’ +1 el+l 3 (%) n!
thus,
G, (1-%)=(-1)"G, (x)
i)
L)
ze®  ze®  2ze?
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By comparing the coeffients of z", we get
B, (X)-G, (x)=2"B, Gj
iii)
X+1

ze 6% 2782
z + z = 2z '
e"-1 e +1 e“"-1

By comparing the coeffients of z", we get

Xz

X+1

B, (x)+G, (x)=2'B, (T]
iv) by ii) and iii).
. 1) . 1) . 1
Remark. 1) Especially, we have B,, (EJ =4"B,, [Zj ,since G,, [Ej =0.
2)Let x=0 orliniv), wehave B, 6] = (21’” —1) B,. Thus, B,, [%] =27 (21’2” —1) B, -

3)Let x=1 iniii), we will get G, =(1-2")B,.
Equation (1.8) can also be deduced in the following way. Using
/2 128" +z
e?-1 2 e'-1

we obtain
1 1-n
B, (ﬂ:(z —1)Bn, v n=0. (1.11)

Similarly,

(1
i_n(zj"_ 2/2 _lzez/z—z_li "\2) 128n ,
e?41 2 e'-1 25 n! 25
This infers that
Lo-la(l) 1a,
2" 2
By substituting (1.11) in the above formula, we obtainde
G,=(1-2")B,, n>1.
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