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Abstract 
This paper revises and expands the model Delta for estimating the knowledge level in multiple 
choice tests (MCT). This model was originally proposed by Martín and Luna in 1989 (British Jour-
nal of Mathematical and Statistical Psychology, 42: 251) considering conditional inference. Conse-
quently, the aim of this paper is to obtain the unconditioned estimators by means of the maximum 
likelihood method. Besides considering some properties arising from the unconditional inference, 
some additional issues regarding this model are also going to be addressed, e.g. test-inversion 
confidence intervals and how to treat omitted answers. A free program that allows the calcula-
tions described in the document is available on the website http://www.ugr.es/local/bioest/Delta. 
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1. Introduction 
Multiple-choice tests (MCT in the following) are widely known as psychometric instruments intended to meas-
ure the degree of knowledge of students about a specific matter. Nowadays, the enormous development in in-
formation technologies encourages new teaching methodologies in which MCTs constitute a fast and objective 
way of evaluation; especially when there is a large number of students. On the other hand, MCT also stimulate 
students’ active and self-managed learning. From a psychometric standpoint, MCTs are tools that can be adapted 
to different disciplines and knowledge levels, allowing high-level cognitive reasoning to be measured [1]. At the 
same time MCTs can give greater validity and reliability than other methods of [2] [3]. Nevertheless, how to de-
termine the students’ degree of knowledge of the subject matter from responses to MCT is still a topic in debate 
[4] [5]. 
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In this paper we are going to consider a model to assess the students’ knowledge from MCT whose founda-
tions were laid by Martín & Luna in 1989. We are going to call this model Delta. Originally the estimation of its 
parameters was addressed by means of a conditional method [6]. So the goal here is to develop the unconditional 
(maximum likelihood) procedure. Once we achieve this goal, we will review some of the features of the model 
based on the unconditional method and develop some additional advances; e.g. the estimation of the degree of 
knowledge in presence of unanswered questions, a usual situation that was not addressed in the original formu-
lation. But before studying the unconditional method we will introduce the notation and give some background 
on the model Delta proposed by M & L. 

The model Delta is applicable to MCTs of the type “single best-answer multiple-choice questions”. This type 
of test consists of n  items, each of which is composed of a statement (the stem) and K  alternative answers, 
of which only one is correct (the key) and the remainder are distractors [1]. When a student answers the items of 
an MCT, the raw data can be summarized as shown in Table 1. Here ir  is the number of times that the alterna-
tive i  is the correct answer, jc  is the number of times that the student gives the alternative answer j  and 

ijx  refers to number of times that the student gives the alternative answer j  when the correct one is the alter-
native i ; obviously,  , 1, ,i j K= 

. When there are omissions, n′  stands for the number of items attempted 
and ir′  for the number of answered questions when the alternative i  is the correct one. In any case ijx  and 

jc  refer to the number of answers given by the student and in presence of omissions jc n n′Σ = < . If matrix 
notation is needed, we will consider X , r , ′r  and c  for the components previously introduced. 

In the past, various different scoring rules have been considered for evaluating a student’s degree of knowl-
edge with respect to the data in Table 1. The simplest scoring rule that is consistent with number right scoring, 
has traditionally been criticized because it does not take random guessing into account, and this has given rise to 
various formula scoring rules [4] [7]-[9]. In 1982 Hutchinson [10], using a model based on the theory of finite 
states, suggests that the test-taker’s knowledge level is given by a ∆  parameter which is estimated by the ex-
pression: 

( ) ( ){ }L&N
ˆ 1iiK x n n K∆ = − −∑                               (1) 

This rule, originally proposed by Lord and Novick [11], is the classic penalty for guesses, according to which 
each incorrect answer is penalized with ( )1 1K −  points. As Martín and Luna pointed out [6], this implicitly 
assumes that the test-taker, when answering at random, chooses the alternative in question with a probability of 
1 K , something that traditionally has been known as blind guessing or wild guessing [7]. However, these writ-
ers debate this uniform distribution of the guessing tendency. The idea is that the content of the distractors and 
their plausibility should give a pattern for the responses which is possible to be modelled. 

The model proposed by M & L [6] follows Hutchinson’s concept, according to which the examinee is as-
sumed to know a proportion ∆  of the subject-matter of the exam. However, they propose that in an MCT the 
average probability of choosing option j when i  is the correct one can be modelled by 

 
Table 1. Summary of the raw data of a MCT with n  items with K  alter-
natives: ijx  is the number of times that the answer given is alternative j  
when the correct one is i ; ir′  is the number of times that the answer given is 
the correct alternative i  given ir  items with the correct alternative in this 
position; jc  is the number of times that the student chooses the alternative 
answer j . When the whole of the items are attempted i ir r′=  and n n′ = . 
In matrix notation we can refer these data as  ′X r  or X r  depending on 
the row marginals of interest. 
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( )1ij ij jp δ π= ∆ + − ∆ ,                                (2) 

where ijδ  is the Kronecker delta and jπ  the probabilities of the subject choosing the alternative in position 
j  when the answer is not known and is guessed (according to Lord and Novick, 1j Kπ = ). Note that iip  

represents the probability of adequately choosing those questions where the correct option is the one occupying 
position i , while in the opposite case, that is when i j≠ , ijp  represents the probability of choosing a dis-
tractor. Obviously, the model requires that 0 jπ≤ , 1ijp ≤ , 1jπΣ =  and 1j ijpΣ = . 

According to this, the estimation of the examinee’s knowledge level proposed by M & L is: 

( ) ( )M&L
ˆ 1 1ii ix r K∆ = − −∑ ,                            (3) 

an expression which demonstrates that the relevant information for evaluating the test taker’s knowledge level is 
the sum of the proportions of successes, not the total of these. When the distribution of correct options in each 
position is homogeneous, that is if ( )1 Kr r r n K= = = = , then M&L L&N

ˆ ˆ∆ = ∆  including when 1i Kπ ≠  [6]; 
this situation is of particular interest and we shall call it the balanced test. 

Unlike the classical scoring rules, this model allows to address several questions of statistical inference: per-
forming a contrast hypothesis on ∆ , determining a confidence interval (CI in the following) for ∆ , fixing the 
appropriate value of n  for various purposes, debating which is the appropriate value for K , etc. [6] [12]. 
Furthermore, the extension of the model has allowed chance-corrected measures for evaluating the level of 
agreement (total or partial) between two raters to be defined [13]-[15]. 

In their formulation, M & L [6] considered a conditional method to obtain the estimator M&L∆̂ . Nevertheless, 
it is possible to estimate ∆  by using an unconditional method, i.e. by using its estimator of maximum likeli-
hood ( ∆̂  from now on). The unconditional inference usually is less conservative than the conditional one, tests 
are more powerful and confidence intervals are narrower. Particularly this happens if the number of items is not 
high. The manner of obtaining this estimator and its implication in the inference problems mentioned is the aim 
of this paper. 

2. Estimation of Parameters Using the Method of Maximum Likelihood 
In the following and for the sake of simplification, let us focus on the particular case where the whole of the 
questions are answered. We will consider how to treat the more natural situation where there are omissions later 
on in this paper; but until then i ir r′ =  and n n′ = . 

Under M & L’s model, the K  rows ( )1, ,i iKx x , 1, ,i K=  , of the frequency matrix X  in Table 1 are 
K  independent vectors which follow a multinomial distribution ( )1; , ,i i iKM r p p , where 1j ijpΣ = , whose 
parameters ijp  depend on the unknown K  parameters { }1 2 1, , , , Kπ π π −Θ = ∆  , because 1K ii Kπ π

<
= −∑ . 

A first consequence of the model, as the authors justify in Appendix I, is that the possible values for ∆  are 
limited to the set 

min

min

1 1
1 1K

π
π

− ≤ − ≤ ∆ ≤
− −

,                              (4) 

where { }min 1min i K iπ π≤ ≤= . In addition, it can also be deduced from this model that the likelihood function will 
be given by a product of multinomial functions of probability. As the maximization of the function leads to a 
system of non-linear Equations with no explicit solution, M & L [6] proposed a conditional solution based on 
assuming that the values of jc  and ii ix rΣ  are previously fixed, i.e. ( )j jE c c=  and ( )ii i iiE x r pΣ = Σ , which 
led them to the estimator M&L∆̂ . In Appendix II it is shown that the unconditional estimators of maximum like-
lihood ∆̂  y  ˆiπ  for ∆  and iπ  respectively, are determined as follows: 

A) When iiS x n= Σ = , the values of ∆̂  or of ˆiπ  are not determined. In order to avoid this, one must in-
crease all the data by 0.5—that is take the new data ( )0.5ijx + , ( )2ir K+  and ( )2ic K+  into ac-
count—and behave as in the following paragraphs. 

B) When iiS x n= Σ <  and 1ii ix cΣ = , then ˆ 0∆ =  and ˆi ic nπ = . 
C) Otherwise ∆̂  is the only solution different to zero in the Equation: 

( ){ } ( )22 1 4i iin K c n nx− ∆ + = + ∆ − ∆∑ ,                       (5) 
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and the estimators ˆiπ  are given by: 

( )
( )

2ˆ ˆ ˆ4
ˆ

ˆ2 1

i i ii

i

c n c n nx

n
π

− ∆ + + ∆ − ∆
=

− ∆
.                          (6) 

Solutions ∆̂  in expression (5) must be looked for iteratively in the margins ˆ0 S n< ∆ ≤  if 1ii ix cΣ >  
and ( ) 1 ˆ1 0K −− − ≤ ∆ <  if 1ii ix cΣ < , because when 1ii ix cΣ =  then ˆ 0∆ =  and ˆi ic nπ =  as noted in B. 

Note that the model assumes that the ir  values are not random variables (since they have been previously 
fixed by the examiner); when this is not the case, that is, when ( )1, , Kr r  is a random vector of an unknown 
distribution, then by conditioning in the values obtained for ir  the model described is obtained and all that has 
been stated above is valid. 

In the particular case of 2K =  –as occurs with the tests with true/false type answers—then the solution to 
Equation (5) is: 

11 22 12 21 11 21 11 22

1 2 1 2 1 2

ˆ 1
x x x x x x x x

r r r r r r
−

∆ = = − = + −                       (7) 

where the third expression is the same value M&L∆̂  of expression (3) and the second is the Peirce criterion 
guessing parameter [16] (which refers to a simple difference between two proportions). In addition, through ex-
pression (6), 

21 2 12 1
1 2

21 2 12 1 21 2 12 1

ˆ ˆ,    .
x r x r

x r x r x r x r
π π= =

+ +
                       (8) 

3. Fit of the Model 
Given that ∆̂  and ˆiπ  are estimators of maximum likelihood, and thus they have the well-known properties of 
this type of estimator, the fit of the model can be contrasted using the classic 2χ -test. The expected quantities 

ijE  will be given by ( ){ }ˆ ˆ ˆ1ij ij j iE rδ π= ∆ + − ∆ , and the contrast statistic is the customary 

( )22
exp

,
ij ij ij

i j
x E Eχ = −∑ ,                                   (9) 

which will have to be compared in the classic manner with a theoretical distribution 2χ  with ( )2f K K= −  
degrees of freedom, since there are K K×  observed frequencies, K  parameters (∆  and iπ ) are estimated 
and there are K  restrictions ( )j ij iE rΣ = . The non-significance of the test means that the model fits well with 
the observed data. 

One observation need to be made here about expression (9): when 2K = —as M&L showed [6]—the model 
is saturated and 0f = , which means that the test makes no sense and the model is always valid. 

4. Standard Error of the Estimators 
In Appendix III the variance-covariance matrix of the estimators for the parameters of the model is obtained. 
The elements of greatest interest are ( )ˆV ∆  and, to a lesser degree, ( )ˆiV π , which are given (when 1∆ < ) by: 

( ) ( ) ( ) ( ) ( )
1

2 11ˆ 1 1i i i i i i i ii iV a r a t r t p t
n

π
−

−  ∆ = − ∆ − − −   
∑ ∑ ∑ ∑ ,             (10) 

( ) ( )( ) ( ){ }21 1 1 2ˆˆi i j j i iV V a a b b bπ β β− − − −= ∆ − + −∑ ,                          (11) 

where 

( ) ( ) ( ) ( ) 1

1
,   ,   1 1   and  .

K
ii i

i i i i i
iii i ii i

n rrt a b a b
p r n p

π
β

π
−

=

 − = = = − ∆ −∆ + = 
− ∆   

∑     (12) 
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By substituting parameters ∆  and iπ  in these expressions with their respective estimators ∆̂  and ˆiπ ,  

one finds that the estimate of standard error in these will be ( ) ( )ˆ ˆ ˆ. .S E V∆ = ∆  y  ( ) ( )ˆˆ ˆ. . i iS E Vπ π= , re-

spectively. 
It can be seen that ( )ˆV ∆  depends on ∆  itself and on the rest of the parameters of the model ( ),   i K y nπ . 

The tendency is for ( )ˆV ∆  to become smaller as ( )( )ˆ 0  if  1V∆ ∆ → ∆→ , n  and K  increase. 
Moreover, according to the exposition in Appendix III, the term inside the set of brackets in expression (10) 

corresponds to the exposition of a quadratic form depending on the parameters of the model which is posi-
tive-definite, so that the lower its value, the lower ( )ˆV ∆  will be. Explicitly, this term is null if  

( ) i ii k kkr p r p i= ∀ , that is, when i∀  are ir n K r= =  and 1i Kπ = . Let us note that while what we have 
just seen depends on the test-taker’s answer pattern and so is not controllable, the fact that the ir  values are 
balanced is a question which the test maker decides in the design phase of the test and which, as will be seen in 
the following, can be very convenient as far as inference is concerned. 

The fact that the ir  values are balanced leads one to deduce that ( )ˆV ∆  is in general lower than when these 
are not balanced. For the same values of ∆ , K  and n , the values of the ir  which are very disproportionate 
between each other can mean that ( )ˆV ∆  in particular, is several orders of magnitude larger than when all of 
them are equal ( )ir r= . In addition, for previously fixed values of n  and K , in the balanced tests it is possi-
ble to characterize fully the behaviour of the maximum value of ( )ˆV ∆  with respect to ∆  itself, something 
which cannot be done if ir r≠ . This possibility allows one to make predictions as to the number of items nec-
essary for estimating the knowledge level of the examinee to a given precision. At the same time, the fact that 
the variance is generally lower, can be understood to mean that the balanced MCT are a preferable tool to those 
where the distribution of correct alternatives is not made homogeneously. In the following section we analyze 
the case of the balanced tests in greater detail, showing that the predictions carried out in these circumstances by 
M & L [6] [12] were a good fit, despite the fact that the estimator was not obtained under the principle of maxi-
mum likelihood. 

5. Maximum Variance in MCTs with Homogeneous Distribution of the Correct 
Alternatives 

5.1. General Case 
If ir r=  (for given values of K  and n ) maximum variability will be reached for ( )1  i K iπ = ∀ , so that the 
maximum attainable variance is given by: 

( ) ( ) ( ){ }
( )

1 1 1ˆ ,  1 ;  
1i i

K
V r n K K i

K n
π

− ∆ + ∆ −
∆ = = ∀ =

−
,                   (13) 

an expression which coincides with the prediction of maximum variance carried out by M & L [12] for the bal-
anced tests. This is why the consequences deriving from this expression (and which are set out in the following) 
are the same as the ones given by the said authors. The value of ∆  where the maximum is reached, let us say 

max∆ , depends only on the number of K  alternatives (it is independent of n ), and is given by 

( ) ( )max 2 2 1K K∆ = − − .                                (14) 

It can be seen that the explicit value which max∆  takes is more sensitive to the lowest values of K , but is 
always lower than 0.5, the level to which it approximates asymptotically when K  increases a good deal above 
what constitutes a multiple choice test. To illustrate, for values { }2,3,4,5,6K =  we have, respectively, 

{ }max 0,0.25,0.33,0.37,0.40∆ = ; in order to arrive at 0.4995M∆ =  it would be necessary to have 1000K =  
alternatives! As a result, in the balanced tests, the maximum value of the variance only depends on n  and K , 
and it does so according to expression 

( )
( )max

2

2V ,
4 1

Kn K
K n

∆ =
−

.                              (15) 

From here on, one can estimate the effect that increasing the number of K  alternatives or the number of n 
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questions has on the precision in estimating ∆ . Adding another option to each item implies a meaningful re-
duction in the variance down to 4K =  or 5. For example, the maximum variance with 2K =  alternatives is 
reduced by almost half (to be exact, by a factor of 0.562) when another alternative is added to obtain a test 
where 3K = . However, the maximum variance of the test where 3K =  is only 1.266 times greater than that 
of a test where 4K = . 

Similarly, adding more items to the test has a more meaningful effect in reducing the maximum variance 
when working with values lower than n. 

An additional result is that one can determine the number n∗  of items in a test with K ∗  alternatives which 
is equivalent, in terms of maximum variance, to another test with n  items and K  alternatives; the expression 
which links both sets of data is: 

( ) ( ){ }2
1 1n n K K K K∗ ∗ ∗= − − .                             (16) 

For example, a test with 100n =  items with 3K =  alternatives has the same maximum variance, and thus 
can have the same precision for estimating ∆ , as one with 80n∗ =  items with  4K ∗ =  alternatives. 

Finally, in the tests with balanced values of  ir  it is possible to determine the value of maximum n  or K  
(i.e. the “in the worst case” approach) necessary for reaching a given precision ˆδ = ∆ − ∆  when estimating ∆ . 
Given the asymptotic normality of the estimator of maximum likelihood, and assuming that the estimation of ∆  
can be the one with greater variance, the number of questions n  with K  alternatives for estimating ∆  with 
a precision of δ  and a confidence 1 α− , will be given by 

( )

2
2

2 1
z K

n
K
α

δ
 

≥   − 
.                                   (17) 

where 2zα  is the ( )1 2α−  percentile of a typical normal distribution. Similarly, the number of K  alterna-
tives for estimating ∆  using n  questions with a precision of δ , will be: 

2

2
2

nK
n zα

δ
δ

≥
−

.                                    (18) 

5.2. Special Case of K = 2 
As has been pointed out previously, in the tests with only two alternatives (such as true/false) ML∆̂  is precisely 
the solution of maximum likelihood ∆̂ . In this particular case, expression (9) is transformed into: 

( ) ( )
( )

( )
( ){ }

122 2
1 11 2 22 1 2 1 22 2 111 2 2 1

2
11 22 11 22 1 21 2 12 12 21

ˆ
1

n r p r p r p r pr rV
p p p p r p r p p p n

π ππ π
−

 − + −
∆ = + + − 

+ ∆ +− ∆  
.        (19) 

However, the principle considered by M & L for obtaining this variance is still valid: if K = 2 the random vari-
ables iix  are independent and are distributed as a binomial ( ),  i iir pB . Hence ( ) ( ) ( )2 2

11 1 22 2
ˆV V x r V x r∆ = +  

and 

( ) ( ){ } ( )2 1 1 2 1 1
1 2

1ˆ 2 1V r n r n
r r

π π π π− ∆  ∆ = + − ∆ + −  ,                     (20) 

a simpler expression than (19) and the estimation of which is given by 

( ) ( )
( )

( )
3 2 3 2

1 21 2 12 1 2 12 21

2

1 2 1 21 2 12

ˆ
ˆ ˆ ˆ1

r x r x r r x x n
V

r r r x r x

+ ∆ +
∆ = − ∆

+
.                        (21) 

The case of 1 2 2r r n= = , represents a situation which allows a better appreciation of how the model func-
tions. In this case the estimator originally proposed by Hutchinson [10] also coincides with the ∆̂  obtained by 
maximum likelihood, so that 
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( ) ( ) ( )
( )

( )
2 2
21 12 12 21

11 22 2

21 12

ˆ 2ˆ ˆ ˆ ˆ2 1  and  1 .
x x x x

x x n V
r x x

+ ∆ +
∆ = + − ∆ = − ∆

+
                 (22) 

Note that, for a given value of n , the same estimation for ∆  is obtained if 12 21x x+  is constant, but the 
variance changes. Moreover, it is always possible to determine between which values this variance is found, in 
terms of ∆̂ ; the maximum is obtained when 12 21x x=  (i.e., 1 2ˆ ˆ 1 2π π= = ), while the minimum occurs when 

12x  or 21 0x =  (i.e. one of the ˆ 0iπ → ). The expressions for these bounds are: 

( ){ } ( ) ( ){ }12 21 12 21

2

, 1 2 , 1 2

ˆ ˆ2 1 ˆ1ˆ ˆ ˆ ˆmin 2;   and  max 2; .x x x xV K r r V K r r
n n

∆ −∆ −∆
∆ = = = ∆ = = =       (23) 

6. Confidence Intervals for ∆  
6.1. General Case 
The classic form of expressing the ( )1 α− -confidence interval ( ),L U∆ ∆  for ∆  is: 

( ) ( )2
ˆ ˆ ˆ,L U z Vα∆ ∆ = ∆ ± ∆ .                               (24) 

In reality, in this situation a one-sided CI of the type ( )ˆ ˆ ˆ
L z Vα∆ ≥ ∆ = ∆ − ∆  is of more interest because it 

allows the student’s minimum degree of knowledge to be determined. 
Agresti and Min [17] showed that for discrete data (like those shown here) it is more appropriate to obtain the 

CI by inverting a test because in that way narrower CI are obtained. In addition, it has the advantage of making 
the results of the test and the CI compatible. The principle is that if ( )0P ∆  is the p-value associated with the 
test 0 0:H ∆ = ∆  vs. 1 0:H ∆ ≠ ∆  -where ( ) 1

01 1K −− − ≤ ∆ ≤ - then the ( )1 α− -CI associated with this is given  

by ( ){ }0 0| P α∆∈ ∆ ∆ > . Because ( ){ }
0

0 0 0,
ˆ ˆ; , id H

N V π∆ → ∆ ∆ ∆ , where 0iπ  is the proportion of random answers  

under the null hypothesis and ( )0 0
ˆ , iV π∆ ∆  the value of the expression (10) in 0∆ = ∆  and 0i iπ π= , then the 

CI ( ),L U∆ ∆  is obtained by determining the two solutions 0
ˆ∆ < ∆  and 0

ˆ∆ > ∆  of the equality: 

( )
( )

2

02
2

0

ˆ

ˆ ˆ
z

V
α

∆ − ∆
=

∆ ∆ = ∆
,                                 (25) 

where ( )0
ˆ ˆV ∆ ∆ = ∆  is the value of ( )0

ˆ , iV π∆ ∆  in 0 0ˆi iπ π= . In Appendix II it is shown that in order to de-  

termine the values of 0ˆiπ  one should proceed as follows: 
A) When iiS x n= Σ = , increase all the data by 0.5—that is consider the new data ( )0.5ijx + , ( )2ir K+  

and ( )2ic K+ – and act as in the following paragraphs. 
B) When 0   0iiS x n y= Σ < ∆ = , then 0ˆi ic nπ = . 
C) When iiS x n= Σ <  and 0 0∆ =  then ( ) ( )0ˆi i iic x n Sπ = − − . 
D) Otherwise, 

( ) ( ){ } ( )
( )

2
0 0 0 0 0 0

0
0

1 1 4 1
ˆ

2 1
i i ii

i

c B c B Bx

B
π

− ∆ − ∆ + − ∆ + ∆ − ∆ −∆
=

− ∆
.             (26) 

where B  is the only solution to the Equation: 

( ){ } ( ) ( ){ } ( )2
0 0 0 0 0 02 2 1 1 4 1i iiB K n c B Bx− ∆ + − − ∆ = − ∆ + ∆ − ∆ −∆∑ ,        (27) 

The B  solutions of expression (27) must be looked for iteratively in the margins max  

( ){ } ( ){ }0 0 0; 1 1 1n S n K B n S− − ∆ − ∆ + ≤ ≤ − ∆  
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when 0 0∆ >  and ( ) ( ){ }0 0 01 1 1n S B n K− ∆ ≤ ≤ − ∆ − ∆ +  when 0 0∆ < . 
The problem with resolving expression (25) is that it is difficult to compute, because it is necessary to iterate 

it in 0∆  and, in each iteration, the value B  must be obtained. If one wants a one-sided interval of the type 
( )L U ∆ > ∆ ∆ < ∆  then in expression (25) 2

2zα  must be changed for 2zα . 

6.2. The Case of K = 2 
When 2K =  then 11 1 21 2

ˆ x r x r∆ = − —as was indicated in expression (7)—and 11 21 p p∆ = − , that is, the pa-
rameter of interest is the difference ∆  between the two independent proportions, a parameter that appears a 
great deal in the literature and which is involved in the tests of equivalency of two proportions [18]. This has the 
advantage that the CI for ∆  may be obtained—both by exact and asymptotic methods—through the use of a 
great variety of both free and chargeable computer programs. 

With regard to the chargeable computer programs, the most usual one is StatXact, a statistical software for 
small-sample categorical and nonparametric data problem solving [19]. 

With respect to the free programs, the webpage http://www.ugr.es/local/bioest/ software gives a large number 
of these, both exact and asymptotic, and for the case in which the ir  are previously fixed and for the case 
where they are not. In particular, the program Z_LINEAR_K.EXE (for the values 2K = , Beta1 = 1 and Beta2 
= −1) allows the asymptotic CI for ∆ to be obtained [20]. 

A very simple (and reliable) procedure which allows one to obtain the asymptotic CI for ∆  is the one sug-
gested by Agresti and Caffo [21]: 

( ) ( ) 1 1 2 2
1 2 2

1 2

,L U
p q p qp p z
r rα∆ ∆ = − ± + .                        (28) 

where ( )1i i ip x h r= + , with 2i ir r h= + , 1i iq p= −  and 2
2 4h zα= , that is, the classic Wald CI for the dif-

ference between two proportions but applied to the data increased by 2
2 4zα  ( 1≈  when 5%α = ). 

7. Treatment of Omitted Responses 
Let us now consider how to treat omitted responses; i.e. when there is at least one i  such that i ir r′< , so that 
n n′ < . In order to address this issue, we propose two alternative strategies: 1) the proportional correction of the 
degree of knowledge, or 2) the imputation of the omitted answers. 

The first proposal consists in considering that the omissions are due to the fact that the student does not 
know the corresponding answers. Consequently, the idea is to estimate the degree of knowledge ( )ˆ ′∆  regard-
ing the answered portion of the test ( )n′  and then correct this outcome by means of the total number of items 
( )n  according to 

ˆ ˆ n n′ ′∆ = ∆ . 

Thus a student who answers 50 out of 100 questions and gets ˆ 0.5′∆ =  with her/his attempts will have 
ˆ 0.25∆ =  (25% of the subject) as the final outcome of the test. This proportional correction is also applied to the 

limits of the confidence intervals. 
The second proposal is to consider the imputation of the omitted answers. Assuming the pattern given by the 

estimates ˆ jπ , the idea now is to estimate ∆  from the transformed data given by 

( )ˆij ij j i ix x r rπ∗ ′= + − . 

In this case, the confidence intervals are those obtained from this new data matrix ∗X . 
When the MCT is balanced both methods give similar results. Otherwise, the imputation method implies a 

penalty for omissions that can be lower or higher depending on the pattern of the vectors of probabilities ˆ jπ  
and omissions ( )i ir r′− . 

8. Examples 
In Table 2 there are three examples of MCT with 3K =  alternatives where the model is always suitable ac-
cording to the test in section 3 (all the levels of significance are higher than 30%). Table 2(a) contains the data  

http://livepage.apple.com/
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Table 2. Cases with data proceeding from the MCT with 3K =  alternatives: (a) balanced test in which the similarity of the 
results of the unconditional and conditional methods can be observed; (b) unbalanced test in which the conditional method 
overestimates the student’s knowledge level; (c) the original data do not permit the estimations to be carried out, and as a re-
sult the observed values must be increased by +0.5. 

 (a) M & L data (1989) (b) Arbitrary data (c) Arbitrary data 

 

22 10 8 40
10 26 4 40
14 8 18 40

120

 

28 5 7 40
0 1 0 1
5 16 58 79

120

 

40 0 0 40
0 40 0 40
0 0 40 40

120

 

( )ˆ ˆS.E.∆ ± ∆  0.325 ± 0.067 0.598 ± 0.067 0.964 ± 0.021b 

( )ˆS.E.
ˆ

i

i
π

π
±

 { }0.061 0.059 0.052
0.423,0.359,0.217
± ± ±

 { }0.063 0.090 0.098
0.160,0.440,0.400
± ± ±

 { }0.271 0.271 0.271
0.333,0.333,0.333
± ± ±

b 

Classic CIa (0.193, 0.457) (0.466, 0.730) (0.923, 1.000)b 

Inverted-test CIa (0.193, 0.453) (0.450, 0.712) (0.953, 1.000)b 

( )M&L M&L
ˆ ˆS.E.∆ ± ∆  0.325 ± 0.068 0.717 ± 0.159 0.964 ± 0.021b 

(a) In the CI a confidence level of 95% has been adopted 

(b) Estimations carried out with reference to the data 0.5ijx + , ,i j∀  

 
which were considered in M & L’s original paper [6]. This is a balanced test and the results show that the origi-
nal conditional estimation fitted well with respect to the maximum likelihood estimation; note that this includes 
the estimation of the variance ( )ˆV ∆ . The confidence intervals obtained by classical methods and by inverting 
the test are also similar, although the second is more exact. The data in Table 2(b) are those for an unbalanced 
test. Greater discrepancy can now be seen between the results given by the maximum likelihood methods and 
the conditional method; the second one overestimates the student’s knowledge level compared to the former, 
and in addition, the estimation error in the conditional case is three times that of the unconditional one. Finally, 
in Table 2(c) the case in which iix nΣ =  is shown. Now the estimations and the inferences about ∆  can be 
carried out after increasing the data by +0.5. 

Table 3 covers two cases of MCT with 2K =  alternatives and thus the conditional and the unconditional 
methods coincide. If the estimation errors for ∆  are compared to those obtained in Table 2, it can be seen that 
by reducing K  in one alternative the result is an increase of this error. In Table 3(a) the discrepancy between 
the intervals obtained by the classic Wald method and those obtained by inverting the test can be seen. Finally in 
Table 3(b) the inferences and estimations are performed with the data increased by +0.5. 

Table 4 shows the treatment of omitted answers according to the methods introduced in the previous section. 

9. Discussion 
In this paper the model Delta for MCT has been revised and expanded. This model allows for addressing the as-
sessment of the level of knowledge of a MCT taker from a statistical perspective. Besides, it also allows objec-
tively characterizing some properties of this kind of tests, such as the optimal number of choices or the test 
length. 

Given that the estimator M&L∆̂  proposed by M & L was not obtained by using the principle of maximum 
likelihood, the aim of this paper has been to address this goal. Estimators derived by this method have some de-
sirable properties; it is widely-known in statistics that they are consistent and asymptotically unbiased, efficient 
and normally distributed. 

Regarding the main point on MCTs, the decision-taking as to whether or not the examinee exceeds a given 
knowledge level 0∆ , according to Altman et al. [22] we have considered the standpoint of the confidence in-
terval for ∆  instead of the contrast 0∆ = ∆ . In addition to the CI based on the asymptotic normality, the 
method recommended by Agresti and Min [17] has also been examined, because it should offer better results 
when the number of items is not very high. 

Given that the proposed inference methods in this paper require a large amount of computation, readers may 
obtain a free program which carries these out, on the website of our group [23]. 
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Table 3. Two examples of a test with 2K =  alternatives, in which the conditional and unconditioned estimators coincide: 
(a) quasi-balanced test which demonstrates the difference between the two methods for obtaining the CI; (b) balanced test 
that requires the data to be increased by +0.5. 

 (a) Arbitrary data (b) Arbitrary data 

 
10 5 15
1 15 16

31
 

15 0 15
0 15 15

30
 

( )ˆ ˆS.E.∆ ± ∆  0.604 ± 0.136 0.937b ± 0.061b 

( )ˆS.E.
ˆ

i

i
π

π
±

 { }0.138 0.138
0.158,0.842
± ±

 { }0.492 0.492
0.500,0.500
± ±

b 

Classic CIa (0.338, 0.871) (0.817, 1.000)b 

Inverted-test CIa (0.291, 0.808) (0.773, 1.000)b 

(a) In the CI a confidence level of 95% has been adopted 

(b) Estimations carried out with reference to the data 0.5ijx + , ,i j∀  

 
Table 4. Treatment of omitted answers. In this example 100n′ =  answers out of 150n =  questions were given according 
to two different start-up situations: in (a) the test is balanced, but it is not in (b). Given a proportion of answered questions 
n n′ , the proportional method performs always the same correction regardless the pattern of the marginals ir . By contrast, 
the imputation method is able to exploit this information. When the MCT is balanced both methods give similar results, but 
not necessarily when it is not. 

Data (arbitrary): 

(a) (b ) 
29 1 2 32 50 43
5 28 2 35 50 41
2 1 30 33 50 66

100 150 150

′X r r r

 

Analysis of answered X r′    

( )ˆ S.E. ()′∆ ±  0.806 ± 0.050 

( )ˆS.E.
ˆ

i

i
π

π
±

 { }0.136 0.100 0.126
0.530,0.155,0.315
± ± ±

 

Classic CI (0.708, 0.904) 

Inverted-test CI (0.688, 0.884) 

Case for ir  (a) (b) 

Proportional method 2 3n n′ =  2 3n n′ =  

( )ˆ ˆS.E.∆ ± ∆  0.537 ± 0.033 0.537 ± 0.033 

Classic CI (0.472, 0.602) (0.472, 0.602) 

Inverted-test CI* (0.459, 0.589) (0.459, 0.589) 

Imputation method ∗X r  
38.54 3.79 7.67 50
12.95 30.32 6.73 50
11.01 3.63 35.36 50

 
34.83 2.70 5.47 50
8.18 28.93 3.89 50

19.48 6.11 40.40 50
 

( )ˆ ˆS.E.∆ ± ∆  0.542 ± 0.056 0.551 ± 0.055 

Classic CI (0.433, 0.651) (0.405, 0.618) 

Inverted-test CI (0.428, 0.643) (0.443, 0.659) 
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The behaviour of Delta can be observed by means of simulations. Figure 1 shows the point estimation of the 
parameter ∆  across the entire range of knowledge in the case of MCT with three alternatives where each indi-
vidual test is generated by the inverse transformation method. These simulations can be performed by the reader 
by using the program MCTsim, freely available on the previously cited Web site. All the details about the simu-
lation method can also be found in the documentation of the program. Additionally, Table 5 shows the invari-
ance of ∆̂  and its SE under all possible re-arrangements (permutations) of the distracters. 

Let us conclude by saying that the model Delta is constructed from formal and consistent standpoints [12]. It 
generalizes measures for evaluating knowledge which have already been considered from the classic point of 
view by measurement specialists [4] [7] [11]. Furthermore, this model has been extended successfully to cover 
more complex situations [13]-[15]. 

 

 

0 0.25 0.50 0.75 1.00 
∆ 

0 

0.25 

0.50 

0.75 

1.00 

∆̂  

 
Figure 1. Behaviour of the model Delta. 50,000 simulations of MCT with K = 3 alternatives and 100n =  

items each one. The unconditional estimate of the parameter Delta ( )∆̂  is plotted vs. the true degree of 

knowledge ∆  ( %∆  of the questions have been correctly answered beforehand and the remaining ones 
were answered at random). 

 
Table 5. Invariance of Delta and its SE under all possible re-arrangements (permutations) of the distracters. 

)

( )

22 10 8
A 10 26 4

14 8 18

ˆ .42, .36, .22π =

 
)

( )

22 8 10
B 14 18 8

10 4 26

ˆ .42, .22, .36π =

 
)

( )

26 10 4
C 10 22 8

8 14 18

ˆ .36, .42, .22π =

 

)

( )

26 4 10
D 8 18 14

10 8 22

ˆ .36, .22, .42π =

 
)

( )

18 14 8
E 8 22 10

4 10 26

ˆ .22, .42, .36π =

 
)

( )

18 8 14
F 4 26 10

8 10 22

ˆ .22, .36, .42π =

 

( )ˆ ˆS.E. 0.325 0.067∆ ± ∆ = ±  
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Appendix I. Possible Values of ∆  
Since 0 1ijp≤ ≤ , then ( )0 1 1π≤ − ∆ ≤  and ( )0 1 1π≤ ∆ + − ∆ ≤ . Hence 

( ) ( ){ } ( ) ( ){ }max max min min1 Min 1 , 1 Min 1 , 1i i i i iπ π π π π π π π− ≤ −∆ ≤ − − = − −  

where { }min 1min i K iπ π≤ ≤=  and { }max 1max i K iπ π≤ ≤= – because ( )1 i iπ π−  decreases with πi and ( )1i iπ π−   
increases with πi. Because ( ) ( )max max min min1 1π π π π− ≥ − , so min max 1π π+ ≤ , then ( )min min1 1π π− ≤ −∆ ≤ −   

( )1 1K≤ − − , where the last statement is due to the fact that ( )min min1π π−  reaches its maximum value in 
min 1 Kπ = . Hence expression (4). 

Appendix II. Estimation of the Parameters of the Model 

The likelihood function for the model under consideration is 
, 1

ij
K

x
ij

i j
p

=

∝ ∏ , where ijp  is the same as in expres-  

sion (2). Hence, if iiS x= Σ : 

( ) ( ) ( ),ln ln ln ln 1 lnij ij ii ii i ii ii jL x p x p n S c x π= ∝ = + − − ∆ + −∑ ∑ ∑ .          (A1) 

This means that in order to obtain the estimators ˆiπ  and ∆̂  for the parameters iπ  and ∆ , respectively, it 
is necessary to solve the Equations d d 0iL π =  ( )1, , 1i K= −  and d d 0L ∆ = . 

1. Estimation of the Parameters πi 

Since 1K i
i K

π π
<

= −∑ , then 1K iπ π∂ ∂ = −  and, therefore ( ) ( )d d 0i i KL L Lπ π π= ∂ ∂ − ∂ ∂ = . This means that  

( ) iL B iπ∂ ∂ = ∀ , where B  is a constant to be determined, so that 

( ) ( )1 0  ii i ii

ii i

x c x
B i

p π
−

= − ∆ + ≥ ∀ ,                            (A2) 

where 0B ≥  because all the terms that define it are larger than or equal to zero. If this expression is multiplied 
by iπ  there are two possibilities. If i  is added, one obtains: 

( )
0

1
ii i

ii

B n Sx
p
π − −

= ≥
− ∆∑ .                               (A3) 

If ii iix p  is worked out, one obtains: 

0ii i i

ii

x c B
p

π−
= ≥

∆
,                                  (A4) 

The sum of which results in 

0ii

ii

x n B
p

−
= ≥

∆∑ .                                  (A5) 

By adding by i  in expression (A2) and substituting expression (A5) one obtains: 

( ){ } ( )1 1 1
0i ii

i

B K nc x
π

− ∆ + − − ∆−
= ≥

∆∑                         (A6) 

From the above expressions it is possible to deduce some conditions to be verified by the constant B . Thus, 
from (A3) it can be deduced that B n S≥ − , from (A6) that ( ) ( ){ }1 1 1B n K≥ − ∆ − ∆ +  if 0∆ >  (and the 
reverse if 0∆ < ) and, finally, because the value of expression (A3) is smaller than or equal to that of (A5), then 
B n S≤ − ∆  si 0∆ >  (and the reverse is true if 0∆ < ). Therefore: 
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( )
( )

( )
( )

1
If  0:  max ;

1 1

1
If  0:  

1 1

n
n S B n S

K

n
n S B

K

  − ∆ ∆ > − ≤ ≤ − ∆  
− ∆ +   


− ∆ ∆ < − ∆ ≤ ≤ − ∆ +

                    (A7) 

In addition, from expression (A4): 

( ) ( )sgn sgn i ic Bπ∆ = − .                               (A8) 

In order to estimate the parameters iπ  one need only substitute iip  with ( )1 iπ∆ + − ∆  in expression (A4), 
which produces the following second degree Equation in iπ  

( ) ( ) ( ) ( )21 1 0    i i i i iiB B c c x iπ π− ∆ + ∆ − − ∆ − − ∆ = ∀   ,                 (A9) 

from which: 

( )
( ) ( )( ) ( )22 2 2 21

 where  2 1 1
2 1

i i
i i i ii i

c B R
R B c x B c

B
π

− ∆ − ∆ ±
= = ∆ + ∆ −∆ − 2 + − ∆

−∆
.       (A10) 

As 2
iR  can be expressed in the following three ways: 

( ){ } ( )( )

( ){ } ( )

( )( ){ } ( ) ( )

2

22

2

1 1

1 1

2 1 4 1

i i ii

i i ii

i ii ii i ii

c B B c x

R c B B x

c x B x c x

 − ∆ − ∆ + 4 ∆ − ∆ −

= − ∆ + ∆ − 4 ∆ − ∆


− − ∆ + ∆ + − ∆ −

, 

then, from these three expressions and from expression (A10) one can deduce that: 

( ){ } ( )
( ){ } ( )

if  0

1 1 if  0
1 1 if  0

if  1

i i

i i i

i i i

i

R c
c B R c B

c B R c B

R B

= ∆ =

± − ∆ + ∆ ≤ ≤ − ∆ − ∆ ∆ <

± − ∆ − ∆ ≤ ≤ − ∆ + ∆ ∆ >
 ∆ ==

,                    (A11) 

and as a result: 

( )( ){ } ( ){ }2 1 ,  1i i ii iR c x B c B≥ ± − − ∆ + ∆ ± − ∆ − ∆ .                   (A12) 

With the goal of verifying whether, of the two possible solutions given by expression (A10), only the one ob-
tained with the positive sign – ( )iπ + – is valid, in the following we shall distinguish four cases (in terms of the 
values which Δ can take). It is understood that here Δ can refer to a known value (such as when contrasting the 
null hypotheses 0 0:H ∆ = ∆  vs. 1 0:H ∆ ≠ ∆ , in which case 0∆ = ∆ ) or an unknown value which still has to be 
estimated (in which case ˆ∆ = ∆ ): 

1) When 0∆ < , in expression (A8) the following must occur i ic Bπ > . The solution ( )iπ −  then implies 
that ( )1i iR c B< − − ∆ + ∆    which contradicts the second expression (A12). Thus, the appropriate solution is 

( )iπ + . 
2) When 0∆ = , then i iR c=  from the first expression (A11); hence ( ) 0iπ − =  and ( )i ic Bπ + = . Again, 

the solution should be the second, given that it is the only one that is compatible with the restriction 1iπΣ = , a 
restriction which indicates that B = n. For this reason: 

ˆIf  0 ,  i iB n c nπ∆ = ⇒ = = .                            (A13) 

3) When 0 1< ∆ < , then ( ) ( ) ( ){ }2 1 1 0i i iB c B Rπ− ∆ − = − ∆ − ∆ − ≤ , using the second expression (A12). 
Because this can only occur when ( ) 0iπ − ≤ , then ( ) 0iπ − =  and ( )1i iR c B= − ∆ − ∆ , and this implies that 
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i iic x=  and that ( )1ic B− ∆ ≥ ∆  (so that 0iR ≥ ). Because 0iπ =  and i iic x= , expression (A2) indicates that 
( )1iB c= − ∆ ∆ , then the solution ( )iπ −  is only possible when 0iR = , that is, when ( ) ( )i 0iπ π− = + = . 

Again ( )iπ +  is the solution sought. 
4) Finally, when 1∆ = , expression (A9) is a linear Equation in iπ  whose solution is given by  
( )i i iic x Bπ = − ; and because 1iπΣ = , then: 

( ) ( )ˆIf  1 ,  i i iiB n S c x n Sπ∆ = ⇒ = − = − − .                     (A14) 

Because in this case iR B= , from expression (A11), then ( )iπ − = −∞  and ( )i 0 0π + = . Again the solu-
tion ( )iπ −  is not the correct one, while the solution ( )iπ +  yields a non-determination which we shall refer to 
in the following section. 

As the solution is always ( )iπ + , and because 1iπΣ =  then by increasing by i in expression (A10) one ob-
tains: 

( ) ( )1 2 2 0B iy R n B K= + − ∆ − − ∆ + =  ∑ .                     (A15) 

when the goal is to estimate ∆  (a situation in which, as we will now see, B  will take a value which depends 
on ∆ ), the previous Equation should be solved in respect of ∆ . When ∆  is known (as is the case when the 
hypotheses 0 0:H ∆ = ∆  vs. 1 0:H ∆ ≠ ∆ are contrasted, in which case 0∆ = ∆ ), then the goal will be to deter-
mine the value of B  and the Equation will have to be solved in respect of B . In both cases, it is shown later 
that the solution is unique. 

2. Estimation of the Parameter Δ 
In this section it is understood that both the parameters πi and the parameter ∆ are unknown. Now, 

( ) ( ) ( )d d 1 1ii ii iiL x p n Sπ∆ = Σ − − − − ∆ , which leads to two different situations. 
When S n= , it is considered that ( )d d 1ii ii iiL x pπ∆ = Σ − , which also produces two cases. If hhh x n∃ = ,  

then ( ){ }1
n

hπ∝ ∆ + −∆  whose maximum possible value for 1 is reached when ˆ 1hπ =  (the remainder of the  
ˆiπ  are worth 0) and ∆̂  takes any value, when ˆ 1∆ =  and the ˆiπ  take any values. If ( )  iix n i< ∀ , then 

( )d d 1 0ii i iiL x pπ∆ = Σ − >  –because there cannot be two 1iπ = - and the maximum is reached in ˆ 1∆ =  
(where the ˆiπ  take any values). In both cases there is some indeterminate estimator and the inferences about 
∆  cannot be made. One way of solving the problem consists in increasing all the data by 0.5 (so that S n< ) 
and applying the result in the following paragraph. 

When S n< , by using expressions (A3) and (A5) the following deduction can be made: 

( )1B n= − ∆ .                                   (A16) 

By substituting this value in the Equations in the previous section the following results are obtained. By sub-
stituting in the expression in (A9), each πi should verify that: 

( ) ( )( ) ( ) ( )2 21 1 0  i i i i iin n c c x iπ π− ∆ + ∆ − − ∆ − − ∆ = ∀ ,                 (A17) 

so that expression (A10) –which, as we know, only makes sense for the sign “+”– indicates that: 

( )
( ) ( )2 2 2 2+ 

,   where  2 2
2 1
i i

i i i ii i

c n R
R n n c x c

n
π

− ∆
= = ∆ + ∆ − +

− ∆
.               (A18) 

As a result, the Equation (A15) becomes: 

( ){ }2 1 0iy R n K∆ = − − ∆ + =∑ ,                          (A19) 

which, because it is necessary to resolve this in ∆ , can be written more explicitly as follows: 

( ) ( ){ } ( )2 1 1 2 1 1
1 2

1ˆ 2 1V r n r n
r r

π π π π− ∆  ∆ = + − ∆ + −  .                   (A20) 
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Once the value of ∆  has been determined (which will be ∆̂ ), by substituting for it in (A18) the value for 
the ˆiπ  will be obtained. Similarly, by substituting the expression (A16) in the expressions (A3) to (A6) and 
(A8) one obtains, respectively: 

( ) ( )

( )( ) ( ) ( ){ }

1 1
,  ,  ,  ,

1

1 1  and sgn sgn 1

i i i iii i ii ii ii

ii ii ii ii

i ii
i i

i

c n c nx x x xS n n
p p p p

c x
n K c n

π ππ

π
π

− − ∆ − − ∆− ∆
= = = =

− ∆ ∆ ∆

−
= − − ∆ ∆ = − − ∆

∑ ∑

∑
       (A21) 

Finally, the inequality (A7) and the fact that the numerator in the first expression (A21) should be positive in-
dicate, respectively, that: 

( ){ } { }2 ,    and  i i ii iR c x n c n S n≥ ± − + ∆ ± − ∆ ∆ ≤                 (A22) 

3. Unicity of Solutions 
In order to see that the solution to Equation (A20) is unique, let us look at the function y∆  defined by expres-
sion (A19). When 0∆ =  it can be seen that ( )0 0y∆ ∆ = = , so that the function always verifies the origin. 
Moreover, at the extremes of the range of Δ indicated by expression (4), 0y∆ ≥  always: when 1∆ = , because 

i iR n c≥ −  from expression (A22), so that ( )1iR n KΣ ≥ −  and thus ( )0 0y∆ ∆ = ≥ ; by analogy, when  
( )1 1K∆ = − −  then ( ) 11i iR c n K −≥ − + − , ( ) 11iR n K −Σ ≥ −  and { }( )1/ ( 1) 0y K∆ ∆ = − − ≥ . On the other  

hand the function is convex with respect to ∆  because ( ){ }2 2 2 3d d 4 0ii i ii iy n x c x R−
∆ ∆ = Σ − ≥ , from which it 

can be deduced that the minimum for y∆  is reached in a unique ∆  belonging to the closed interval 
( )1 1 ,1K− −   . The position of the minimum with respect to the origin is determined by the behaviour of y∆  

in 0∆ = . Given that 
[ ] [ ]0
d d 2 1 i iiy n c x∆ ∆=

∆ = −Σ ,                         (A23) 

if 1i iic xΣ >  then y∆  decreases in the origin and the minimum is found between 0 and 1 (more specifically, 
between 0 and S n , for the reason that the numerator of the first expression (A20) ought to be larger than or 
equal to zero); if =1i iic xΣ , then the minimum of y∆  is precisely ˆ 0∆ = ; finally, if 1i iic xΣ < , then y∆  is 
a function increasing in the origin and the minimum is found between ( )1 1K− −  and 0. 

Similarly, in order to see whether the solution to the Equation (A15) is unique, let us look at the function By  
defined in it (here it is assumed that 0∆ = ∆  is a known value). When 0B =  is ( )1i iR c= − ∆  and thus 

( ) ( )0 2 1 0By B n= = − ∆ ≥ . In the following we must bear in mind that for the first expression of (A12) 

( )( )2 1
1 1i ii

i

c x B
R

− − ∆ + ∆
− ≤ ≤ + .                       (A24) 

Since ( )d d 2 2B B iy B y K R′ ′= = − − ∆ + + Σ   , where ( )( ) 11 2i i ii iR B c x R−′  = ∆ ∆ + − ∆ −  , then the function  

By  decreases because: 1) If 0∆ = , 2 0By′ = − < ;2) If 0∆ > , iR K′Σ ≤ ∆  through the second inequality in  
expression (A12), and thus ( )2 1 0By′ ≤ − − ∆ < ; 3). If 0∆ < , iR K′Σ ≤ − ∆  through the first inequality in ex-  
pression (A22), and hence ( )2 1 1 0By K′ ≤ − + − ∆ <    because ( ) 11K −∆ ≥ − − . As a result of this, 0By =  
has a unique solution in 0B ≥ . 

Appendix III. Standard Error in the Estimators 
With the aim of obtaining the matrix Σ  formed by the variances and covariances of the estimators of the pa-
rameters of the model ( )1 1, , , Kπ π −Θ = ∆  , let us first determine their information matrix Iθ , which is formed  
by the elements ( ) 2

i jij
I E Lθ θ θ θ = − ∂ ∂ ∂   where 2

i jL θ θ∂ ∂ ∂  given by: 

( ){ } ( ) ( ) ( )

( )
2

2

2 2

2 2

1 1 ,      

  and    for  1, , 1,
i j

i i

ii i ii K

kk kk ii ii i K

L x p n S L h i j

L x p x p L h h i K

π π

π π

π ∗
∆

∗ ∗
∆

′′ ′′= − − − − − ∆ = − ∀ ≠

′′ ′′= − = − + = −

∑


            (A25) 
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where: 

( ){ } ( )2 21i ii ii i ii ih x p c x π∗ = − ∆ + − .                          (A26) 

Given the type of sampling adopted (the values for ri are previously fixed), the following must occur:  

( )ij i ijE x r p= ( ),i j∀  and ( )j i ij
i

E c r p= ∑ . Hence: 

( ) ( )( ) ( )22 1, 1 1i ii i i iiI n r p r pπ− −∆ ∆ = − − ∆ + −∑ ∑                      (A27) 

And by defining ia  and ( )i ib E h∗=  as in expression (12), one obtains 

( ) ( ),   and  , +   for  , 1, , 1.i i k i j ij i KI a a I b b i j Kπ π π δ∆ = − = = −                (A28) 

where ijδ  is the Kronecker delta. 
In order to determine 1Iθ

−Σ =  in the following let us look at the division into blocks 
1

11 12 1

12 22

t tI I
I

I I
π

θ
π ππ

−

∆∆ ∆−

∆

   Σ Σ
Σ = = =      Σ Σ   

,                         (A29) 

where obviously I∆∆  is a scalar, I π∆  is a column vector and Iππ  is a square (symmetric) matrix of the order 
–1K  whose elements are defined by expressions (A27) and (A28) respectively. The determinant of Iθ  is 

given by 1I I I I I Iθ ππ π ππ π
−

∆∆ ∆ ∆′= − . Given that 1I I I Iππ π ππ π
−

∆ ∆′−  is the Schur complement of I∆∆  (cf. Meyer, 
2000; p. 475), it can then be verified that ( )1 11I I I I I I Iθ ππ π ππ π

− −
∆∆ ∆∆ ∆ ∆′= − . Because 1

11 I Iππ θ
−Σ = , one then 

obtains 

( ) 11
11 I I I Iπ ππ π

−−
∆∆ ∆ ∆′Σ = − .                             (A30) 

In order to determine 1Iππ
−  let us express the elements in Iππ  defined in (A28) as ( ) ( ), 1i j K ij i KI b b bπ π δ= + , 

which allows us to split up this matrix in the sum t
KI b D eeππ = + , where ( )Diag i KD b b=  and ( )1, ,1te =  , 

the inverse of which is given by the Sherman-Morrison formula [24], which produces 

( )( )11 1 1 1 1 11 t t
KI b D e D e D ee Dππ

−− − − − − −= − +                        (A31) 

where ( )1 1DiagK iD b b− −= . When, in this expression, one looks at the terms defined in expression (12), the re-
sult is that 1Iππ

−  is formed by the elements ( ) ( )1 1 1 1

, i ij ji j
I b bππ δ β− − − −= − . 

By substituting the 1Iππ
−  obtained in (A30) one obtains an explicit expression for ( ) 11

ˆV ∆ = Σ . From this (by 
algebraic manipulation) one arrives at the expression expanded in (10), which covers all the extended sums as 
far as K  (instead of doing so up to –1K  following the direct expansion of expression (A30)). 
The other elements of Σ  are obtained by block matrix inversion of Iθ  following what was shown in (A31): 
because the product IθΣ  is the identity matrix of the order K , we obtain 

1
21 12 11

t I Iππ π
−

∆Σ = Σ = −Σ ,                                 (A32) 

( )1 1 1
22 11I I I I Iππ ππ π π ππ

− − −
∆ ∆′Σ = + Σ .                            (A33) 

By operating in both expressions one finds that the i –component of 12Σ  is: 

( ) ( ) 1 1 1 1 1

1

ˆ ˆˆ,
K

i i i ii j jj j
j

Cov V b r p r p bπ β− − − − −

=

 
∆ = − ∆ − 

 
∑ ,                    (A34) 

while 22Σ  consists of the elements 

( ) ( ) ( ) ( ) ( )1 1 1 ˆ ˆ ˆˆ ˆ ˆ ˆ, , ,i j i ij j i jCov b b Cov Cov Vπ π δ β π π− − −= − + ∆ ∆ ∆ .            (A35) 
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Obviously, the elements of the diagonal of 22Σ  are ( ) ( )ˆ ˆ ˆ,i i iV Covπ π π= , and its expanded and simplified 
expression is the one given in expression (11). 

The substitution of the unknown parameters with their respective estimators produces the corresponding esti-  
mators for the variances; i.e. ( )ˆ ˆV ∆ ,  ( )ˆ ˆ, iCov π∆  and  ( )ˆ ˆ,i jCov π π . 

It should be pointed out that the magnitude of ( )ˆV ∆  is determined (in part) by the value of the quadratic 
form ( ) 1, tQ I I Iπ ππ ππ −

∆ ∆∆ = , which is defined as positive because the ib  defined in expression (12) are positive 
for any 1∆ < . Because the character of 1Iππ

−  is the same that of its inverse Iππ  and the principal minors kM  
in this last matrix are 

1

11
0  for  1, , 1

k k

k i i
ii

M b b k K−

==

= > = −∑∏  , 

the proposed result is thus obtained. Therefore, the minimum value for ( ) ( ){ } 1ˆ ,V I Q π
−

∆∆∆ = − ∆  is obtained  

when ( ), 0Q π∆ = , which is only possible if all the elements in I π∆  are null, that is, if i ii k kkr p r p= . 



http://www.scirp.org/
http://www.scirp.org/
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
mailto:submit@scirp.org

	Multiple Choice Tests: Inferences Based on Estimators of Maximum Likelihood
	Abstract
	Keywords
	1. Introduction
	2. Estimation of Parameters Using the Method of Maximum Likelihood
	3. Fit of the Model
	4. Standard Error of the Estimators
	5. Maximum Variance in MCTs with Homogeneous Distribution of the Correct Alternatives
	5.1. General Case
	5.2. Special Case of K = 2

	6. Confidence Intervals for 
	6.1. General Case
	6.2. The Case of K = 2

	7. Treatment of Omitted Responses
	8. Examples
	9. Discussion
	Acknowledgements
	References
	Appendix I. Possible Values of 
	Appendix II. Estimation of the Parameters of the Model
	1. Estimation of the Parameters πi
	2. Estimation of the Parameter Δ
	3. Unicity of Solutions

	Appendix III. Standard Error in the Estimators

