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Abstract 
Solutions of a hyperbolic partial differential equation in one dimension with appropriate initial 
and boundary conditions are conducive to standing waves. We consider practical initial deforma-
tions not reported in literature. Utilizing a Computer Algebra System such as Mathematica we put 
the formulation into action simulating the standing waves. 
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1. Motivations and Goals 
It appears that there are two independent schools of thought forming the standing waves. From math point of 
view, one begins with a certain partial differential equation (PDE) subjecting its solutions to a certain initial and 
boundary conditions resulting in modes of standing waves [1]. From physics point of view, one applies the su-
perposition principle combining two traveling waves in opposite directions achieving the same result [2] [3]. In 
this article, firstly we show the math approach that implicitly utilizes the superposition principle, concluding the 
equality of these two seemingly different approaches. Then, applying the math approach we form standing waves 
utilizing practical initial deformations not reported in the literature [1]-[8]. In our investigation, we also include 
curious theoretical initial deformations exercising the power of the methodology. Then we deviate from the norm, 
instead of presenting the results merely mathematically, and by deploying a Computer Algebra System (CAS) we 
put the solution into action [9]; simulation adds a visual dimension to understanding. This article is composed of 
six sections. In addition to Motivation and Goals, in section 2, we show the equivalency of the two approaches. In 
section 3, we discuss three practical initial deformations. In the same section we also present two curious theoret-
ical cases. Section 4 is the closing remarks. The last section is the Appendix, it contains the CAS codes. 
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2. Methods 
2.1. Method I 
Progression of a signal in a non-dispersive media is characterized with the solutions of a hyperbolic PDE. In a 
chosen PDE the coefficient of the second order time derivative is the signal’s inverse square wave speed. In this 
work we consider a progressive transverse wave along a tight elastic line. Assuming the line has a uniform mass 
density and that its tension stays constant while vibrating the associated PDE is [1], 

( ) ( )
2 2

2 2 2

1 ; ;u x t u x t
v t x

∂ ∂
=

∂ ∂
                                  (1) 

where v  is the wave speed. The solution of (1), ( );u x t  is the waveform. Traditional method solving (1) is the 
separation of variables [1]. One writes, ( ) ( ) ( );u x t f x g t=  yielding, 

( ) ( ) ( )
2 2

2 2 2

1 d 1 d
d d

f x g t
f x x v t

=                                (2) 

Depending on the initial and boundary conditions one equates (2) a constant with an appropriate sign. For in-
stance, a freely dropped initial deformation for a line clamped at 0x =  and  x =  , the constant is a, 2k−  
subject to ( )πnk n=   for 1, 2,3,n = 

 A mode of vibration is given by, 

( ) ( ) ( ); Cos Sinn n n nu x t A t k xω=                              (3) 

where nA  and n nk vω =  are the amplitude, and the angular frequency, respectively. General solution is the 
liner combination of (3), namely, ( ) ( )1; ;nnu x t u x t∞

=
= ∑ . In this method there is no indication of super-posi- 

tioning of two oppositely traveling waves. 

2.2. Method II 
From physics point of view some authors e.g. [2] [3] without referring to the governing Equation (1) begin with 
two oppositely traveling waves. Denoting the arguments of waves, kx tω± , respectively, one writes, 

( ) ( ) ( );u x t kx t kx tψ ω φ ω= − + +                               (4) 

where ψ  and φ  are arbitrary functions. In other words, one utilizes what is known as superposition principle 
[2] [3]. Utilizing the same initial and boundary conditions in method I, and assuming ψ  and φ  are sinusoidal, 
(4) becomes, 

( ) ( ) ( )1 2; Sin Sinn n n n n n nu x t C k x t C k x tω ω ϕ= − + + +                      (5) 

where ϕ  is a phase constant signifying the relative spatial and/or time off set of the interfering waves. For two 
waves with identical amplitudes, 1 2n nC C= , (5) yields [2] [3], 

( ) ( ) ( ); Cos Sinn n n nu x t A t k xω=                             (6) 

This is identical to (3). It signifies the implicit usage of the superposition principle in Method I . Conclusion is 
that the two methods are equivalent. 

3. Case Studies 
Problem statement: All case studies have a common theme. A string of a length   is stretched horizontally and 
is clamped at both ends. The string is pulled vertically shaping a deformation. It is then dropped freely allowing 
vibrations. For a chosen initial deformation assuming constant mass density and tension, it is the aim of the stu-
dies to analyze the corresponding standing waveforms. 

Given the problem description one naturally envision a practical scenario where one plucks the string pulling 
it upward. The initial deformation becomes an asymmetric triangle. A thorough literature search [1]-[8] reveals 
no such case is reported. First we develop the analysis of the problem at hand then we consider a simplified, a 
symmetric triangular deformation. We then extend the analysis considering another practical deformation, an 
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asymmetric trapezoid. This comes about by pulling the string at two separate points to the same height. To 
demonstrate the usefulness of the analysis we generalize the scope of the investigation considering two curious 
theoretical deformations; a parabolic and a symmetric half ellipse. A version of the former without simulation is 
discussed in [10] while the latter is not reported at all. 

3.1. Case 3a 
Initial deformation of the string is shown in Figure 1. Assuming a set of parameters, { }0, ,x h  we aim to iden-
tify the shapes of the corresponding standing waveforms. 

Implementing the initial conditions, the LHS of (2) yields, 

( ) ( )
2

2
2

1 d
d

f x k
f x x

= −                                    (7) 

Solution of (7) is, 
( ) [ ] [ ]Sin Cosf x A kx B kx= +                              (8) 

Similarly, the second piece of (2) reads, 

( ) ( )
2

2
2 2

1 1 d
d

g t k
g tv t

= −                                   (9) 

yielding the solution, 
( ) [ ] [ ]Sin Cosg t C t D tω ω= +                              (10) 

where in (8 &10), A , B , C  and D  are constants and kvω = . 
Applying the end points boundary conditions yield, 0B =  and πnk n= , for 1, 2,3,n = 

 Furthermore, 
applying the initial condition for a freely dropped deformation, i.e. ( )

0
, 0t t

u x t
=

∂ =  gives, 0C = . The product 
of the (8) and (10) gives the general solution, 

( )
1

π π; Sin Cosn
n

n nu x t E x vt
∞

=

   =       
∑

 

                      (11) 

The values of the amplitudes, nE , are determined utilizing the initial shape of the excited string. According 
to Figure 1, the deformation is, 

( ) ( )

0
0

0
0

for 0

;0
for

h x x x
x

u x
h x

x x
x

 ≤ ≤
=  − ≤ ≤ −







                      (12) 

Recognizing the orthogonality of the basis namely ( ){ }Sin πn x   , for 1, 2,3,n = 
 where 0 x≤ ≤  ,  

we multiply both sides of (11) by ( )Sin πm x    where m’s are integers and integrate over 
0

dx∫


. This gives, 

 

 
Figure 1. Initial shape of the string is an asymmetric 
triangle.                                        
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=
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



    

      (13) 

Performing the integrations and manipulating the output we arrive at, 

( )
2

02 2
0 0

2 π 1Sin
πn

h nE x
x x n

 =  −  





                            (14) 

This concludes the theoretical analysis. However, the formulation alone doesn’t have the strength to give the 
needed physical insight. What follows is the distinction of our approach vs. the tradition. We bring the formula-
tion alive. Meaning, utilizing a CAS, such as Mathematica [9] for a set of parameters such as  
{ } { }0, , , 1.0,0.2,0.2,0.1x h v =  we simulate the vibrations. Four different instances are shown in Figure 2. Ma-
thematica code conducive the snap shots displayed in Figure 2 are given in the Appendix Case 3a. If one runs 
the code one clearly would see the vibrations. It needs to be noted, although the upper limit of the sum in (11) 
theoretically is infinite, in practice and for the chosen parameters only ten terms are used. 

It is interesting to note the profile of the deformed string at the end of the first half of the first cycle, the dotted 
line, is not what one would have intuitively expected; the dotted line is not the mirror image of the initial defor-
mation. Running the simulation on the auto-drive mode (the interested reader may 0t =  the simulation code 
given in the Appendix Case 3a) is also illusive. Meaning, the simulation shows the string while falling conti-
nually side slides as well; contradicting the fact that standing waves are not to slide. To overcome this elusive-
ness, color marks are inserted in the line. While the string vibrates vertically the dots move only along the ver-
tical guidelines. This justifies visually that indeed the line does not slide sideways. Simulation of the vibration 
presented in our investigation is unique. No other reference embodies our approach. In brief, traditionally in the 
sited references the analyses end providing analytic equations; as we emphasized before the formulas alone 
don’t provide the actual physical insight. An exception to our comment is [10]. However, although the snap 
shots of a certain vibrations for a certain initial deformations are given their simulations are overlooked. 

3.2. Case 3b 
Initial deformation is a symmetric triangle. Figure 3 is a graphic description of the deformation. It comes about 
by pulling the midpoint of the string upward. Utilizing (12) and (14) for 0 2x =  , Figure 3 displays snapshots 
of the standing waveforms at four different instances. As expected, the string symmetrically vibrates vertically. 
This is a simple version of Case 3a, as such the Mathematica code given in Appendix Case 3a with replacing 
 

 
Figure 2. The solid line is the initial profile of the deformed string; the dotted line is its profile 
at the end of the half of the first cycle. The upper left graph is at t = 0 and the bottom right is at 
t = 9 s, the other two graphs are for t = 3 and 6 s, respectively.                            
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Figure 3. Graphic description is the same as Figure 2. The difference is the initial deformation is 
symmetric.                                                                        

 
0 2 0.5x = =  runs for the case at hand. 

3.3. Case 3c 
Initial deformation is an asymmetric trapezoid. As we pointed out this is a natural extension of the previous 
aforementioned cases. Here one pulls the string upward at two different e.g. { },a b  points to the same height 
forming an asymmetric trapezoid. This case has not been reported in the literature. The initial deformation ac-
cording to Figure 4 is, 

( )
( )

for 0

; for

for

h x x a
a

u x t h a x b
h x

b x
b


≤ ≤

= ≤ ≤
 − ≤ ≤
 −







                             (15) 

where a  and b  are the abscissas of the upper edges of the trapezoid. Following the steps outlined in Case 3a, 
analytic integration of the given deformation yields, 

( )
( )

( )2 2
1

2 1 π π π π; Sin Sin Sin Cos
π n

h n a n b n nu x t b a x vt
a b n

∞

=

        = − +        −         
∑





   

        (16) 

For instance, for { } { }, 0.2,0.6a b =  ten terms of the sum in (15) yields the four snap shots of the vibration 
displayed in Figure 4. 

3.4. Case 3d 

Initial deformation is a symmetric parabola. The initial deformation is given by, ( ) 4,0 1h xu x x  = − 
  

, where 

h  is the maximum height at the mid-point of the line. Utilizing ( );0u x  and following steps explained in Case 

3(a,b& c), the amplitude coefficients evaluate, 
( )3 3

32 1
π 2 1

n
hE

n
=

−
 yielding, 

[ ]
( )

( ) ( )
3 3

1

2 1 π 2 1 π32 1; Sin Cos
π 2 1n

n x nhu x t t
n

∞

=

− −   
=    

−    
∑

 

                       (17) 
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Plots of (17) at four different instances are shown in Figure 5. As in the previous cases only a limited number 
of terms are included in (17). 

3.5. Case 3e 
Thus far we consider cases where the amplitude coefficients for the chosen initial deformations were analytic. 
Here we present a case deviating from the norm. Consider an initial deformation such as a symmetric half an el- 

lipse. The deformation is, ( ) ( );0 hu x x x= −


, here h  is the height of the mid-point and   is the line 

length. Here again the literature search reveals the missed analysis. An attempt was made to calculate the expan-

sion coefficient, ( )
0

π;0 Sin dn
nE u x x x =   ∫





 analytically. We were unable to do so, so did Mathematica. We 

 

 
Figure 4. Graphic description is the same as Figure 2. The difference is the initial deforma-
tion is an asymmetric trapezoid.                                                    

 

 
Figure 5. Graphic description is the same as Figure 2. The difference is the initial deforma-
tion is a symmetric parabola.                                                      
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Figure 6. Graphic description is the same as Figure 2. The difference is the initial deforma-
tion is a symmetric half an ellipse.                                                  

 
then evaluate the integrals numerically. Practically, there are a large number of similar cases, so solving this 
problem paves the road and proves the usefulness of the CAS. The corresponding Mathematica code is given in 
the Appendix Case 3e. Utilizing the code four instances of the vibrations are shown in Figure 6. 

These snap shots and the corresponding simulation highlight the usefulness of the CAS. Without this simula-
tion one couldn’t envision the intermediate deformations specially the ones shown in the upper right and the 
lower left of Figure 6. 

4. Conclusion 
In the first segment of this work, we show the equality of the two seeming different schools of thought concern-
ing the formation of the transverse standing waves. In the second section based on the initial string’s deforma-
tions, we examine five cases. The first four are conducive to analytic output, and the fifth requires numeric 
analysis. We show for both classes of examples how the CAS, especially Mathematica plays an indispensable 
role. Simulating the vibrations adds a useful dimension to the understanding of the problem. For the interested 
reader, we have given the Mathematica codes. On the need basses and with minor tweaks, one may also apply 
the given codes to analyze vast class of the similar problems. 
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Appendix 
Mathematica codes: These codes give the steps needed to simulate the modes of all cases presented in the text. 

Code 3a, b: 
The parameters are listed in the values. 

{ }0values 0.2, 1, 0.2, 0.2, 0.5, 0.1 ;x h a b v= → → → → → →  

The initial deformation for the a symmetric triangle [ ];0u x  and its form at the end of the first half of the 
first cycle are named [ ]g x  and [ ]2g x , respectively, 

g[x_/;0<x<x0/.values]:=h/x0 x/.values 
g[x_/;x0<x<{/.values]:=(h({-x))/({-x0)/.values 
g2[x_/;0<x<({-x0)/.values]:=-(h/({-x0))x/.values 
g2[x_/;({-x0)<x<{/.values]:=-(h/x0)({-x)/.values 
Plots of the above two deformations are, 

[ ] [ ]{ } { }

{ } { }{ }{ }
( ){ }

plotinitilpulse Plot ,g2 , ,0,1 ,PlotStyle

Black,Thick , Black,Thick,Dashing 0.01 ,GridLines Automatic, AxesLabel

" "," ,0 " ;

g x x x

x u x

= 

→ →  

→ 

 

Equation of the transverse wave, (11 & 14) is, 

[ ] ( )
2 10

0
2 2

10 0

π2 1 π π_, _ : Sin Sin Cos / .values
π n

n xh n x n vu x t t
x x n=

     =      −     
∑



  

 

For eye balling a set of colored dots are introduced. 
dots[t_]:=Graphics[Table[{Hue[0.1 t],Disk[{ x,u[x,t]},0.008]},{x,0,{/.values,0.1 {/.values}]] 

Simulation of the vibration is given by Manipulate, 

[ ] { } { } { }{
[ ]{ } ( ){ }

[ ]} { }

Manipulate Show Plot , , ,0, / .values ,PlotRange 0.2,0.2 ,PlotStyle Red,Thick ,

GridLines Range 0,1,0.1 ,Automatic ,AxesLabel " "," , " ,Filling Automatic ,

plotinitilpulse,dots , ,0, 20,0.2 ;

u x t x

x u x t

t t

   → − →
→ → → 

 



 

A 4 × 4 table displaying snap shots of the vibrations is given by, 
tableu1=Table[Show[{Plot[u[x,t],{x,0, 
{/.values},PlotRange[{-0.2,0.2},PlotStyle[{Red,Thick},GridLines[{Range[0,1,0.1],Automatic},AxesLabel{"
x","u(x,t)"},FillingAutomatic],plotinitilpulse,dots[t]}],{t,0,9,3}]; 

By dropping the semicolon on the next line one gets the Figure 2. 
GraphicsGrid[{{tableu1[1\[RightDoubleBracket],  

tableu1[2\[RightDoubleBracket]},{tableu1[3\[RightDoubleBracket],tableu1[4\[RightDoubleBracket]}}]; 
Code 3e: 
The initial deformation of the symmetric half an ellipse is given by, [ ];0u x , it is named [ ]5f x .  

[ ] ( )5 _ : hf x x x= −


 

The expansion coefficients are labeled 5An  and their numeric values are,  

[ ] [ ] { }2 π5 _ : NIntegrate Evaluate 5 Sin / .values , ,0,0.999nAn n f x x x
   =        

 

Utilizing these coefficients we form the wave function.  

[ ] [ ]
20

1

π π5 _, _ 5 Sin Cos / .values / /Chop;
n

n x n vu x t An n t
=

   =       
∑

 

 

The rest of the code is the same as Code 3(a, b & c). 
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