
Open Journal of Statistics, 2014, 4, 456-465 
Published Online August 2014 in SciRes. http://www.scirp.org/journal/ojs 
http://dx.doi.org/10.4236/ojs.2014.46044 

How to cite this paper: Hagell, P. (2014) Testing Rating Scale Unidimensionality Using the Principal Component Analysis 
(PCA)/t-Test Protocol with the Rasch Model: The Primacy of Theory over Statistics. Open Journal of Statistics, 4, 456-465.  
http://dx.doi.org/10.4236/ojs.2014.46044  

 
 

Testing Rating Scale Unidimensionality 
Using the Principal Component Analysis 
(PCA)/t-Test Protocol with the Rasch Model: 
The Primacy of Theory over Statistics 
Peter Hagell 
The PRO-CARE Group, School of Health and Society, Kristianstad University, Kristianstad, Sweden 
Email: Peter.Hagell@hkr.se 
 
Received 26 May 2014; revised 30 June 2014; accepted 15 July 2014 

 
Copyright © 2014 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Psychometric theory requires unidimensionality (i.e., scale items should represent a common la-
tent variable). One advocated approach to test unidimensionality within the Rasch model is to 
identify two item sets from a Principal Component Analysis (PCA) of residuals, estimate separate 
person measures based on the two item sets, compare the two estimates on a person-by-person 
basis using t-tests and determine the number of cases that differ significantly at the 0.05-level; if 
≤5% of tests are significant, or the lower bound of a binomial 95% confidence interval (CI) of the 
observed proportion overlaps 5%, then it is suggested that strict unidimensionality can be in-
ferred; otherwise the scale is multidimensional. Given its proposed significance and potential im-
plications, this procedure needs detailed scrutiny. This paper explores the impact of sample size 
and method of estimating the 95% binomial CI upon conclusions according to recommended con-
ventions. Normal approximation, “exact”, Wilson, Agresti-Coull, and Jeffreys binomial CIs were 
calculated for observed proportions of 0.06, 0.08 and 0.10 and sample sizes from n = 100 to n = 
2500. Lower 95%CI boundaries were inspected regarding coverage of the 5% threshold. Results 
showed that all binomial 95%CIs included as well as excluded 5% as an effect of sample size for all 
three investigated proportions, except for the Wilson, Agresti-Coull, and JeffreysCIs, which did not 
include 5% for any sample size with a 10% observed proportion. The normal approximation CI 
was most sensitive to sample size. These data illustrate that the PCA/t-test protocol should be 
used and interpreted as any hypothesis testing procedure and is dependent on sample size as well 
as binomial CI estimation procedure. The PCA/t-test protocol should not be viewed as a “definite” 
test of unidimensionality and does not replace an integrated quantitative/qualitative interpreta-
tion based on an explicit variable definition in view of the perspective, context and purpose of 
measurement. 
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1. Introduction 
Rating scales are one of the most commonly used methods of data collection across a range of disciplines such 
as behavioural, educational, social and health sciences. Rating scales are rooted in the behavioural sciences and 
their typical purpose is to enable measurement of phenomena that cannot be directly observed and measured, i.e., 
latent variables. The measurement of such variables is of central and immense importance. For example, within 
the clinical health sciences rating scales are a prime mode of data collection in descriptive and associative stu-
dies as well as in clinical trials of therapeutic interventions. As such, rating scale based data have direct impact 
on study results, conclusions, and ultimately individual patient care. The quality of rating scales is therefore at 
the heart of the quality of evidence-based practice and central to the quality of study results and decision-making 
[1]. 

The basic logic of rating scale based measurement is that a number of observable manifestations of the target 
variable are selected and expressed as items in a rating scale, typically a self-report or observer based assess-
ment tool. These items are assumed to represent expressions or manifestations of the latent variable that is in-
tended to be measured [2]-[4]. The extent to which this process is successful is evaluated by means of tests re-
garding the rating scale’s psychometric properties, of which aspects of reliability and validity are the core cha-
racteristics. Whereas reliability concerns measurement precision and consistency, validity refers to the extent to 
which the rating scale (or any other measurement tool) actually measures the variable it purports to measure. In 
this respect, dimensionality is a central consideration and the topic of the current paper. 

Psychometric measurement models require unidimensionality; i.e. valid and legitimate summing of rating 
scale items into an interpretable total score rest on the requirement that the items represent one common under-
lying (latent) variable [5]. This idea, that useful measurement only represents one attribute at a time is not spe-
cific for rating scales and latent variables, and dates back at least to the early 1930-ies, when Thurstone [6] 
stated that: 

“The measurement of any object or entity describes only one attribute of the object measured. This is a uni-
versal characteristic of all measurement” (p. 259). 

When total scores are not unidimensional they are technically invalid and their meaning is ambiguous since it 
is unclear what scores represent. There are at least three related reasons why unidimensionality is important to 
consider [5] [7] [8]. Firstly, unidimensionality is a basic assumption for valid calculation of total scores accord-
ing to both classic and modern test theories. Secondly, unambiguous interpretation requires scores to represent a 
single defined attribute. That is, scores on a scale that is used to measure one variable should not be appreciably 
influenced by varying levels of one or more other variables. Thirdly, if scores do not represent a common line of 
inquiry it is unclear if two individuals with the same score can be considered comparable. Similarly, the inter-
pretation of any differences between individuals will be ambiguous since it is unknown in what way(s) they ac-
tually differ. This cannot be compensated for by study design or analytical statistics, and hampers the under-
standing and usefulness of outcomes. For example, if this is not clear in therapeutic clinical trials, it may have 
consequences for the selection of interventions for individual patients; unambiguous score interpretation is a 
prerequisite for rating scales to be acceptable as clinical trial endpoints [9]. 

Andrich [10] emphasized three related points regarding unidimensionality:  
“First, unidimensionality is a relative matter—every human performance, action, or belief is complex and in-

volves a multitude of component abilities, interests, and so on. Nevertheless, there are circumstances in which it 
is considered useful to think of concepts in unidimensional terms (…). Second, a unidimensional variable is 
constructed—it makes a great deal of ingenuity and knowledge of the subject matter to establish a variable that 
is unidimensional to a level of precision that is of some practical or theoretical use (…): Where relevant, suc-
cessful measurement demonstrates a great deal of understanding of the property. Often, devising a measuring 
instrument is as important in what it teaches about the variable as are the subsequent acts of measurement using 
the instrument. Third, with unidimensional measurements, comparisons can be made using their differences. 



P. Hagell 
 

 
458 

Such differences are differences in degree. Differences that are not differences in degree are said to be differ-
ences in kind, and both are important” (pp. 9-10). 

Despite the strong case for unidimensionality, it must be emphasized that this property is not an absolute but a 
relative one. That is, it is relative with respect to variable definition, perspective and purpose of measurement 
and score interpretation, and with respect to frames of reference. In certain situations, it may be useful and de-
sirable to consider broad constructs and variable definitions, whereas more focused and narrow ones are more 
appropriate in other situations. Andrich [11] provided an excellent metaphor to this end, using an example from 
educational measurement of student achievement in mathematics, which may be subdivided into areas such as 
addition, subtraction, multiplication, division, and so on: 

“If one considers a very thick rope, which can of course be straightened to form a linear continuum, there are 
components that are made of much finer threads (e.g., items in a rating scale). These are woven together to form 
a higher-level component, which could itself be a narrow (thin) rope (e.g., dimension or subscale of a rating 
scale). These relatively thin ropes are then woven together to form a thicker rope (e.g., an overall rating scale 
score), this process can be repeated until one has a rope thick enough for the purpose in hand” (p. 104) (em-
phases in italics added). 

This metaphor is easily applicable to a variety of contexts. Consider for example a rating scale intended to 
measure patient-reported overall health. Depending on how “overall health” was defined in guiding the devel-
opment of that scale, it is reasonable to suggest that such a rating scale would comprise items addressing aspects 
of physical, mental, social health and so on. Items would then be the finer threads in the metaphor above, the 
physical, mental and social health dimensions would be the thinner ropes, and the overall scale would be the 
thicker rope. As long as the content provides a valid representation of manifestations of the latent “overall health” 
variable, the overall scale may meet the unidimensionality requirement and render interpretable scores within 
that frame of reference. However, if the focus of interest is mental health, an overall total score would be irrele-
vant. Instead, items representing the mental health dimension would need to be unidimensional to yield valid 
and interpretable mental health scores from that perspective and within that frame of reference. This mental 
health dimension may or may not then in turn be subdivided into further subdimensions representing, e.g., mood, 
cognition, and so on. Clearly, the issue is one related to context and perspective. 

Although there are multidimensional measurement models, these are in general a means of accommodating 
multidimensionality in the analysis; scores produced within the respective dimensions as well as overall sum-
mary scores are still required to be unidimensional within their respective frames of reference and according to 
their respective definitions. This emphasizes the central role of variable definition, frame of reference and pers-
pective in combination with judgement [10]-[13]; unidimensionality is not an “either/or” issue but a matter of 
degree. This view was expressed already over 70 years ago [14] and has been repeatedly reiterated since [8] [11] 
[15]-[17]. Presumably due to the central role of dimensionality in measurement in general and in rating scale 
construction and evaluation specifically, a vast number of quantitative indices have been suggested as tests of 
the rating scale unidimensionality requirement [8] [15] [17] [18]. Traditionally, these tend to be based on relia-
bility indices, principal component or factor analysis, and indices of fit between the data and the measurement 
model; the latter most prominently within modern psychometric theory such as the Rasch model (RM). 

2. The Rasch Model 
The RM [19] mathematically defines what is required from item responses in order for them to express linear 
measures rather than mere numbers or ordinal scores. It separately locates persons and items on a common logit 
(log-odd units) metric that is centered by the mean item location, which is set at zero. According to the RM the 
probability of a certain item response is a logistic function of the difference between the level of the measured 
construct represented by the item and that possessed by the person, and only a function of that difference. Ex-
pressed formally, this gives: 
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where Pni is the probability of person n to endorse item i, e (Euler’s number) is the exponential of the natural lo-
garithm, βn is the level of the construct possessed by the person and δi is the level of the construct represented by 
the item. 
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For each person (and item) the model thus estimates a location on the latent variable continuum from less to 
more, as expressed according to the logit metric. For dichotomous items (i.e. items with binary response catego-
ries such as “yes”/“no” or “agree”/“disagree”), the location equals the relative position on the latent trait (ex-
pressed as a logit value) where there is a 50/50 probability of responding with either of the two response catego-
ries; the location of polytomous items (i.e. items with more than two ordered response categories) is the mean 
location of the response category thresholds (i.e., positions on the latent trait where there is a 50/50 probability 
of responding with either of two adjacent response categories; the number of thresholds is one less than the 
number of response categories). In addition, and in contrast to traditional raw score based test theory, the RM 
also provides individual person (and item) standard errors based on the amount of information available regard-
ing that person’s (item’s) location. That is, more items provide more information about the person’s location and, 
hence, greater precision and a smaller standard error (SE). The same logic also applies for items, i.e., larger 
samples provide greater precision and smaller SEs for item locations. Specifically, precision is optimized when 
item threshold locations match the person location (and vice verse). When rating scale data (item responses) 
meet the requirements of the RM, invariant linear measurement is achieved [10] [16]. However, this achieve-
ment is conditional on substantively explicit variable definitions according to which items represent manifesta-
tions of the latent target variable, where the RM derived item hierarchy is consistent with theory and reflects 
what is happening as one moves up and down the scale. In contrast, if rating scale items define the variable ra-
ther than the other way around, the scale represents an index rather than a measure [2] [4], and the function of 
the RM is descriptive rather than anything else [20]. 

The RM is related to the Guttman model [21] [22] but with the important difference that whereas the model 
proposed by Guttman is deterministic in nature (i.e., individual item response patterns are directly determined by 
the person’s total score), the RM is probabilistic. The basic assumption and logic of the RM was succinctly arti-
culated as follows by Rasch [19]: 

“A person having a greater ability than another should have the greater probability of solving any item of the 
type in question, and similarly, one item being more difficult than another one means that for any person the 
probability of solving the second item correctly is the greater one” (p. 117). 

Note that Rasch pointed out that the model is not necessarily concerned with particular sets of items, but ra-
ther with “any item of the type in question”. That is, as long as items represent the same variable (“item of the 
type in question”), they should be useful and able to yield the same person measure. The RM is therefore useful 
in calibrating and building item banks, i.e. large sets of items that represent the same variable and from which 
smaller numbers of items can be selected for the measurement of individual persons, although the exact items 
used by two people are not necessarily the same [23]. 

The extent to which data accord with the RM is assessed through analyses of fit, i.e. by examining the accor-
dance between expected and observed responses across locations on the measured variable [10] [24]. This is 
typically determined through a combination of approaches including inspection and analyses of residuals using 
chi-square or ANOVA based statistics as well as graphical methods. Residuals represent the discrepancy be-
tween observed and expected item responses. In general, large positive residuals primarily suggest violation of 
unidimensionality, whereas large negative residuals signal local dependency (i.e., item responses are dependent 
on responses to other items, suggesting item redundancy). However, fit statistics can be somewhat insensitive in 
detecting multidimensionality, particularly if two dimensions are represented by about the same number of items 
[7] [25] [26]. Approaches beyond that incorporated in the traditional study of model fit have therefore been 
proposed in order to assess the dimensionality of rating scales within the RM framework. These include, for 
example, principal component analysis (PCA) of residuals (i.e., what is “left over” once the RM has accounted 
for the main dimension), likelihood ratio tests, tests based on the association between observed and expected 
measures, estimation of theoretical correlations, and testing the effect of subtest construction on reliability esti-
mates [7] [8] [17] [18] [27]. 

3. The Principal Component Analysis (PCA)/t-Test Protocol for Testing 
Unidimensionality in the Rasch Model 

One approach that has been advocated in testing for unidimensionality within the RM framework is a PCA 
based method first proposed by Smith [7]. This approach attempts to assess whether scales are sufficiently un-
idimensional to be treated as such in practice [7] [26]. First, two item sets potentially representing different sub-
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dimensions in the data are identified from a PCA of residuals according to item residual loadings on the first 
principal component. Specifically, item residuals with loadings of +0.3 or more and −0.3 or less are taken as 
potential representatives of subdimensions [26]. The two thus identified item sets are then used to estimate two 
separate sets of person measures. A series of t-tests is then conducted to compare the two estimates on a person- 
by-person basis in order to determine the proportion of instances in which the two item sets yield different per-
son measures. This is possible because the RM yields individual person SEs. If violation of the unidimensional-
ity requirement is trivial, the proportion of person locations that differ between the two item sets is small. Spe-
cifically, if ≤5% of the t-tests are significant, or the lower bound of a binomial 95% confidence interval (CI) of 
the observed proportion overlaps 5%, then it has been suggested that unidimensionality can be inferred, other-
wise the scale is multidimensional [7] [26] [28] [29]. This approach is based on the same heuristic that underpins 
any hypothesis testing, i.e. that up to 5% is what would be expected to occur by chance under the null hypothesis 
[30]. Simulation studies have suggested that the PCA/t-test protocol performs well as a unidimensionality test in 
comparison to traditional RM fit analysis, raw score PCA and factor analyses as well as to PCA of Rasch resi-
duals alone, particularly when based on at least 12 item response thresholds [26] [29]. Assumedly due to this, in 
combination with the implementation of the procedure in popular RM software [31] and its propagation as a test 
of strict unidimensionality [28], this test has become increasingly popular in RM based rating scale evaluations 
and it is often implied to provide “definite” evidence for or against the unidimensionality of rating scales (see, 
e.g. [32]-[37]). 

However, despite its seemingly intuitive logic the approach is not without problems. Given its proposed signi-
ficance and potential implications of its acceptance, this procedure is therefore in need of detailed scrutiny. One 
apparent critical issue is the basis for the decision as to whether a rating scale meets the unidimensionality re-
quirement or not, i.e. the binomial 95% CI. First, there are a number of procedures available for the estimation 
of the 95% binomial CI [38] [39] and secondly, sample size impacts the width of CIs and therefore also the re-
sulting conclusions [40] [41]. However, neither of these aspects has been considered in the propagation or ap-
plication of the PCA/t-test protocol for testing unidimensionality in the RM. For example, none of the methodo-
logical papers that propagate the procedure has commented on the influence of sample size or the type of bi-
nomial CI [26] [28] [29]. This paper therefore explores the impact of sample size and estimation method for the 
95% binomial CIs and the resulting conclusions according to recommended conventions [26] [28] [29] when 
using the PCA/t-test protocol for testing unidimensionality in the RM. 

4. Methods 
Binomial 95% CIs were calculated according to four commonly used methodologies: the normal approximation 
95% CI (the “Wald” method), the “exact” binomial CI according to Clopper-Pearson [42], and the Wilson, 
Agresti-Coull, and Jeffreys methods [39], as implemented in Stata version 13.1 for Mac OS X (StataCorp, Col-
lege Station, TX, USA). These binomial CIs were calculated for hypothesized observed proportions of 0.06 
(6%), 0.08 (8%) and 0.10 (10%) and sample sizes ranging from n = 100 to n = 1000 in increments of 100, and 
thereafter in increments of 500 up to n = 2500. Lower 95% CIs were inspected regarding their coverage of the 
5% (i.e., 0.05) threshold. 

5. Results 
Results are depicted in Figure 1. Normal approximation (“Wald”) 95% CIs included 5% with sample sizes of n 
= 100 - 2000 and a 6% observed proportion, n = 100 - 300 with an 8% observed proportion, and n = 100 with a 
10% observed proportion (Figure 1(a)). “Exact” 95% CIs included 5% with sample sizes of n = 100 - 2000 with 
a 6% observed proportion, n = 100 - 200 with an 8% observed proportion and n = 100 with a 10% observed 
proportion (Figure 1(b)). The Wilson, Agresti-Coull, and Jeffreys 95% CIs all included 5% with sample sizes of 
n = 100 - 1500 and a 6% observed proportion as well as with sample sizes of n = 100 - 200 with an 8% observed 
proportion, but not for any sample size with a 10% observed proportion (Figure 1(c)-(e)). 

6. Discussion 
The results presented here are fully expected [38]-[41]. However, the lack of these types of considerations in 
papers presenting results of RM based rating scale analyses suggests that there is a need for reiteration. For  
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Figure 1. Results from calculations of binomial CIs for hypothesized observed proportions of 0.06 (6%), 0.08 (8%) and 0.10 
(10%) and sample sizes ranging from n = 100 to n = 2500. Curves represent the lower 95% CI bounds according to (a) the 
normal approximation (“Wald”), (b) the “exact” Clopper-Pearson, (c) the Wilson, (d) Agresti-Coull, and (e) Jeffreys 
methodologies for estimating the 95% binomial CI. 
 
example, Ramp and collaborators [33] used the PCA/t-test protocol for testing unidimensionality in the RM with 
the 20-item physical impact scale of the Multiple Sclerosis Impact Scale (MSIS-29) with a sample of n = 92 
people with multiple sclerosis. Results showed that 9.2% of the person measures from two PCA derived item 
subsets differed and the 95% binomial CI ranged 4% - 14%, which led the authors to infer unidimensionality. 
Young and coworkers [37] used the same methodology with a 17-item scale purported to measure self-efficacy 
with a sample of n = 309 people with multiple sclerosis and found 12.2% of the person measures from two PCA 
derived item subsets to differ (95% binomial CI, 9.8% - 14.7%). The authors reported the scale to exhibit “con-
siderable multidimensionality” (p. 1329). Despite relatively similar observed proportions the two conclusions 
are in opposite directions due to a more than two-fold larger width of the 95% binomial CI in the former as 
compared to the latter study, resulting in coverage and noncoverage of the 5% threshold, respectively. However, 
none of the studies commented on the sample size or method for estimating the 95% binomial CIs in relation to 
these results. This is not to criticize these or any particular investigators or rating scales, but mentioned here 
merely to illustrate the problem. 

The results presented here illustrate that the PCA/t-test protocol for testing unidimensionality in the RM is, as 
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any other statistical test [40] [41], dependent on sample size. For example, in a study (n = 473) regarding the 
cross-diagnostic measurement properties of the Nottingham Health Profile index of Distress (NHPD) using the 
PCA/t-test protocol for testing unidimensionality, it was found that the lower binomial normal approximation 
95% CI did not overlap 5% [43]. However, if for example two thirds of that sample size had been used instead 
(with the same proportion of significant individual t-tests), the statistical conclusion from this test would instead 
have supported unidimensionality [43]. Therefore, and despite that the PCA/t-test protocol has appeared more 
useful in detecting multidimensionality than residual based fit indices and factor analytic approaches [7] [26] it 
must be borne in mind that this procedure, in itself, also is a somewhat arbitrary test. Indeed, inferences are de-
pendent on and, therefore, differ according to sample sizes [40]. Over reliance on statistical tests and their sensi-
tivity to sample size in determining the extent to whether data fit the unidimensional Rasch measurement model 
was cautioned against already by Rasch [19]: 

“On the whole we should not overlook that since a model is never true, but only more or less adequate, defi-
ciencies are bound to show, given sufficient data” (p 92). 

One strategy to take the influence of sample size into account when using tests such as the PCA/t-test protocol 
for testing unidimensionality (or other aspects of fit to the RM), would be to conduct and report sensitivity ana-
lyses, similar to what is standard practice in, e.g. health economic cost analyses [44]. That is, by keeping all as-
pects of the data constant and varying only the n in the calculation of CIs (or P-values), it would be possible to 
consider the influence of sample size in the particular study. As illustrated in this paper, such a procedure is eas-
ily adapted to the calculation of binomial CIs, and specialized RM software such as RUMM2030 incorporates 
this facility for other hypothesis testing procedures in the analysis of fit to the RM [31]. 

In addition to the influence of sample size, the results presented here also illustrates that the choice of method 
for estimating the 95% binomial CI influences the results and conclusions from using the PCA/t-test protocol for 
testing unidimensionality in the RM. Specifically, the Wilson, Agresti-Coull, and Jeffreys 95% CIs appear to 
yield the most stable estimates, followed by the Clopper-Pearson “exact” binomial CI, and with the normal ap-
proximation (“Wald”) 95% CI appearing to be the most problematic one. These observations are in general 
agreement with previous studies on the properties of various methods for estimating the 95% binomial CI [38] 
[39]. For example, Brown et al. found the normal approximation 95% CI (the “Wald” method) to exhibit a 
highly erratic behaviour in their examination of the actual interval covered, which oscillated considerably in re-
lation both to sample size and the observed proportion, with the actual CI coverage rarely approximating 95% 
[39]. In contrast, the Wilson and Agresti-Coull 95% CIs behaved much more reliably (particularly for small and 
large sample sizes, respectively) [39]. This aspect has rarely been considered in RM based studies and it is 
therefore recommended that authors who choose to apply the PCA/t-test protocol for testing unidimensionality 
in the RM also need to specify the estimation method used for calculating the 95% binomial CI. Furthermore, as 
this and previous studies illustrate there are good reasons to avoid the normal approximation 95% CI (“Wald” 
method), which appears to be the default in many software applications, in favour for, e.g. the Agresti-Coull 
95% CI. 

Other aspects of the PCA/t-test protocol for testing unidimensionality in the RM also need to be considered. 
First, although sometimes considered nonproblematic with sample sizes above 200 [45], methods such as PCA 
assumes that data are normally distributed, which rarely appears to be considered in the application of the 
PCA/t-test protocol for testing unidimensionality in the RM [32]-[37] [43]. Secondly, the rationale for the sug-
gested loading of 0.3 as a cut-off to define items to be included in the PCA/t-test protocol [26] is unclear and 
other criteria could also be conceivable; additional studies regarding the optimal approach to using this proce-
dure are warranted. 

Unidimensionality is not an absolute but a relative matter and there is no single agreed upon method to test for 
unidimensionality. Therefore, the decision whether a scale is sufficiently unidimensional should ultimately come 
from outside the data and be driven by the purpose of measurement and clinical/theoretical considerations [10]. 
As reviewed above, the most important aspect of the dimensionality issue relates to the central role of variable 
definition, frame of reference, perspective and context of application, and the fact that unidimensionality is not 
an “either/or” issue but a relative matter of degree [10] [12] [16]. For example, due to inherent psychometric 
problems with the 39-item Parkinson’s Disease Questionnaire (PDQ-39) [46]-[49] we revisited this scale from a 
conceptual and theoretical perspective according to the World Health Organization’s International Classification 
of Functioning, Disability and Health (ICF) taxonomy [50] using RM analyses, including the PCA/t-test proto-
col for testing unidimensionality [51]. The analyses identified four ICF related item sets including two represent- 
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ing body functioning, of which one was dismissed as invalid despite meeting standard RM fit criteria and the 
PCA/t-test procedure criterion for unidimensionality. The reason for this conclusion was that the item set did not 
appear to represent an interpretable underpinning common latent variable. Specifically, the item set covered pain, 
poor memory, feeling unpleasantly hot or cold, painful cramps or spasms, falling asleep unexpectedly, and dis-
tressing dreams or hallucinations (as ordered from more to less impaired body functioning). While each of these 
items represents body functions (which, as all components of the ICF, in itself is relatively unspecific and broad 
in nature), it is unclear what common variable would manifest itself in this manner (as expressed by the above 
item hierarchy) as one moves up and down a scale from less to more. Its clinical meaning is therefore doubtful, 
regardless of the results from statistical tests. 

This is not surprising since any quantitative analysis merely is based on numbers that may or may not work 
together in a particular way regardless of what they represent and whether they represent matters that are mea-
ningful and interpretable or not. This line of reasoning is similar to that underpinning the inappropriateness of 
coefficient alpha as an index of dimensionality [52], and illustrates the fundamental problem of any data driven 
approach to rating scale development. Instead, assessment of dimensionality requires a good deal of judgment 
and the importance of prioritizing a theory driven approach over a data driven one in order to achieve interpreta-
ble and useful rating scale derived measures cannot be under emphasized [13]. That is, rating scales and their 
items should ultimately be developed and selected based on explicit definitions of the variables that they are in-
tended to measure. Basically, the results of an RM analysis should uncover a pattern that is coherent with theory, 
according to which the hierarchical ordering of items should represent a meaningful story about what it means to 
move up and down the scale for the variable of interest [20]. For “established” rating scales that may or may not 
have been developed based on a clear variable definition, item sets still need to be hierarchically and substan-
tively meaningful and interpretable as representatives of a common latent variable. RM analysis provides an in-
tegrated framework for analyzing the extent to which this has been achieved, and a means to detect and diagnose 
anomalies that can be used to refine the scale, its theoretical underpinnings, or both, in view of the perspective, 
context and purpose of measurement. 

7. Conclusion 
In conclusion, use and interpretation of results from the PCA/t-test protocol for testing unidimensionality in the 
RM must be made with the same considerations as with any hypothesis testing procedure and is dependent on 
sample size as well as choice of estimation method for the 95% binomial CI. The PCA/t-test procedure should 
not be viewed as a “definite” test for unidimensionality and does not replace an integrated quantitative/qualita- 
tive interpretation based on an explicit variable definition in view of the perspective, context and purpose of 
measurement. Statistical procedures and reliance on P-values and CIs cannot compensate for conceptual and 
theoretical considerations. It is recommended that when the PCA/t-test protocol is used for testing unidimensio-
nality in the RM, it should be accompanied by sensitivity analyses (or similar considerations) with respect to the 
influence of sample size and the type of binomial CI used should be specified (avoiding the normal approxima-
tion CI). However, this and other data driven statistical procedures should only be applied under and following 
careful theoretical consideration of the rating scale at hand and its underpinning target latent variable. 
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