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Abstract 

Let ( ),M F  be a compact Finsler manifold of hyperbolic type, and 

FM  be its universal Finsle-
rian covering. In this paper we show that the growth function of the volume of geodesic balls of 


FM  is of purely exponential type. 
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1. Introduction and Main Results 
A Finsler manifold ( ),M F  is called of hyperbolic type, if there exists on the manifold M a Riemannian metric 

0g  of strictly negative curvature such that F and 0g  are uniformly equivalent (cf. Definition 2.3). 
We say that a function :f + +→   is of purely exponential type if there exist constants 1a >  and 0 0r >  

such that 

( )
0

1 ,
ehr

f r
a r r

a
≤ ≤ ∀ ≥  

for some constant 0.h >  The real number h is called the exponential factor of f. In 1969, Margulis (see [1]) 
proved, for suitable constant 0h >  that 

( ) ( ),
: lim

ehrr

vol S p r
a p

→∞
=  

exists at each point p in manifolds of negative curvature and that the function a is continuous. 

http://www.scirp.org/journal/apm
http://dx.doi.org/10.4236/apm.2014.48050
http://dx.doi.org/10.4236/apm.2014.48050
http://www.scirp.org/
mailto:ogouyandjou@imsp-uac.org
http://creativecommons.org/licenses/by/4.0/


C. Ogouyandjou 
 

 
392 

Clearly, this result implies purely exponential growth of volume of geodesic spheres. In 1979, Manning in-
troduced a notion of volume entropy gh  of a compact Riemannian manifold ( ),M g  as follows (see [2]): if 

( )vol ,gB p r  denotes the volume of the geodesic ball ( ),gB p r  with centre p and radius r in the universal 
Riemannian covering X of ( ),M g , 

( )log vol ,
: lim ,g

g r

B p r
h

r→∞
=  

where the limit on the right hand side exists for all p X∈  and, in fact, is independent of p. 
Manning showed that, in the case of non-positive curvature, gh  coincides with the topological entropy. 
In 1997, using the notions of Busemann density and Patterson Sullivan measure, G. Knieper proved the fol-

lowing result (see [3]): 
If ( )0,M g  is a rank-1 compact Riemannian manifold of non-positive curvature and 0X  its universal Rie-

mannian covering, there exist constants 0 1a ≥  and 0 0r ≥  such that 

( )
0

0
0 0

0

vol ,1 .
e g

g
h r

S p r
a r r

a
≤ ≤ ∀ ≥  

Let ( ),M g  be a compact Riemannian manifold of hyperbolic type without conjugate points, and X be its 
universal Riemannian covering. In 2005, we show that the growth function of the volume of geodesic spheres of 
X is of purely exponential type with the volume entropy gh  as exponential factor (see [4]). 

The main result of this paper is the following: 
Theorem 1.1. Let ( ),M F  be a compact Finsler manifold of hyperbolic type and FM  be its universal Fin-

slerian covering (cf. Definition 2.3). Let ( )h F  be the volume entropy of F (cf. Definition 2.1). Then, the 
growth function of the geodesic balls of FM  is of purely exponential type with ( )h F  as exponential factor. 

Theorem 1.1 implies the following Corollary: 
Corollary 1.2. Let ( ),M F  be a compact Finsler manifold of hyperbolic type and FM  be its universal 

Finslerian covering. Then, the critical exponent Fα  (cf. Definition 4.2) of the group of the Deck transforma-
tions of FM  is equal to the volume entropy ( )h F  of ( ),M F . 

However, from Theorem 1.1, since all compact orientable surfaces of genus greater than one admits a metric 
0g  of strictly negative curvature, we deduce the following properties: 
Corollary 1.3. Let M be a compact orientable surface of genus greater than one, F a Finsler metric on M and 
FM  be its universal Finslerian covering. Then, the growth function of the geodesic balls of FM  is of purely 

exponential type with ( )h F  as exponential factor. 
The paper is organized as follows: in Section 2, we recall some basic facts about the volume entropy of a 

compact Finsler manifold. Section 3 is devoted to the ideal boundary and the Gromov boundary of the universal 
Finslerian covering of a Finsler manifold of hyperbolic type. In Section 4, we introduce a notion of quasi-convex 
cocompact group and we provide the proof of the Theorem 1.1. 

2. The Volume Entropy of a Finsler Manifold of Hyperbolic Type 
In this section, we briefly recall some notions from Finsler geometry; see [5] or [6] and the references therein for 
more details. Let M be a manifold and denote by :TM Mπ →  the natural projection of TM into M. A Finsler 
structure of M is a function 

[ ): 0;F TM → +∞  

with the following properties: 
1) F  is C∞  on the slit tangent bundle { }\ 0TM ; 
2) ( ) ( ), ,F x y F x yλ λ=  for all 0λ > ; 
3) The n n×  Hessian matrix 

( ) 21:
2 i j

ij
y y

g F
  =      

 

is positive definite at every point of { }\ 0TM . 
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Note that any Riemannian manifold ( ),M g  is a Finsler manifold with .gF =  Let [ ]: ,a b Mσ →  be a  

piecewise C∞  curve with velocity ( )
d d
d d

i

t Mi T
t t x σ
σ σ ∂
= ∈

∂
. Its length ( ) d, d

d
b

F a
l F t

t
σσ σ =  

 ∫ . For p  and  

x M∈ , denote by ( ),C p x∞  the collection of all piecewise C∞  curves [ ]: ,a b Mσ →  with ( )a pσ =  and 
( )b xσ = . Define the metric distance from p to x by 

( )
( )

( )
,

, inf .F F
C p x

d p x l
σ

γ
∞∈

=  

Note that if F is typically positively homogeneous (of degree 1) the distance Fd  is non-symmetric. 
We say that the Finsler structure F is absolute homogeneous is 

( ) ( ), , for all .F x y F x yλ λ λ= ∈  

In this case, the distance Fd  is symmetric. Let denote by ( ) ( ){ }, : ,F FB p r x M d p x r+ = ∈ <  and  
( ) ( ){ }, : ,F FB p r x M d x p r− = ∈ < . Every Finsler manifold comes with a natural volume form, which is de-

scribed as follows: 
Fix an arbitrary Riemannian metric g on M and let gdv  be its volume form. Denote by ( ),1gB x  and 
( ),1FB F x+  the units balls of radius 1 with respect to g and F respectively, and let ( )vol ,1g gB x  and ( )vol ,1g FB x+  

be their volume with respect to g. 
The Finsler form is given by 

( ) ( )
( )

vol ,1
,

vol ,1
g g

g
g F

B x
dF x dv

B x+=  

which is independant of the choice of the Riemannian metric g. 
Definition 2.1. Let ( ),M F  be a compact Finsler manifold and FM  its universal Finslerian covering. The 

volume entropy of F is defined by: 

( ) ( )log vol ,
lim .g F

r

B x r
h F

r

+

→∞
=  

Definition 2.2. Let ( ),M F  be a Finsler manifold. 
1) A piecewise C∞  curve [ ]: ,c a b M→  satisfying ( ) 1F c =  is said to be minimal if 

 ( ) ( ) ( )( ),F Fl c d c a c b= . 
2) A curve [ ): 0,c M∞ →  is called a forward ray if [ ],a bc  is minimal for all [ ] [ ), 0,a b ⊂ ∞ . 
3) A curve ( ]: ,0c M∞ →  is called a backward ray if [ ],a bc  is minimal for all [ ] ( ], ,0a b ⊂ ∞ . 

4) A curve :c M→  is called a minimal geodesic if [ ],a bc  is minimal for all [ ],a b ⊂  . 
Definition 2.3. Let ( ),M F  be a Finsler manifold M. We say that F is uniformly equivalent to a Riemannian 

metric g, if there is a constant Fc  such that 
1 .F
F

F c F
c

⋅ ≤ ⋅ ≤ ⋅  

Let :p M M→  be the universal covering of M. Using the map p, we pull the Finsler structure F back to 
M . The resulting F defines on \TM 0  a Finsler structure. We denote by FM  the Finsler manifold ( ),M F  . 

FM  is the universal Finslerian covering of the Finsler manifold ( ),M F  
Let ( )FIso MΓ ⊂   be the group of deck transformations. We say that F is invariant under Γ  if 

( )( ) ( ) , .F d pv v F v v TMτ τ= ∀ ∈ ∈Γ  

Remark 2.4. Note that if M is compact manifold and F is invariant under the deck transformation Γ  then F 
and g are uniform equivalence. 

3. Ideal and Gromov Boundaries of Finsler Manifolds of Hyperbolic Type 
The following theorem is fundamental for the study of the ideal boundary of Finsler manifolds of hyperbolic 
type. It was proved by Morse in dimension 2 and by Klingenberg in arbitrary dimensions. The fact that the 
Morse Lemma also holds in Finsler case was first observed by E. M. Zaustinsky (see [7]). Due to Klingenberg 
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(see [8]), the Morse Lemma holds in any dimension. 
Theorem 3.1. (Morse Lemma, cf. [9]) Let ( ),M F  be a Finsler manifold of hyperbolic type and g0 be a me-

tric of strictly negative curvature on M such that F and g0 are uniformly equivalent and M  be the universal 
covering of M. Then there is a constant ( )0 0 0, 0r r F g= >  with the following properties. 

1) for any two points x and y M∈  , the g0-geodesic-segment ( )
0

: 0, ,gd x y Mγ   → 
  from x to y and any 

F-minimal segment ( ): 0, ,Fc d x y M→     from x to y we have 

( )
( ) ( )( )( )0 0 00, ,

max 0, , , .
F

g gt d x y
d d x y c t rγ

∈  

  ≤   

2) If [ ): 0,c M∞ →   is a F-forward ray, then there exists a g0-ray [ ): 0, Mγ ∞ →   such that 

[ )
[ ) ( )( )( )0 0

0,
0, , .sup g

t
d c t rγ

∈ ∞
∞ ≤  

These properties stay hold for F-backward rays and F-minimal geodesics. 
Now let ( ),M F  be a compact Finsler manifold of hyperbolic type and FM  be its universal Finslerian 

covering. Let g0 denote an associated metric of strictly negative curvature on M. Note that the universal Rie-
mannian covering 0M  of ( )0,M g  is a Hadamard manifold and let denote by ( )0M ∞  its ideal boundary. 
Two F-forward rays c and c′  are said to be asymptotic if there exists a constant 0D ≥  such that  

( ) ( )( ),Hd c c D+ +′ ≤  , where dH is the Hausdorff distance with respect to the distance dF. This defines an 
equivalence relation on the set of F-forward rays of FM . Let ( )FM ∞  be the coset of asymptotic F-forward 
rays c of FM . For each F-forward ray c of FM , it follows from Morse Lemma that there exists a g0-geodesic 
ray γ  such that ( ) ( )( ),Hd c Dγ+ + ≤  , where D is the constant in Morse Lemma. Let [ ]c  be the equiva-
lence class of a F-forward ray c and let [ ]γ  the equivalence class of the g0-geodesic γ . The map f defined by 

( ) ( )
[ ] [ ]

0: Ff M M

c γ

∞ → ∞ 



 

is bijective. Then f defines on ( )FM ∞  a natural topology with respect to which ( )FM ∞  and ( )0M ∞  are 
homeomorphic ( ) ( )( )0FM M∞ ∞ 

 . 
Let recall now some basic facts about Gromov hyperbolic spaces. Let ( ),X d  be a metric space with a ref-

erence point x0. The Gromov product of the points x and y of X with respect to x0 is the nonnegative real number 
( )

0xx y⋅  defined by: 

( ) ( ) ( ) ( ){ }
0 0 0

1 , , , .
2xx y d x x d y x d x y⋅ = + −  

Let 0δ ≥ . A metric space ( ),X d  is said to be a δ -hyperbolic space if 

( ) ( ) ( ){ }
0 0 0

min ;x x xx y x z y z δ⋅ ≥ ⋅ ⋅ −  

for all x, y, z and every choice of reference point x0. We call X a Gromov hyperbolic space if it is a δ-hyperbolic 
space for some 0δ ≥ . The usual hyperbolic space n  is a δ-hyperbolic space, where log3δ = . More gener-
ally, every Hadamard manifold with sectional curvature 2k≤ −  for some constant 0k >  is a δ-hyperbolic 
space, where 1 log3kδ −=  (see [10] or [11]). 

Lemma 3.2. (see [11] or [12]) Let ( ),X d  be a complete geodesic δ-hyperbolic space, x0 a reference point 
in X, x and y two points of X. Then 

( ) ( ) ( )
00 0, 4 ,xy xyxd x x y d xγ δ γ− ≤ ⋅ ≤  

for every geodesic segment xyγ  joining x and y. 
Definition 3.3. A function :f →   is called k-convex if for all ,x y∈ , and [ ]0,1t∈ , 

( )( ) ( ) ( ) ( )1 1 .f tx t y tf x t f y k+ − ≤ + − +  

Proposition 3.4. (see [11] or [12]) Let ( ),X d  be a δ-hyperbolic geodesic space and 1 2, :c c X→  two 
minimizing geodesics. The function 
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( ) ( )( )1 2

:

,

f
t d c t c t
→



 
 

is 4δ-convex. 
Definition 3.5. Let ( )1 1,X d  and ( )2 2,X d  be two metric spaces. A map 1 2: X XΦ →  is called a quasi- 

isometric map, if there exist constants 1A >  and 0α >  with: 

( ) ( ) ( )( ) ( )1 2 1 1
1 , , , , .d x y d x y Ad x y x y X
A

α α− ≤ Φ Φ ≤ + ∀ ∈  

In a metric space X, a quasi-geodesic (resp. quasi-geodesic ray) is a quasi-isometric map : XΦ →  (resp. 
: X+Φ → ). 
Lemma 3.6. (see [11]) Let 1X  be a metric space and ( )2 2,X d  be a geodesic Gromov hyperbolic space. If 

there exists a quasi-isometric map 1 2: X XΦ → , then 1X  is also a Gromov hyperbolic space. 
Now let X be a Gromov hyperbolic manifold, 0x  a reference point in X. We say that the sequence ( )i i N

x
∈

 
of points in X converges at infinity if 

( )
0,

lim .i j xi j
x x

→∞
⋅ = ∞  

If 1x  is another reference point in X, 

( ) ( ) ( ) ( ) ( )
0 1 00 1 0 1, , .x x xx y d x x x y x y d x x⋅ − ≤ ⋅ ≤ ⋅ +  

Then the definition of the sequence that converges at infinity does not depend on the choice of the reference 
point. Let us recall the following equivalence relation   on the set of sequences of points in X that converge 
at infinity: 

( ) ( ) ( )
0,

lim .i j i j xi j
x y x y

→∞
⇔ ⋅ = ∞  

The Gromov boundary ( )GX ∞  of X is the coset of sequences that converge at infinity. 
Let X be a simply connected manifold which is a Gromov hyperbolic space. One defines on the set 

( )GX X ∞  a topology as follows (see [11] page 22): 
1) if x X∈ , a sequence ( )i i N

x
∈

 converges to x with respect to the topology of X. 
2) if ( )i i N

x
∈

 defines a point ( ) ,GXξ ∈ ∞  ( )i i N
x

∈
 converges to .ξ  

3) For ( )GXη ∈ ∞  and 0,k >  let 

( ) ( ) ( ){ }
0

: ,G
k xV y X X y kη η= ∈ ∞ ⋅ >  

where 

( ) ( ){ }0 0
inf liminf ,i i i ix xi

x y x y x x y y
→∞

⋅ = ⋅ → →  

for x and y elements of ( ).GX X ∞  
The set of all ( )kV η  and the open metric balls of X generate a topology on ( ).GX X ∞  With respect to 

this topology, X is dense in ( )GX X ∞  and ( )GX X ∞  is compact. 
Lemma 3.7. (see [13]) Let X be a δ-hyperbolic space. Then 
1) Each geodesic : Xγ →  defines two distinct points at infinity ( )γ +∞  and ( ).γ −∞  
2) For each ( ) ( ), Gx X Xη ∈ ∞ × , there exists a geodesic ray γ  such that ( )0 xγ =  and ( ) .γ η+∞ =  For 

any other geodesic ray γ ′  with ( )0 xγ ′ =  and ( )γ η′ +∞ =  we have ( ) ( )( ), 4d t tγ γ δ′ ≤  for all 0.t ≥  
Definition 3.8. Let ( )GXξ ∈ ∞  and :c X+ →  be a minimal geodesic ray satisfying ( ) .c ξ+∞ =  The 

function 

( ) ( )( )( ): lim ,c t
b x d x c t t

→∞
= −  

is well-defined on X and is called the Busemann function for the geodesic c. 
Lemma 3.9. (see [13]) Let X be a δ-hyperbolic space, ( ) , ,GX x y Xξ ∈ ∞ ∈  and c a geodesic ray with 
( )0c x=  and ( )c ξ+∞ = . Then there exists a neighbourhood   of ξ  in ( )GX X ∞  such that 
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( ) ( ) ( )( ), , for all ,cb y d z y d z x K z X− − ≤ ∈   

where cb  is the busemann function for the geodesic c and K is a constant depending only on .δ  
Lemma 3.10. (see [11]) Let 1X  be a metric space and ( )2 2,X d  be a geodesic Gromov hyperbolic space. If 

there exists a quasi-isometric map 1 2: X Xφ → , then 1X  is also a Gromov hyperbolic space. Moreover, if the 
map 

( )( )2 1,x d x Xφ  

is bounded above, ( ) ( )1 2
G GX X∞ ∞  i.e. ( )1

GX ∞  is homeomorphic to ( )2 .GX ∞  
The following lemma give an homeomorphism between the ideal boundary and the Gromov hyperbolic 

boundary of Hadamard manifolds: 
Lemma 3.11. (see [14]) Let X0 be a Hadamard manifold with sectional curvature 

0

2
0 0XK k≤ − <  for some 

constant 0 0.k >  There exists a natural homeomorphism 

( ) ( )0 0 0 0: .GX X X Xφ ∞ → ∞   

In particular, ( ) ( )0 0 .GX X∞ ∞  
Using Morse Lemma, (see Lemma 3.11) and the properties of the ideal boundaries, we obtain the following 

lemma: 
Lemma 3.12. Let ( ),M F  be a compact Finsler manifold of hyperbolic type and FM  be its universal Fin-

slerian covering. Let g0 be an associated metric of strictly negative curvature on M and 0M  be the universal 
Riemannian covering of ( )0, .M g  We have 

( ) ( ) ( ) ( )0 0 .G G
F FM M M M∞ ∞ ∞ ∞   

    

Proof. Since 0M  is a Hadamard manifold 
0

2
0 0MK k≤ − <



 for some constant 0 0k > , it is a Gromov hyper-
bolic manifold and ( ) ( )0 0

GM M∞ ∞ 

  (see Lemma 3.11). On the other hand, the fact that F is uniformly equiv-
alent to a Riemannian metric g0 implies that FM  is also a Gromov hyperbolic space and ( ) ( )0

G G
FM M∞ ∞ 

  
(see Lemma 3.10). Finally, using the construction of the ideal boundary of FM , we have ( ) ( )0FM M∞ ∞ 

 . □ 

4. The Growth Rate of the Volume of Balls in Finsler Manifolds of Hyperbolic Type 
Definition 4.1. Let X be a Gromov hyperbolic manifold with reference point 0x  and Γ  be a discrete and 
infinite subgroup of the isometry group ( )Iso X  of X . For a given point x X∈ , the limit set ( ), xΛ Γ  is the 
set of the accumulation points of the orbit xΓ  in ( )GX ∞ . 

Definition 4.2. Let ( ),X d  be a metric space and Γ  be a discrete and infinite subgroup of the isometry 
group ( )Iso X  of X. For 0 ,x x X∈  and s∈ , 

( ) ( )0,
0, : e sd x x

sP x x γ

γ

−

∈Γ

= ∑  

denotes the Poincaré series associated to Γ . The number 

( ){ }0: inf ; ,ss P x xα = ∈ < ∞  

is called the critical exponent of Γ  and is independent of x and 0x . The subgroup Γ  is called of divergence 
type if the Poincaré series diverge for s α= . The following lemma introduces a useful modification (due to 
Patterson) of the Poincaré series if Γ  is not of divergence type. 

Lemma 4.3. (see [15]) Let Γ  be a discrete group with critical exponent α . There exists a function 
:f + +→   which is continuous, nondecreasing and such that 

( )
( )

for all 0, lim 1
r

f r a
a

f r→+∞

+
> =  

and the modified series 

( ) ( )( ) ( )0,
0 0, : , e d x x

sP x x f d x x γ

γ
γ −

∈Γ

= ∑  
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converges for s α>  and diverges for s α≤ . 
Let now ( ),M F  be a compact Finsler manifold of hyperbolic type, and FM  be its universal Finslerian 

covering. Let g0 denote a metric of strictly negative curvature on M. The universal covering 0M  of ( )0,M g  
is a Hadamard manifold satisfying 

0

2
0 0MK k≤ − <



 for some constant 0 0k > . 
Let Γ  be the group of deck transformations of M  and 0gα  be its critical exponent with respect to the 

metric 0g . It follows from Theorem 5.1 in [3] that: 

( )
( )

0 00
0

log vol ,
: lim .g gg

r

B x r
h g

r
α

→∞
= =  

The fact that M is compact implies the existence of a constant 1λ ≥  such that 

( ) ( ) ( )
0 0

1 , , , for all , .g F gd x y d x y d x y x y Mλ λ− ≤ ≤ ∈   

Then, the critical exponent Fα  of Γ  with respect to the metric dF belongs to ( ) ( )1 *
0 0,h g h gλ λ−

+  ⊂   . 
Lemma 4.4. Let ( ),M F  be a compact Finsler manifold of hyperbolic type, FM  be its universal Finslerian 

covering and Γ  be the group of deck transformations of M . Then 
1) ( ) ( ),F G

Fx x MΛ Γ = Γ ∞

 . 

2) ( )( ) ( ), ,F Fx xγ Λ Γ = Λ Γ  for all γ ∈Γ  and x M∈  . 

3) ( ),F xΛ Γ  is independent of x . 
4) ( ) ( ),F G

Fx MΛ Γ = ∞ . 
Proof of Lemma 4.4.  
1) Direct because ( ), \F x x xΛ Γ = Γ Γ  and x MΓ ⊂  . 
2) Let ( ),F xξ ∈Λ Γ . There exists a sequence nγ ∈Γ  such that lim .n n xγ ξ→∞ =  Then lim .n n xγ γ γξ→∞ ⋅ =  
3) For all ( ),F xξ ∈Λ Γ , by the definition there is a sequence ( )n n

γ  of points of Γ  such that  
limn n xγ ξ→∞ = . Then 

( ) ( ) ( ) ( )
0 0 0, ,

lim lim , , , .n m F n F m F n mxm n m n
x x d x x d x x d x xγ γ γ γ γ γ

→∞ →∞
 ⋅ = + − = +∞   

For all y M∈  , we have: 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

0 0 0

0 0

0

2 , , ,

, , ,

, ,

n n F n F n F n nx

F n F n F

F n F

x y d x x d y x d x y

d x x d y x d x y

d x x d x y

γ γ γ γ γ γ

γ γ

γ

⋅ = + −

= + −

≥ −

 

Hence, 

( )
0

lim and lim .n n nxn n
x y yγ γ γ ξ

→∞ →∞
⋅ = +∞ = +  

then ( ),F yξ ∈Λ Γ . 
4) Let g0 denotes a metric of strictly negative curvature on M. The universal Riemannian covering 0M  of  

( )0,M g  is a Hadamard manifold satisfying 2
0 0 0M k

K
≤− <

 for some constant 0 0k > . Then ( ) ( )0
0,g x MΛ Γ = ∞   

(see [3]). Since Γ  is cocompact, the identity map 0: FI M M→   defines a homeomorphism  
( ) ( )*

0: G G
FI M M∞ → ∞   (see Lemma 3.12). Let ( )G

FMξ ∈ ∞  and ( )0
GMη∈ ∞  such that ( )*Iξ η= . The fact  

that ( ) ( )0
0

gGM ∞ = Λ Λ , there is a sequence ( )n n
γ  in Γ  and Fy M∈   such that the sequence ( )n n

yγ  con-
verges to η  in ( )0

GM M ∞ 

 . Then ( ) ( )n nn n
I y yγ γ=  concerges to ( )*I η ξ=  in ( )G

F FM M ∞ 

 .       □ 
Let now ( ),X g  be a Gromov hyperbolic manifold, and Γ  be a non trivial subgroup of ( )Iso X  and the 

limit set ( ),g xΛ Γ  of the orbit xΓ  in ( )GX ∞ . 
The gromov hull ( )( ),gE xΛ Γ  of ( ),g xΛ Γ  is the subset of X defined by the collection of the images of 

the geodesics Xc →:  satisfying ( ) ( ),gc x−∞ ∈Λ Γ  and ( ) ( ),gc x+∞ ∈Λ Γ . 
Definition 4.5. A non trivial subgroup Γ  of the isometry group ( )Iso X  is quasi-convex cocompact if 

( )( ), \gE xΛ Γ Γ  is compact. 
The following lemma is due to Coornaert (see [13]). 
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Lemma 4.6. Let ( ),X g  be a Gromov hyperbolic manifold with reference point 0x , and Γ  be a quasi- 
convex cocompact subgroup of the isometry group ( )Iso X  with critical exponent gα . Then, for all x X∈ , 
there is a constant 1xC ≥  such that: 

( )1 e e
g gr r

x x
x

n r C
C

α α
Γ≤ ≤  

for all 0r ≥ , where 

( ) ( ){ }0: ; , .xn r card x x d x x rγ γΓ = ∈Γ ≤  

Proof of Theorem 1.1. By Lemma 4.4, we have ( ) ( ),F G
Fx MΛ Γ = ∞ . Then, the Gromov hull ( )( ),FE xΛ Γ  

of ( ),F xΛ Γ  is equal to FM . This implies that Γ  is a quasi-convex cocompact subgroup of ( )FIso M . 
For an orbit xΓ  of Γ  in FM  we consider the map rK  defined by: 

:
1 if 0
0 if

rK
x r

x
x r

+ +→

≤ ≤
 >



 
 

Let   be a fundamental domain of Γ  in FM . We have: 

( )( ) ( )( ) ( )
( )( ) ( )

( )( ) ( )

( )( )

( ) ( )

0 0

0

0

0

vol , , vol

, vol

, vol

, vol ( )

vol .

F F r F FM

r F F

r F F

r F F

x F

B x r K d x x d x

K d x x d x

K d x x d x

K d x x d x

n r d x

γ
γ

γ

γ

γ

+

∈Γ

∈Γ

∈Γ

Γ

=

=

=

=

=

∫
∑∫

∑∫

∑∫

∫











 

Let now 1x  be a fixed point in   and put D diam=  . For all γ ∈Γ , and x∈ , we have: 

( ) ( )0 1 0, ,F Fd x x r d x x r Dγ γ≤ ⇒ ≤ +  

and for r D≥ , 

( ) ( )1 0 0, , .F Fd x x r D d x x rγ γ≤ − ⇒ ≤  

Then, 

( ) ( ) ( )
1 1

for all and .x x xn r D n r n r D x r DΓ Γ Γ− ≤ ≤ + ∈ ≥  

By Lemma 4.6, there is a constant 
1

1xC ≥  such that: 

( ) ( ) ( )
1

1

1 e e
F Fr D r D

x x
x

n r C
C

α α− +
Γ≤ ≤  

for all r D≥  and x∈ . Then, there exist constants 1 1a >  and 1 :r D=  such that: 

( )( )0
1 1

1

,1 for all .
e

F

F F

r

vol B x r
a r r

a α

+

≤ ≤ ≥                             □ 
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