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Abstract 
We propose a new nonparametric test based on the rank difference between the paired sample for 
testing the equality of the marginal distributions from a bivariate distribution. We also consider a 
modification of the novel nonparametric test based on the test proposed by Baumgartern, Weiβ, 
and Schindler (1998). An extensive numerical power comparison for various parametric and 
nonparametric tests was conducted under a wide range of bivariate distributions for small sample 
sizes. The two new nonparametric tests have comparable power to the paired t test for the data 
simulated from bivariate normal distributions, and are generally more powerful than the paired t 
test and other commonly used nonparametric tests in several important bivariate distributions. 
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1. Introduction 
Paired data are very common in statistical and medicinal research. A typical example is a clinical trial where 
subjects are measured prior to a treatment, say for elevated systolic blood pressure, and then measured again 
after the treatment with a drug to lower the blood pressure. Another example is the use of matched cases and 
controls. One sample from the the case group and another matched sample from the control group may be used 
to form a paired sample by using additional variables that are measured in addition to the variable of interest. 
Paired data are often used to reduce variability and to make more precise comparisons with fewer subjects, and 
this has resulted in attracting many statisticians to develop more efficient tests and inferences for paired data. 

Let ( ) ( ) ( )1 1 2 2, , , , , ,n nX Y X Y X Y  be n  random samples from a bivariate distribution with continuous end- 
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points. The marginal distributions of X and Y follow ( )XF x  and ( )YF y , respectively. The null hypothesis of 
interest is 0 : X YH F F= . This problem often occurs in applied research for testing the equality of the marginal 
distributions. For example, in a one-arm Oncolgy study, the tumor size of each patient is measured before and 
after treatment. If the cancer treatment is effective on patients, the tumor sizes in the majority of patients are 
expected to be smaller after the treatment than the baseline measurement. Therefore, an appropriate alternative 
hypothesis is given as :a X YH F F≤  with at least one point z  such that ( ) ( )X YF z F z< . One important ty- 
pical case in the above problem is the location problem, that is, ( ) ( )Y XF x F x θ= +  for all x , where 0θ > . 
The X distribution has a positive shift compared to that of the Y distribution. 

The two sample paired t test is a commonly used parametric approach for comparing the means of two 
distributions. It computes the difference between the two measurements of each subject  

, 1, 2, ,i i iD X Y i n= − =  , and then tests whether the average of these differences is significantly different from 
zero by using the test statistic  

,D

D

PT
s n
µ

=                                       (1.1) 

where Dµ  and Ds  are the sample mean and the standard deviation, respectively. The two sample t test makes 
certain assumptions, such as the normality of the sample difference which needs to be checked by normality 
tests [1] [2] before applying the paired t test. If one or more of these assumptions can’t reasonably be met, then 
the paired t test may be not appropriately applied. 

An alternative to the two sample paired t test is the Wilcoxon signed rank (WSR) test [3], which is a com- 
monly used nonparametric test for paired data when at least one of the assumptions is not satisfied. The 
Wilcoxon rank sum test (also known as the Mann-Whitney test) [3] [4] is a nonparametric statistical test for 
assessing whether the two independent samples are from the same distribution. It may be not be suitable for 
testing paired data without some modification. Later, Lam and Longnecker [5] proposed a modification of the 
Wilcoxon rank sum (MWRS) test by introducing a consistent variance estimator for assessing the equality of the 
marginal distributions of a bivariate distribution. The MWRS test was compared to other tests based on Monte 
Carlo simulation with small sample sizes, and was shown to be as powerful as the two sample paired t test for 
the bivariate normal data, and more powerful than both the two sample paired t test and the WSR test for the 
Farlie-Gumbel-Morgenstern distribution with exponential marginals. We propose a new rank difference (RD) 
test for paired data based on the rank difference between the paired sample to capture the sample difference. We 
also introduce the modified Baumgartern, Weiβ, and Schindler (MBWS) test proposed by Shan et al. [6] for 
paired data. A discussion on choosing between the parametric and nonparametric tests may be found in Fay and 
Proschan [7]. 

The remainder of this article is organized as follows. In Section 2, we briefly review the two existing 
nonparametric tests for paired data and introduce the two new nonparametric tests. In Section 3, we compare the 
performance of the competing tests, studying the simulated power of the tests under a wide range of bivariate 
distributions. A real example is given to illustrate the application of the parametric and nonparametric tests in 
Section 4. Section 5 is given to discussion. 

2. Nonparametric Tests 
A nonparametric counterpart to the two sample paired t test is the WSR test for paired samples. The WSR test 
begins by transforming each difference iD  into its absolute value iD , then the absolute differences are 
ranked from the lowest to the highest ( )i iR Rank D= . For continuous endpoints, there is no tie between 
measurement, and all iD ’s are used in the ranking precess. The WSR test statistic is then expressed as  

( )
1

WSR .
n

i i
i

sign D R
=

= ∑                                   (1.2) 

The value of the WSR test statistic is a non-negative integer between 0 and ( )1 2n n + . The upper bound 
would be reached when all signed values are either positive or negative. The standardized WSR test statistic  

( )( )
WSR 1 2

1 2 1 6n n n
−

+ +
 asymptotically follows a standard normal distribution. The asymptotic distribution can be  
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used to calculate the p-value and to find the threshold values. But, for small sample sizes, the exact distribution 
of the WSR test provides accurate and reliable results. The exact sampling distribution of the WSR test can be 
obtained by enumerating all possible combinations of the positive and negative signs. For example, if we have 
n  subjects in the study, then the absolute differences, , 1, 2, , ,iD i n=   produce the order of ranks 1,2, , n

. 
All possible combinations of plus and minus signs that could be distributed among these ranks are 2n . Then, the 
exact p-value of a given data is the proportion the combinations whose WSR test statistic is as extreme as that of 
the given data. 

Another nonparametric test considered is the MWRS test proposed by Lam and Longnecker [5] for assessing 
the equality of the marginal distributions of a bivariate distribution. Let iS  and iT  denote the rank for iX  
and iY  in the combined sample, and iU  be the rank for iX  in the X  sample and iV  be the rank for iY  
in the Y  sample. Then the MWRS test is defined as 

( ) 1

1 1
2 1 2

MWRS 2 1 ,

n

i
i

W

S
n n

n
σ

=

 − + = +  
 
  

∑
                           (1.3) 

where ( )ˆ1W Sσ ρ= − , 
( )

( )
12

3 112ˆ
11

n
S i ii

n
U V

nn n
ρ

=

+
= −

−−
∑  is the Spearman’s coefficient of rank correlation.  

The asymptotic distribution of MWRS is a standard normal distribution due to the consistency of the variance 
estimator [5]. The MWRS test was shown to have comparable power to paired t test and the WSR test. 

Two Proposed Nonparametric Tests 
Two steps are implemented in the Wilcoxon signed rank test: calculation of the absolute difference followed by 
the ranking of these differences. The new proposed RD test calculates the test statistic by revising the order the 
the two steps in the WSR test: ranking the observations followed by the difference of the ranks. Specifically, the 
associated test statistic of the RD test is  

( )
1

.
n

i i
i

RD S T
=

= −∑                                     (1.4) 

The value of the RD  test statistic is an integer between ( )( )1 2 1
2

n n− + +
 and ( )( )1 2 1

2
n n+ +

, which in-  

cludes the sample space of the WSR test. A larger sample space could potentially have a less discrete type I 
error rate in studies with small to medium sample sizes. The sign of i iS T−  is the same as that of ( )i isign D R  
in the WSR test. The new proposed RD test captures not only the difference within each subject, but also the 
rank of the observations within each subject. 

Recently, Baumgartern, Weiß, and Schindler (BWS) [8] proposed a novel nonparametric test for two in- 
dependent sample problem, which is based on the squared value of the difference between the two empirical 
distribution functions weighted by the respective variance. This weighting places more emphasize on the tails of 
the distribution functions. This new test is not suitable for a one sided problem due the nature of the construction 
of the test statistic. For this reason, Neuhauser [9] proposed a modified BWS test using the sign of the difference 
of the rank and the mean of the rank to enable the one sided problem. It was then further modified by Shan et al. 
[6] with the exact mean and variance estimates of ranks [10] for an one sided two independent sample problem. 
We consider this MBWS test [6] for paired data, and the test statistic is of the form 

( )1MBWS ,
2 X YB B= −                                 (1.5) 

where 

( )1

2 1 2 1
1 1 1

2 1
1

1 1 2

i in

X
i

n nS i S i
n nB

n nn i i
n n n

=

+ + − − + + =
+ − + + + 

∑  
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and 

( )1

2 1 2 1
1 1 1 .

2 1
1

1 1 2

j jn

Y
j

n nT j T j
n nB

n nn j j
n n n

=

+ + − − + + =
+ − + + + 

∑  

Although the asymptotic distribution of the test statistic for the MBWS test may not be easily derived, an 
exact permutation test or a simulation based test can readily be performed in order to calculate the p-value for a 
given data set. It should be note that all the nonparametric procedures aforementioned can be used for data with 
or without ties; in the case of ties the ranks are defined to be the midranks. 

3. Numerical Study 
To evaluate the performance of the parametric and nonparametric test, sample size 10n = , significance level of 

0.05α =  and 20,000 simulated iterations were used in the Monte Carlo exact simulation. Five different tests 
were competed for each plot: 1) the RD test; 2) the MBWS test; 3) the MWRS test; 4) the WSR test; and 5) the 
two sample paired t test. The two sample paired t test is the only parametric test in this article, and all the other 
four tests are nonparametric approaches. Four difference bivariate distributions were examined: 1) the 
bivariate normal distribution; 2) the bivariate distribution with gamma marginal distributions; 3) the bivariate 
generalized exponential distribution; and 4) the bivariate distribution with a gamma and a exponential mar- 
ginal distributions. 

The first considered bivariate distribution is a bivariate distribution with mean ( )1 2,θ θ ′  and variance cova-  

riance matrix 
2
1 1 2

2
1 2 2

σ ρσ σ
ρσ σ σ

 
 
 

, where ρ  is the correlation coefficient, 0 1ρ≤ ≤ . Figure 1 shows the  

power plots for the bivariate normal distribution of different means with a fixed covariance matrix. Equal 
variances are assumed 1 2σ σ σ= = , and four different ρ  values are considered in the figure: 0, 0.2, 0.4, and 
0.7. The 95% threshold value was simulated from the bivariate normal distribution with 1 2 0, 1θ θ θ σ= − = = , 
and a given ρ  for each plot in Figure 1. As seen, the simulated power of each test is an increasing function of 
θ σ . The two sample paired t test is the most powerful test as expected due to the fact that this is the uniform 
most powerful unbiased test for this problem when the data is from the bivariate normal distribution of different 
means for a given covariance matrix. The new proposed RD test and the MBWS test are compatible with regard 
to the power, and both are generally more powerful than the WSR test. The MBWS test has greater power than 
the MWRS test for a small to medium ρ, and the RD test is generally more powerful than the MWRS test. Given 
a large ρ, the MWRS could be more powerful than the proposed MBWS test, but less powerful than the RD test. 
Figure 2 shows the power plots of the correlation coefficient ρ given equal variances 1 2 1σ σ σ= = =  and the 
ratio of mean difference and variance 0.3θ σ = . Similar results are observed as the results from Figure 1. It 
should be noted that the paired t test is only appropriate when the difference iD  follows a normal distribution. 
The other four tests considered in this article are nonparametric approaches that are applicable to any continuous 
distributions with fewer assumptions. 

We also compare the bivariate normal distribution with equal means but different variances given the same 
covariance 1 2 0.6ρσ σ = . The power plots as a function of 2

1
2
2 /σσ  are shown in Figure 3. The threshold value 

is simulated from a bivariate normal distribution with equal variances. The paired t test, the WSR test, and the 
MWRS test appear to have less power than the two new proposed tests. The MBWS test is clearly more 
powerful than the other proposed RD test. The two new proposed tests are able to detect the variance change in 
the distribution, while others do not. 

In addition to the bivariate normal distribution, we also consider other bivariate distributions. One example is 
the bivariate distribution with gamma marginal distributions ( ),G κ η , where κ  and η  are the shape and 
scale parameters, respectively. The data may be generated from the function rmvdc  in the R package copula . 
The two marginal gamma distributions with the same scale parameter but different shape parameters are 
considered, i.e., ( )1,1G κ  and ( )2 ,1G κ . Figure 4 shows the power plot as a function of the ratio of the shape 
parameters 1 2κ κ . The two proposed tests have the highest power, followed by the MWRS test, the WSR test, 
and the paired t test. The two new proposed tests dominate other tests and the power gains are substantial. 
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Figure 1. Power study for a bivariate normal distribution with difference mean given four different covariance matrices. 

 

 
Figure 2. Power study for a bivariate normal distribution with the same equal 
variances and the ratio of mean difference and variance but different ρ.          
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Figure 3. Power study for a bivariate normal distribution with the same 
mean but different variances σ1, σ2 given the covariance 0.6.           

 

 
Figure 4. Power study for a bivariate distribution with gamma 
marginal distributions, ( )1,1G κ  and ( )2 ,1G κ .              

 
Another bivariate distribution examined here is the bivariate generalized exponential distribution [11] with the 

joint cumulative distribution function  

( ) ( ) ( ) ( )( ) 31 2 min ,, 1 e 1 e 1 e ,x yx yP X x Y y
ττ τ −− −< < = − − −  

where 1 2,τ τ , and 3τ  are the three parameters in the distribution. The marginal distributions for X  and Y  
are generalized exponential distributions with parameters ( )1 3 ,1τ τ+  and ( )2 3 ,1τ τ+ , respectively. The third 
parameter in the generalized exponential distribution is given as 3 1τ =  in the simulation study. The null dis- 
tribution is simulated with equal 1τ  and 2τ , i.e., 1 2 1τ τ= = . The power plot is drawn as a function of 1 2τ τ , 
see Figure 5. The signed rank test is very lower in power as compared to other procedures; the two new pro- 
posed tests are not as powerful as the paired t test and the MWRS test. 
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Figure 5. Power study for a bivariate generalized exponential 
distribution with parameters ( )1 2 3, , 1τ τ τ = .                  

 
For further comparison, we examined the bivariate distribution with different types of marginal distributions, 

for example, one marginal distribution follows a gamma distribution ( ),1G κ  and the other is an exponential 
distribution ( )Exp 1 . Equal mean is assumed under the null hypothesis with 1κ =  in the gamma distribution. 
The power plots as a function of κ  are displayed in Figure 6. The paired t test and the WSR test are less 
powerful than the other three tests. The proposed MBWS test is generally more powerful than the MWRS test 
under large κ  alternatives. 

4. Example 
We consider an example and apply the five different tests discussed in this article: 1) the paired t test; 2) the 
WSR test; 3) the MWRS test; 4) the RD test; and 5) the MBWS test. Suppose a pharmaceutical company wants 
to assess the efficacy of a drug in lowering systolic blood pressure. The systolic blood pressure reading in 
mmHg for 10 subjects were measured before and after the administration of the drug, and the associated data 
can be found in Antonisamy et al. [12]. The systolic blood pressure is expected to be lower after the drug 
treatment, therefore a one sided alternative is appropriate for this study. The p-value of the WSR test was 
calculated based on the exact permutation approach, the p-value of the paired t test was computed using the 
asymptotic approach, and the p-values of all the other three nonparametric tests were calculated based on the 
100,000 Monte Carlo exact simulation. The p-values are reported in Table 1. All five tests conclude that the 
drug is effective in lowering the systolic blood pressure at the significance level of 0.05. 

5. Conclusion 
In this article, we introduce two new nonparametric tests for testing whether paired samples come from the same 
population. The two new proposed nonparametric tests are comparable to the paired t test for testing the mean 
difference for the bivariate normal distribution given a covariance matrix, and much more powerful than the 
paired t test and another two nonparametric tests for the difference in variances for the bivariate normal 
distribution. Extensive numerical power comparison was conducted for various other important bivariate 
distributions. The proposed RD test and the MBWS test have greater power than other tests in several important 
scenarios, and the power gains are substantial. These two proposed tests are recommended for use in practice 
due the power gains as compared to other competitors. One limitation of the MBWS test is the difficulty to find 
the asymptotic distribution. However, permutation-based or simulation-based tests can always be used for the 
p-value calculation. We consider exact testing procedures as future work [13]-[20]. The extension of the RD test  
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Figure 6. Power study for a bivariate distribution with ( ),1G κ  and 
Exp(1) as marginal distributions.                               

 
Table 1. p-values for the example from the systolic blood pressure study.                                             

Tests 

Paired t test WSR MWRS RD MBWS 

0.0104 0.0049 0.0005 0.0149 0.0145 

 
and the MBWS test to the k-sample independent and dependent problems [21]-[24] is currently underway. 
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