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Abstract 
Image analysis and computer vision are interested in suitable methods to solve the nonlinear eq-
uations. Coordinate x  for ( ) 0f x =  is crucial because each equation can be transformed into 

( ) 0f x = . A novel method of Hurwitz-Radon Matrices (MHR) can be used in approximation of a 
root of function in the plane. The paper contains a way of data approximation via MHR method to 
solve any equation. Proposed method is based on the family of Hurwitz-Radon (HR) matrices. The 
matrices are skew-symmetric and possess columns composed of orthogonal vectors. The operator 
of Hurwitz-Radon (OHR), built from these matrices, is described. Two-dimensional data are re- 
presented by discrete set of curve f  points. It is shown how to create the orthogonal OHR oper-
ator and how to use it in a process of data interpolation. MHR method is interpolating the curve 
point by point without using any formula or function. 
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1. Introduction 
A significant problem in computer vision and image analysis [1] is to solve any nonlinear equation 
( ) ( ) g x h x= . This means the issue of approximation x  in equation ( ) 0f x =  where f g h= − . Two-di- 

mensional data can be treated as points on the curve. Many numerical methods for nonlinear equations are 
known as iterative methods: bisection, regula falsi, Newton’s method (also called as the Newton-Raphson me-
thod), Steffensen’s method, Brent’s method, Broyden’s method, fixed-point iterations, inverse interpolation and 
the secant method [2]. These methods can be used for any function, but sometimes there are troubles. For exam-
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ple in Newton’s method we may find difficulties in calculating derivative of a function or troubles with bad 
starting point of iteration. Generally iterative methods need many assumptions about function (monotonicity, 
convexity, derivative, starting point). Some methods are used only for polynomials (Muller’s, Laguerre’s, Bair- 
stow’s, Jenkins-Traub’s methods). Nonlinear systems are still opened for researchers [3]. 

This paper is dealing with novel method of root’s approximation by using a family of Hurwitz-Radon matric-
es. Method of Hurwitz-Radon Matrices (MHR) does not need any assumption about function. The only informa-
tion about curve is the set of at least five interpolation nodes and a zero of the function between two of them. 
Proposed method of Hurwitz-Radon Matrices (MHR) is used in data interpolation and then calculations to solve 
the nonlinear equation are introduced. MHR connects two significant problems in mathematics and computer 
sciences: interpolation of the function and the solution of nonlinear equation [4]. MHR method uses two-di- 
mensional data for knowledge representation [5] and computational foundations [6]. Also medicine [7], industry 
and manufacturing are looking for the methods connected with geometry of the curves [8]. So suitable data re-
presentation and precise solving of any equation [9] are the key factors in many applications of artificial intelli-
gence and numerical methods [10]. 

2. Assumptions for the Solution 
Each nonlinear equation is represented by ( ) 0f x =  and succeeding points ( ) 2,i ix y R∈  of function f  (in-
terpolation nodes) as follows in proposed MHR method: 

1. first node ( )1 1,x y  and last node ( ),L Lx y  must fulfill a condition 1 0Ly y⋅ < ; 
2. at least three nodes ( ) ( ) ( )2 2 3 3 4 4, , , , ,x y x y x y , for example equidistant between first and last node, have to 

be calculated (for 5L = ) if MHR method is used with matrices of dimension 2N = . 
Condition 1 is well known in numerical methods for existing a zero of the function. Condition 2 is connected 

with important features of MHR method: MHR version with matrices of dimension 2N =  (called MHR-2) 
needs at least five nodes (for 5L = ), MHR version with matrices of dimension 4N =  (called MHR-4) needs 
at least nine nodes (for 9L = ) and MHR version with matrices of dimension 8N =  (called MHR-8) needs at 
least 17 nodes (for 17L = ). 

Figure 1 presents the graph of function ( ) 3 2 1f x x x x= + − +  with nodes: first ( ) ( )2; 1 , 1.75;  0.453125 ,− − −  
( ) ( )1.5;1.375 , 1.25;1.859375− −  and last ( )1;2− . All five nodes are applied in MHR calculations, but a root of 
function is searched only between nodes ( )2; 1− −  and ( )1.75;0.453125− . The approximation of a zero point 
of the function is possible using novel MHR method. 

3. Reconstruction of the Graph Points 
The key question exists in many branches of science: is it possible to find a method of nonlinear equation solu-
tion without iterations of numerical methods [11]? This paper aims at giving the positive answer to this question. 
Method of Hurwitz-Radon Matrices (MHR), described in this paper, is computing points between two succes-
sive nodes for searching a root of the function. The curve or function in MHR method is parameterized for real 
number [ ]0;1α ∈  in the range of two successive interpolation nodes. 
 

 
Figure 1. Five nodes of function and a root between first and second node (MS Excel graph).       
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3.1. The Operator of Hurwitz-Radon  
Adolf Hurwitz (1859-1919) and Johann Radon (1887-1956) published the papers about specific class of matric-
es in 1923, working on the problem of quadratic forms. Matrices iA , 1, 2 ,i m=   satisfying 

20,    for   ;  ,  1, 2, ,j k k j jA A A A A I j k j k m+ = = − ≠ =   

are called a family of Hurwitz-Radon matrices. A family of Hurwitz-Radon (HR) matrices has important fea-
tures [12]: HR matrices are skew-symmetric ( )T

i iA A= −  and reverse matrices are easy to find ( )1
i iA A− = − . 

Only for dimension 2,4N =  or 8 the family of HR matrices consists of 1N −  matrices. For 2N =  there is 
one matrix: 

1

0 1
.

1 0
 

=  − 
A  

For 4N =  there are three HR matrices with integer entries: 

1 2 3

0 1 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 1 0 0 1 0

,   ,    .
0 0 0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 1 0 0 1 0 0 0

     
     − −     = = =
     − −
     

− −     

A  A A  

For 8N =  we have seven HR matrices with elements 0, ±1. So far HR matrices are applied in electronics 
[13]: in Space-Time Block Coding (STBC) and orthogonal design [14], also in signal processing [15] and Ha-
miltonian Neural Nets [16]. 

If one curve is described by a set of following points ( ){ }, , 1, 2, ,i ix y i n=   then HR matrices combined 
with the identity matrix IN are used to build the orthogonal and discrete Hurwitz-Radon Operator (OHR). For 
nodes ( )1 1,x y  and ( )2 2  ,x y  OHR M  of dimension 2N =  is constructed: 

1 1 2 2 2 1 1 2
2 2

1 2 2 1 1 1 2 21 2

1 x y x y x y x y
M

x y x y x y x yx x
+ − 

=  − ++  
.                             (1) 

For nodes ( ) ( ) ( )1 1 2 2 3 3, , , , ,x y x y x y  and ( )4 4,x y  OHR of dimension 4N =  is constructed: 

0 1 2 3

1 0 3 2
2 2 2 2

2 3 0 11 2 3 4

3 2 1 0

1
u u u u
u u u u

M
u u u ux x x x
u u u u

 
 − − =
 − −+ + +
 
− − 

                           (2) 

where 

0 1 1 2 2 3 3 4 4 1 1 2 2 1 3 4 4 3

2 1 3 2 4 3 1 4 2 3 1 4 2 3 3 2 4 1

,       ,
,     .

u x y x y x y x y u x y x y x y x y
u x y x y x y x y u x y x y x y x y

= + + + = − + + −

= − − + + = − + − +
 

For nodes ( ) ( )1 1 2 2, , , ,x y x y   and ( )8 8,x y  OHR of dimension 8N =  is built [17] similarly as (1) and 
(2): 

0 1 2 3 4 5 6 7

1 0 3 2 5 4 7 6

2 3 0 1 6 7 4 5

3 2 1 0 7 6 5 4
8

2 4 5 6 7 0 1 2 3

1 5 4 7 6 1 0 3 2

6 7 4 5 2 3 0 1

7 6 5 4 3 2 1 0

1

i
i

u u u u u u u u
u u u u u u u u
u u u u u u u u
u u u u u u u u

M
u u u u u u u ux
u u u u u u u u
u u u u u u u u
u u u u u u u u

=

 
 − − − − 
 − − − −
 
− − − − =  − − − −
 
− − − − 
 − − − − 
− − − −  

∑
                        (3) 
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where  

1 2 3 4 5 6 7 8 1

2 1 4 3 6 5 8 7 2

3 4 1 2 7 8 5 6 3

4 3 2 1 8 7 6 5 4

5 6 7 8 1 2 3 4 5

6 5 8 7 2 1 4 3 6

7 8 5 6 3 4 1 2 7

8 7 6 5 4 3 2 1

y y y y y y y y x
y y y y y y y y x
y y y y y y y y x
y y y y y y y y x

u
y y y y y y y y x
y y y y y y y y x
y y y y y y y y x
y y y y y y y y x

 
 − − − − 
 − − − −
 
− − − − = ⋅ − − − −
 
− − − − 
 − − − − 
− − − −   8

 
 
 
 
 
 
 
 
 
 
 
  

                     (4) 

The components of the vector ( )T
0 1 7, , ,u u u= u , appearing in the matrix M  (3), are defined by (4) in the  

similar way to (1) and (2) but in terms of the coordinates of the above 8 nodes. Note that OHR operators M  
(1)-(3) satisfy the condition of interpolation 

M ⋅ =x y                                   (5) 

For ( ) ( )T T
1 2 1 2, , , , ,   , , , , 2, 4N N

N Nx x x R y y y R N= ∈ ≠ = ∈ =0 x x y  or 8. 

3.2. Points Interpolation by MHR 
Key question looks as follows: how can we compute coordinates of points settled between the interpolation 
nodes [18]? The answer is connected with novel MHR method [19]. On a segment of a line every number “ c ” 
situated between “ a ” and “ b ” is described by a linear (convex) combination ( )  1c a bα α= ⋅ + − ⋅  for 

[ ]0;1 .b c
b a

α −
= ∈

−
                           (6) 

The average OHR operator 2M  of dimension 2,4N =  or 8 is constructed as follows: 

( )2 0 11M M Mα α= ⋅ + − ⋅                                  (7) 

with the operator 0M  built (1)-(3) by “odd” nodes ( ) ( ) ( )1 1 3 3 2 1 2 1, , , , , ,N Nx a y x y x y− −=   and 1M  built (1)-(3) 
by “even” nodes ( ) ( ) ( )2 2 4 4 2 2, , , , , ,N Nx b y x y x y=  . Having the operator 2M  it is possible to reconstruct the 
second coordinates of points ( ),x y  in terms of the vector C  defined with 

( )2 1 21 ,   1, 2, ,i i ic x x i Nα α−= ⋅ + − ⋅ =                      (8) 

as [ ]T1 2, , , NC c c c=  . The required formula is similar to (5): 

( ) 2Y C M C= ⋅                         (9) 

in which components of vector ( )Y C  give the second coordinate of the points ( ),x y  corresponding to the 
first coordinate, given in terms of components of the vector C . 

Calculations of unknown coordinates for curve points using (6)-(9) are called by author the method of Hur-
witz-Radon Matrices (MHR) [20]. Here is the application of MHR method (Figure 2) for function 
( ) 3 2 1f x x x x= + − +  with nodes as Figure 1 and computed 99 points between each pair of nodes 

( )0.01,0.02, ,0.99α =  . 
Solving the equation 3 2 1 0x x x+ − + =  via MHR interpolation, as it was said under Figure 1, we search a 

root of the function only between nodes ( )2; 1− −  and ( )1.75;0.453125− . Points calculated between other 
pairs of nodes are useless in the process of root approximation and they don’t have to be computed. Considering 
calculated points between nodes ( )2; 1− −  and ( )1.75;0.453125− , second coordinate is near zero at 
( )1.835;0.00184− . Solution of equation 3 2 1 0x x x+ − + =  via MHR-2 method is approximated by 

1.835x = − . True value is 1.839x = − . 
The same equation for nodes ( ) ( ) ( ) ( )2; 1 , 1.95; 0.662 , 1.9; 0.349 , 1.85; 0.059− − − − − − − −  and ( )1.8;0.208− , 

solved by MHR-2, gives better result 1.839x = − . So shorter distance between first and last node is of course  
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Figure 2. Function ( ) 3 2 1f x x x x= + − +  with 396 interpolated points using 
MHR-2 method.                                                    

 
very important feature. 

4. Nonlinear Equations Solved via MHR 
Example 1 
MHR calculations are done for function ( ) ( )3 ln 7f x x x= + −  with nodes: 

( ) ( ) ( ) ( )2; 5.803 , 1.75; 3.190 , 1.5; 1.235 , 1.25;0.1571− − − − − − −  and ( )1;1.0794− . So a root of this function is si-
tuated between 3rd and 4th node. MHR-2 interpolation gives the graph of function (Figure 3): 

Considering points between nodes ( )1.5; 1.235− −  and ( )  1.25;0.1571− , coordinate y is near zero at 
( )1.2825;0.00194− . Solution of equation ( )3 ln 7 0x x+ − =  via MHR method is approximated by 

1.2825x = − . True value is hardly approximated (even for MathCad) by 1.28347x = − . 
Example 2 
MHR calculations are completed for function ( ) 3 2 1f x x x= + −  with nodes: 

( ) ( ) ( ) ( )0; 1 , 0.25; 0.484 , 0.5;0.125 , 0.75;0.9219− −  and ( ) 1;2 . So a zero of this function is situated between 2nd 
and 3rd node. MHR-2 computes the graph of function (Figure 4). 

Considering points between nodes ( )0.25; 0.484−  and ( )0.5;0.125 , coordinate y is near zero at 
( )0.4625;0.00219 . Solution of equation 3 2 1 0x x+ − =  via MHR-2 is approximated by 0.4625x = . The only 
one real solution of this equation is 0.453x = . 

Now MHR calculations are done for the same equation 3 2 1 0x x+ − =  with seven nodes between ( )0; 1−  
and ( )1;2  for 0;  0.125;  0.25;  0.375;  0.5;  0.625;  0.75;  0.875ix =  and 1. The solution is approximated by 
MHR-4 method with nine nodes. MHR-4 interpolation gives the graph of function (Figure 5). 

Considering points between nodes ( )  0.375; 0.197−  and ( )0.5;0.125 , coordinate y is near zero at 
( )0.45625;0.00018 . Solution of equation 3 2 1 0x x+ − =  via MHR-4 is approximated by 0.45625x = . This is 
better result than MHR-2: greater number of nodes (with the same distance between first and last) means better 
approximation. And seventeen nodes in MHR-8 guarantee more precise results then MHR-4. 

Example 3 
MHR calculations are done for equation 3 2 0x− =  with nodes: ( ) ( ) ( ) ( )1;1 , 1.2;0.7026 , 1.4;0.361 , 1.6; 0.031−  

and ( )1.8; 0.482− . MHR-2 gives the graph of function (Figure 6). 
Considering points between nodes ( )1.4;0.361 and ( )1.6; 0.031− , second coordinate is near zero at 

( )1.586; 0.000311− . Solution of equation 3 2 0x− =  via MHR-2 method is approximated by 1.586x = . Pre- 
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Figure 3. Function ( ) ( )3 ln 7f x x x= + −  with 396 interpolated points using 
MHR-2.                                                         

 

 
Figure 4. Function ( ) 3 2 1f x x x= + −  with 396 interpolated points using 
MHR-2.                                                         

 
cise solution 2log 3x =  is approximated by 1.585. 

Interpolated values, calculated by MHR method, are applied in the process of solving the nonlinear equations. 
Shorter distance between first and last node or greater number of nodes guarantee better approximation. Ap-
proximated solutions of nonlinear equations are used in many branches of computer sciences. MHR joins two 
important problems: interpolation of the function with the solution of nonlinear equation. 

5. Conclusions 
The method of Hurwitz-Radon Matrices leads to curve interpolation [21] and approximation of nonlinear equa-
tion solution depending on the number and location of nodes. No characteristic features of function is important 
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Figure 5. Function ( ) 3 2 1f x x x= + −  with interpolated points using MHR- 
4 method with 9 nodes.                                              

 

 
Figure 6. Function ( ) 3 2xf x = −  with 396 interpolated points using MHR- 
2 method with 5 nodes.                                                 

 
in MHR method: polynomial or not, monotonicity, convexity, derivative, starting point. These features are very 
significant for iterative numerical methods. MHR method gives the possibility of reconstruction a curve and 
searching for a root of the function. The only condition is to have a set of nodes according to assumptions in 
MHR method. The features of MHR method: accuracy of the equation solution depends on the number of nodes 
and the distance between first and last node (MHR-4 is more precise than MHR-2 and MHR-8 is more precise 
than MHR-4); interpolation of a curve consists of L  points is connected with the computational cost of rank 
( )O L ; MHR is a well-conditioned method (orthogonal matrices); MHR is not an affine interpolation [22]. 
Future works are connected with: computing the interpolation error, implementation of MHR in object recog-

nition [23], MHR extrapolation method [24] and curve parameterization [25]. 
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