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Abstract 
We establish the existence of positive solutions for singular boundary value problems of coupled 
systems  
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The proof relies on Schauder’s fixed point theorem. Some recent results in the literature are ge-
neralized and improved. 
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1. Introduction 
In this paper, we consider the existence of positive solutions for coupled singular system of second order 
ordinary differential equations  
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                       (1.1) 

Throughout this paper, we always suppose that  

( ) ( ) [ ]( ) ( ) ( ) [ ]( ) ( ) ( ) [ ]( )
( ) [ ] ( ) ( )( )

1
1

1 2

   0,1 , ,  0,    0,1 , ,   0,   0,1 ,  , , , 0, 

a and may be singular near the zero.nd 0 1,2 .  , 0,1 0, , 0, ,
i i i i i i i i i

i i i i i i

S p t C R p t q t C R q t e t C R

i f f C

α β γ δ

β γ α γ α δ

∈ > ∈ ≤ ∈ ≥

+ + > = ∈ × +∞ +∞
 

In recent years, singular boundary value problems to second ordinary differential equations have been studied 
extensively (see [1]-[3]). Some classical tools have been used in the literature to study the positive solutions for 
second order singular boundary value problems of a coupled system of differential equations. These classical 
methods include some fixed point theorems in cones for completely continuous operators and Schauder fixed 
point theorem, for example, see [4]-[6] and literatures therein. Motivated by the recent work on coupled systems 
of second-order differential equations, we consider the existence of singular boundary value problem. By means 
of the Schauder fixed point theorem, we study the existence of positive solutions of coupled system (1.1). 

2. Preliminary 
We consider the scalar equation  

( )( ) ( ) ( ).p t u q t u e t′′− − =                               (2.1) 

with boundary conditions  

( ) ( ) ( ) ( )0 0 0,    1 1 0,u u u uα β γ δ′ ′− = + =                         (2.2) 

Suppose that u  is a positive solution of (2.1) and (2.2). Then  

( ) ( ) ( )1

0
, d .u t G t s e s s= ∫  

where ( ),G t s  can be written by  

( ) ( ) ( ) ( )
( ) ( ) ( )

1

2

, , ,1, :
, , .

m t n s t s Q
G t s

m s n t t s Qω
 ∈=  ∈

 

here [ ]0,1I = , Q I I= ×  and ( ){ }1 , 0 1Q t s Q t s= ∈ ≤ ≤ ≤ , ( ){ }2 , 0 1Q t s Q s t= ∈ ≤ ≤ ≤ . 

Lemma 2.1. Suppose that ( )1S  holds, then the Green’s function ( ),G t s , defined by (2.3) possesses the 
following properties: 

1): ( ) ( )2 ,m t C I R∈  is increasing and ( ) ( ]> 0,  0,1m t x∈ . 
2): ( ) ( )2 ,m t C I R∈  is decreasing and ( ) [ )> 0,  0,1n t x∈ . 
3): ( )( ) ( ) ( )0,   0 ,  0Lm t m mβ α′≡ = = . 
4): ( )( ) ( ) ( )0,  1 ,  1Ln t n nδ γ′≡ = = − . 
5): ω  is a positive constant. Moreover, ( ) ( ) ( ) ( ) ( )( )p t m t n t m t n t ω′ ′− ≡ . 
6): ( ),G t s  is continuous and symmetrical over Q . 
7): ( ),G t s  has continuously partial derivative over 1Q , 2Q . 
8): For each fixed s I∈ , ( ),G t s  satisfies ( ), 0LG t s =  for s t≠ , t I∈ . Moreover, ( ) ( )1 2 0R G R G= =  

for ( )0,1s∈ . 
9): tG′  has discontinuous point of the first kind at t s=  and  

( ) ( ) ( ) ( )10, 0, ,     0,1 .t tG s s G s s s
p s

′ ′+ − − = − ∈  
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We define the function ( ) [ ]: 0,1i t Rγ →  by  

( ) ( ) ( )1

0
, d ,       1, 2,i i it G t s e s s iγ = =∫  

which is the unique solution of  

( ) ( )( ) ( ) ( ) ( )
( ) ( )
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i i i
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 ′′− − = < < =
 ′− =
 ′+ =

 

Following from Lemma 2.1  and ( )1S , it is easy to see that 

( ) ( ) [ ] [ ], 0,  for all  , 0,1 0,1 ,   1, 2iG t s t s i> ∈ × =  

Let us fix some notation to be used in the following: For a given function [ ]0,1h C∈ , we denote the essential 
supremum and infimum by h∗  and h∗ . if they exist. Let, ( )min ii t

tγ γ∗ = , ( )* maxi it
tγ γ= . 

3. Main Results 
1) 

1
0γ ∗ ≥ , 

2
0γ ∗ ≥ .  

Theorem 3.1. We assume that there exists 0ib ≥ , ˆ 0ib ≥ , and 0 1iα< <  such that  

( ) ( ) ( ) ( ) ( )1

ˆ
    , ,  for all  > 0,   . .  0,1 ,  1, 2

i i

i i
i

b t b t
H f t u u a e t i

u uα α≤ ≤ ∈ =  

If 
1

0γ ∗ ≥ , 
2

0γ ∗ ≥ , then there exists a positive solution of (1.1). 
Proof A positive solution of (1.1) is just a fixed point of the completely continuous map  
( ) ( ) [ ] [ ] [ ] [ ]1 2, , : 0,1 0,1 0,1 0,1A u v A u A v C C C C= × → ×  defined as  

( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

1 1
1 1 1 1 1 1 10 0

1 1
2 2 2 2 2 2 20 0

: , , d , , d ;

: , , d , , d ;

A u t G t s f s v s e s s G t s f s v s s t

A v t G t s f s u s e s s G t s f s u s s t

γ

γ

 = + = + 

 = + = + 

∫ ∫

∫ ∫
 

By a direct application of Schauder’s fixed point theorem, the proof is finished if we prove that A maps the 
closed convex set defined as  

( ) [ ] [ ] ( ) ( ) [ ]{ }1 1 2 2, 0,1 0,1 : , ,  for all  0,1K u v C C r u t R r v t R t= ∈ × ≤ ≤ ≤ ≤ ∈  

into itself, where 1 1 0R r> > , 2 2 0R r> >  are positive constants to be fixed properly. For convenience, we 
introduce the following notations  

( ) ( ) ( ) ( ) ( ) ( )1 1

0 0
ˆˆ, d ,   , d ,   1, 2.i i i i i it G t s b s s t G t s b s s iβ β= = =∫ ∫  

Given ( ),u v K∈ , by the nonnegative sign of iG  and if , 1, 2i =  we have  

( )( ) ( ) ( )( ) ( ) ( ) ( )
( )

( ) ( )
1 1 1

1 1 11 1
1 1 1 1 1 1 10 0 0

2 2

ˆ ˆ 1ˆ, , d , d , d
b s b s

A u t G t s f s v s s t G t s s G t s s
v s R Rα α αγ β ∗= + ≥ ≥ ≥∫ ∫ ∫  

Note for every ( ),u v K∈   

( )( ) ( ) ( )( ) ( ) ( ) ( )
( )

( ) ( )
1 1 1

1 1 11 1
1 1 1 1 1 1 1 1 1 10 0 0

2 2

1, , d , d , d
b s b s

A u t G t s f s v s s t G t s s G t s s
v s r rα α αγ γ γ β γ∗ ∗ ∗ ∗= + ≤ + ≤ + ≤ +∫ ∫ ∫  

Similarly, by the same strategy, we have  

( )( ) ( ) ( )( ) ( ) ( ) ( )
( )

( ) ( )
2 2 2

1 1 12 2
2 2 2 2 2 2 20 0 0

1 1

ˆ ˆ 1ˆ, , d , d , d
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Thus ( )1 2,A u A v K∈  if 1 2 1 2,  ,  ,  r r R R  are chosen so that  
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Note that ˆ 0
i

β ∗ > , 0
i

β ∗ >  and taking 1 2R R R= = , 1 2r r r= = , 1r
R

= , it is sufficient to find 1R >  such 
that  

1 1
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1
1 11

1
2 22
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R R R

R R R

α α

α α

β β γ

β β γ

∗
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⋅ ≥ ⋅ + ≤
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and these inequalities hold for R  big enough because 1iα < . 
2) 1 0γ ∗ ≤ , 2 0γ ∗ ≤ . 
The aim of this section is to show that the presence of a weak singular nonlinearity makes it possible to find 

positive solutions if 1 0γ ∗ ≤ , 2 0γ ∗ ≤ . 
Theorem 3.2. We assume that there exists 0ib ≥ , ˆ 0ib ≥ , and 0 1iα< <  such that ( )1H  is satisfied. If 

1 0γ ∗ ≤ , 2 0γ ∗ ≤  and 

( )

( )

1 2

1

1 2

2

1
1

1
1 21

1 22

1
1

2
1 22

1 21

ˆ 11 ,

ˆ 11 .

r

r

α α

α

α α

α

β
α α

α αβ

β
α α

α αβ

∗

∗

∗

∗

−

∗

−

∗

    ≥ ⋅ −      

    ≥ ⋅ −      

                          (3.1) 

then there exists a positive solution of (1.1). 
Proof In this case, to prove that :A K K→  it is sufficient to find 1 10 r R< < , 2 20 r R< <  such that  

1 1

1 1
1 11

2 2

ˆ
,     r R

R rα α

β β
γ

∗

∗

∗

+ ≥ ≤                                (3.2) 

2 2

2 2
2 22

1 1

ˆ
,     r R

R rα α

β β
γ

∗

∗

∗

+ ≥ ≤                               (3.3) 

If we fix 
1

1
1

2

R
rα
β ∗

= , 
2

2
2

1

R
rα
β ∗

= , then the first inequality of (3.3) holds if 2r  satisfies  

( ) 2 1 2
1 2 22 2

ˆ r r
α α αβ β γ∗ ∗

−∗ + ≥  

or equivalently  

( )
( )

1 2
2

2
2 2 22

1

ˆ
:g r r rα α

α

β
γ

β

∗

∗
∗

≥ = −  

The function ( )2g r  possesses a minimum at  

( )

1 2

2

1
1

2
20 1 2

1

ˆ
:r

α α

α

β
α α

β

∗

−

∗

 
 = ⋅
 
  

 

Taking 2 20r r= , then (3.3) holds if  
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−
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Taking 1 10r r= , 2 20r r= , then the first inequalities in (3.2) and (3.3) hold if ( )11
h rγ ∗ ≥  and ( )22

g rγ ∗ ≥ , 
which are just condition (3.1). The second inequalities hold directly from the choice of 1R  and 2R , so it  

remains to prove that 
1

1
1 10

20

R r
rα
β ∗

= > , 
2

2
2 20

10

R r
rα
β ∗

= >  This is easily verified through elementary computations:  

( ) ( )

( )

( )
( )

( )

( )

1 2

1 2 1 2

1 1 1 1
1 1 21 2 1 21 2

22

1 2

1

11
1 1

1 11 1 1
1 11

20 11 11 1 2 2 1 22 22 1 21 2
11

1
1

1

11 2 2

ˆˆ ˆˆ

1  
ˆ

R
r

α α
α α α α

α α α α
α α αα α α αα α

αα

α α

α

β ββ β β

α α ββ α α ββ α αα α
ββ

β
αα α β

∗∗ ∗∗

∗

+∗ ∗− −∗ ∗ ∗

−− −−

∗∗

−
∗

= = = = =
     ⋅  ⋅          ⋅⋅          

 
 = = 

⋅  
( ) ( ) ( )

1 2 1 2

1 1 1

1 1
1 1

1 1
1 2 10

2 22

ˆ
,

ˆ
r

α α α α

α α α

ββ
α α

α ββ

∗

∗

− −∗

∗

   
   ⋅ > ⋅ =   
     

 

since ˆ
ii

β β∗
∗≤ , 1, 2i =  Similarly, we have 2 20R r> . 

3) ( )2 11 2
0,  0  0, 0γ γ γ γ∗ ∗

∗ ∗≥ ≤ ≤ ≥  

Theorem 3.3. Assume that ( )1H  is satisfied. If 
1

0γ ∗ ≥ , 2 0γ ∗ ≤  and  

( )
1 2

21

21
212 2

1 1 21

ˆ rr
r

α α

αα
γ β

β γ
∗ ∗

∗ ∗
≥ − ⋅

+
                             (3.4) 

where 210 r< < +∞  is a unique positive solution of equation  

( ) 21 2 1
11

2 1 1 2 1 2 1 2
ˆr r

αα α αβ γ α α β β ∗

+− ∗ ∗ ∗+ ⋅ =                           (3.5) 

then there exists a positive solution of (1.1). 
Proof We follow the same strategy and notation as in the proof of ahead theorem. In this case, to prove that 
:A K K→ , it is sufficient to find 1 1r R< , 2 2r R<  such that  

1 2

1 2
1 2

2 1

ˆ
,     r R

R rα α

β β∗
∗

≥ ≤                                  (3.6) 
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2 1

2 1
2 1 12

1 2

ˆ
,    r R

R rα α

β β
γ γ

∗

∗

∗
∗+ ≥ + ≤                              (3.7) 

If we fix 
2

2
2

1

=R
rα
β ∗

, then the first inequality of (3.6) holds if 1r  satisfies  

( )
1 2

1

1
1 1

2

ˆ
,r rα α

α

β

β

∗

∗
⋅ ≥                                   (3.8) 

or equivalently  

( )

1 2

1

1
1

1
1

2

ˆ
0 r

α α

α

β

β

∗

−

∗

 
 < ≤
 
  

                                (3.9) 

If we chose 1 0r >  small enough, then (3.9) holds, and 2R  is big enough. 

If we fix 
1

1
1 1

2

R
rα
β

γ
∗

∗= +  then the first inequality of (3.7) holds if 2r  satisfies  

( )
1 2

2 2 2 21 1

1 1

2 2
2 2 2 22 2 2 2

1 1 1 1 2 1 1 2
1

2 2

ˆ 1 1ˆ ˆ ˆ ,
rr r r r

R r r
r r

α α

α α α αα α

α α

β
γ β β β

β β γ β γγ

∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗

≥ − = − ⋅ = − ⋅ = − ⋅
   + ⋅ + ⋅

+   
   

 

or equivalently  

( )
( )

1 2

21

2
2 22 2 * *

1 1 2

ˆ:
rf r r

r

α α

αα
γ β

β γ
∗ ∗≥ = − ⋅

+ ⋅
                        (3.10) 

According to  

( )
( )

( ) ( )

( )

2 21 2 1 1 2 1 1
21

1 2 1
1 2

2 11

11 1
2 1 2 2 1 1 2 2 2 1 1 2 1 1 222

1 1 2

1
1 2 2 12 2 1

1 2 1 2 1 1 22
1 1 21 1 2

1ˆ1   

ˆ
ˆ          1 1 1

f r r r r r r
r

r r r r
rr

α αα α α α α α α
αα

α α α
α α

α αα

β α α β γ α β γ α γ
β γ

β α α γ
α α β β β γ

β γβ γ

∗

∗

∗

−− −∗ ∗ ∗ ∗ ∗

∗ ∗

− ∗
−∗ ∗ ∗

∗ ∗∗ ∗

 ′ = − ⋅ + ⋅ − + ⋅  + ⋅

 
= − − = − + ⋅ + ⋅ + ⋅

( ) 21
1

,
αα − −

 

we have ( )0f ′ = −∞ , ( ) 1f ′ +∞ = , then there exists 21r  such that ( )21 0f r′ = , and  

( ) ( ) ( )

( )( )

21 2 1

21 2 1 1

12
2 1 2 1 1 2 2 1 1 22

21 1
1 2 1 2 2 1 1 2 1 1 22

ˆ 1

ˆ              1 0.

f r r r

r r r

αα α α

αα α α α

α α β β α α β γ

α α β β α β γ γ α

∗

∗

− −−∗ ∗ ∗

− −− −∗ ∗ ∗ ∗

′′ = − − + ⋅
+ − − + ⋅ >

 

Then the function ( )2f r  possesses a minimum at 21r , i.e., ( ) ( ) ( )
221 20,minrf r f r∈ +∞= .  

Note ( )21 0f r′ =  then we have  

( ) 21 2 1
11

1 2 1 21 1 1 212
ˆ1 0r r

αα α αα α β β β γ∗

− −−∗ ∗ ∗− + ⋅ =  

or equivalently  

( ) 21 2 1
11

21 1 1 21 1 2 1 2
ˆr r

αα α αβ γ α α β β ∗

+− ∗ ∗ ∗+ ⋅ =  

Taking 2 21r r= , then the first inequality in (3.7) holds if ( )212
f rγ ∗ ≥ , which is just condition (3.4). The 

second inequalities hold directly by the choice of 1R , and it would remain to prove that 21 2r R<  and 10 1r R< . 
These inequalities hold for 2R  big enough and 1r  small enough. 
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Remark 1. In theorem 3.3 the right-hand side of condition (3.4) always negative, this is equivalent to proof 
that ( )21 0f r < . This is obviously established through the proof of Theorem 3.3. 

Similarly, we have the following theorem. 
Theorem 3.4. Assume ( )1H  is satisfied. If 1 0γ ∗ ≤ , 

2
0γ ∗ ≥  and  

( )
1 2

12

11
111 1

2 2 11

ˆ ,
rr

r

α α

αα
γ β

β γ
∗ ∗

∗ ∗
≥ − ⋅

+
 

where 110 r< < +∞  is a unique positive solution of the equation  

( ) 11 2 2
11

1 2 2 1 1 2 2 1
ˆ ,r r

αα α αβ γ α α β β ∗

+− ∗ ∗ ∗+ =  

then there exists a positive solution of (1.1). 
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