
Applied Mathematics, 2011, 2, 619-624 
doi:10.4236/am.2011.25082 Published Online May 2011 (http://www.SciRP.org/journal/am) 

Copyright © 2011 SciRes.                                                                                 AM 

A Problem of a Semi-Infinite Medium Subjected to  
Exponential Heating Using a Dual-Phase-Lag  

Thermoelastic Model 

Ahmed Elsayed Abouelregal 
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt 

E-mail: ahabogal@mans.edu.eg 
Received January 2, 2011; revised March 39, 2011; accepted April 2, 2011 

Abstract 
 
The problem of a semi-infinite medium subjected to thermal shock on its plane boundary is solved in the 
context of the dual-phase-lag thermoelastic model. The expressions for temperature, displacement and stress 
are presented. The governing equations are expressed in Laplace transform domain and solved in that do-
main. The solution of the problem in the physical domain is obtained by using a numerical method for the 
inversion of the Laplace transforms based on Fourier series expansions. The numerical estimates of the dis-
placement, temperature, stress and strain are obtained for a hypothetical material. The results obtained are 
presented graphically to show the effect phase-lag of the heat flux q  and a phase-lag of temperature gra-

dient   on displacement, temperature, stress. 
 
Keywords: Generalized Thermoelasticity, Dual-Phase-Lag Model, Semi-Infinite Medium, Laplace  

Transform 

1. Introduction 
 
Biot [1] (1956) introduced the theory of coupled ther-
moelasticity to overcome the first shortcoming in the 
classical uncoupled theory of thermoelasticity where it 
predicts two phenomena not compatible with physical 
observations. First, the equation of heat conduction of 
this theory does not contain any elastic terms. Second, 
the heat equation is of a parabolic type, predicting infi-
nite speeds of propagation for heat waves. The governing 
equations for Biot theory are coupled, eliminating the 
first paradox of the classical theory. However, both theo-
ries share the second shortcoming since the heat equation 
for the coupled theory is also parabolic. 

Thermoelasticity theories that predict a finite speed for 
the propagation of thermal signals have aroused much 
interest in the last three decades. These theories are 
known as generalized therrnoelasticity theories. The first 
generalizations of the thermoelasticity theory is due to 
Lord and Shulman [2] who introduced the theory of gen-
eralized thermoelasticity with one relaxation time by po- 
stulating a new law of heat conduction to replace the 
classical Fourier’ law. This law contains the heat flux 
vector as well as its time derivative. It contains also a 

new constant that acts as a relaxation time. The heat equ- 
ation of this theory is of the wave-type, ensuring finite 
speeds of propagation for heat and elastic waves. The re- 
maining governing equations for this theory, namely, the 
equations of motion and the constitutive relations remain 
the same as those for the coupled and the uncoupled 
theories. This theory was extended by Dhaliwal and She-
rief [3] to general anisotropic media in the presence of 
heat sources. 

A generalization of this inequality was proposed by 
Green and Laws [4] Green and Lindsay obtained another 
version of the constitutive equations in [5]. The theory of 
thermoelasticity without energy dissipation is another ge- 
neralized theory and was formulated by Green and Na-
ghdi [6]. It includes the thermal displacement gradient 
among its independent constitutive variables, and differs 
from the previous theories in that it does not accommo-
date dissipation of thermal energy. 

Tzou [7,8] proposed the dual-phase-lag (DPL) model, 
which describes the interactions between phonons and 
electrons on the microscopic level as retarding sources 
causing a delayed response on the macroscopic scale. For 
macroscopic formulation, it would be convenient to use 
the DPL mode for investigation of the micro-structural 
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effect on the behavior of heat transfer. The physical 
meanings and the applicability of the DPL mode have 
been supported by the experimental results [9]. The 
dual-phase-lag (DPL) proposed by Tzou [9] is such a 
modification of the classical thermoelastic model in 
which the Fourier law is replaced by an approximation to 
a modified Fourier law with tow different time transla- 
tions: a phase-lag of the heat flux q and a phase-lag of 
temperature gradient  . A Taylor series approximation 
of the modified Fourier law, together with the remaining 
field equations leads to a complete system of equations 
describing a dual-phase-lag thermoelastic model. The 
model transmits thermoelastic disturbance in a wave-like 
manner if the approximation is linear with respect to 

q and  , and 0 ≤   < q ; or quadratic in q  and 
linear in  , with q > 0 and   > 0. This theory is 
developed in a rational way to produce a fully consistent 
theory which is able to incorporate thermal pulse trans-
mission in a very logical manner. 

Danilovskaya [10] was the first to solve an actual 
problem in the theory of elasticity with nonuniform heat. 
The problem was for a half-space subjected to a thermal 
shock in the context of what became known as the theory 
of uncoupled thermoelasticity. Chandrasekharaiah and 
Srinath [11] studied the one dimensional thermal wave 
propagation in a half space based on the theory of ther-
moelasticity without energy dissipation due to a constant 
step in temperature applied to the boundary. Roychoud-
huri and Dutta [12] studied thermoelastic interactions in 
an isotropic homogeneous thermoelastic solid containing 
time-dependent distributed heat sources which vary pe-
riodically for a finite time interval in the context of 
Green and Naghdi theory. Sherief and Dhaliwal [13] 
solved a generalized one-dimensional thermal-shock 
problem for small times. Allam et al. [14] discussed 
magneto-thermoelasticity for an infinite body with a 
spherical cavity and variable material properties without 
energy dissipation. 

The present paper is organized as follows. Section 2 
describes the formulation of the problem and the gov-
erning equations. Section 3 discusses the Laplace trans- 
form technique and the solution in the transformed do-
main is obtained using a potential function. Section 4 
summarizes the inverse Laplace transforms using a nu-
merical method based on Fourier expansion techniques. 
The last section is devoted to the numerical example for 
finding the temperature, displacement and the stress. 
These distributions are also depicted graphical. 
 
2. Formulation of the Problem 
 
We shall consider a homogeneous, isotropic, thermoelas-
tic solid, occupying the region  where the 0x  x -axis 

is taken perpendicular to the bounding plane of the half- 
space pointing inwards. The boundary conditions for tem-
perature is in the form of exponential heating, a more 
realistic situation. It is assumed that the state of the me-
dium depends only on x  and t  and that the displace-
ment vector has components .   , , 0, 0tu x

The equation of motion in the absence of body forces 
in the one dimensional case has the form 
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The constitutive equation will take the following form 

 xx = +2 T
u

x
  


              (2) 

The Chandrasekharaiah and Tzou theory is such a mo- 
dified of classical thermoelasticity model in which the 
Fourier law is replaced by an approximation of the equa-
tion 

  qq x t K x t ,, T               (*) 

The model transmits thermoelastic disturbances in a 
wave-like manner if Equation (*) is approximated by 

1 1q q K T
t t ,
                

 

where 0 q   . 
Hence, we get the heat conduction equation in the 

context of dual-phase-lag model in the form 
2 2

02
1 1 q E

T T
K C

t t tx
u

T
x t

 
              

       
(3) 

where xx  is the stress,   and   are the Lamé con-
stants,   is equal to  3 2 t   , t  is the thermal 
expansion coefficient, K  is the thermal conductivity, 

EC  is the specific heat per unit mass at constant strain, ρ 
is the density of the medium and  is the heat flux 
vector. 

iq

Moreover, if we put  = 0 and q = τ (the first re-
laxation time), fundamental equations possible for the 
Lord and Shulman's theory. 

The initial and boundary conditions are taken as 
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where 0  is constant and the regularity boundary condi-
tions are  ,T x t ,  t,u x and xx 0  as x  . 
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1 ,

For convenience, we shall use the following non-di-
mensional variables 

2
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In terms of these variables, Equations (1)-(3) become 
(where the primes are suppressed for simplicity) 
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and initial and boundary conditions will be 

   
0

0

,
, 0

t
t

u x t
u x t x

t



 


, 0,  

   
0

0

,
, 0

t
t

T x t
T x t x

t



 


, 0,  

     0/

0
0

,
, e , 1 et t t t

x
x

u x t
T x t

x






   


0/   (8) 

 
3. Solution in the Laplace Transform  

Domain 
 
We use the Laplace transform of both sides of the last 
equations which is defined in the form 

   
0

e dst .f s f t


  t  

Hence, we obtain Equations (5-7) in the form 
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where the over bar symbol denotes its Laplace transform 
and s denotes the Laplace transform parameter. 

The boundary conditions (8) in the Laplace transform 
can be expressed in the form 
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Introducing the thermoelastic potential function   
defined by the relation 

d

d
u

x


                   (13) 

Equations (9-10) reduce to 
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Eliminating  from Equations (14) and (15), we ob-
tain 

T

 
4 2
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where   is the mechanical coupling constant defined 

by ag   and 
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The solutions of Equation (16) bounded at infinity can 
be written in the form: 

1
1 2e emA A   2m             (17) 

where 1A  and 2A  are parameters depending on s to be 
determined from the boundary conditions, 1m and 2  
are the roots with positive real parts of the characteristic 
equation 

m

 4 2 2 21 0m s P m s P             (18) 

1m  and  are given by 2m

   
22 2
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   (10) 

The expression for displacement and temperature can 
be written in the forms 

1
1 1 2 2e mu m A m A   2e m           (20) 
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Substituting from Equations (20) and (21) into Equa-
tion (11), we obtain 

Substituting from Equations (20) and (21) into Equa-
tion (11), we obtain 
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From the boundary conditions (12), it follows that 
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4. Numerical Inversion of the Laplace 
Transform 

 
In order to determine the conductive and thermal tem-
perature, displacement and stress distributions in the time 
domain, we adopt a numerical inversion method based 
on a Fourier series expansion [15]. In this method, the 
inverse g(t) of the Laplace transform g(s) is approxi-
mated by the relation 

   
1/
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2
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 t   

             (23) 

where  is the real part and Re 1i    is imaginary 
number unit and  is a sufficiently large integer rep-
resenting the number of terms in the truncated infinite 
Fourier series. For faster convergence, numerous nu-
merical experiments have shown that the value of c  
satisfies the relation  Tzou [9]. 

N

4.7ct 
N  must chosen such that 

1/
1
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g c
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where 1  is a persecuted small positive number that 
corresponds to the degree of accuracy to be achieved. 
The parameter c is a positive free parameter that must be 
greater than the real parts of all singularities of  g s . 
The optimal choice of c was obtained according to the 
criteria described in [15]. 

Formula (23) was used to invert the Laplace trans-
forms in Equations (20)-(22), given the temperature, 
stress, and displacement distributions. 

5. Numerical Results 
 
Now, we will consider a numerical example for which 
computational results are given. For this purpose, Copper 
is taken as the thermoelastic material for which we take 
the following values of the different physical constants 
[16] 

368K  , ,  51.78 10t
  383.1,EC  1.61g  , 

10 10= 8954,  =7.76 10 ,  =3.86 10 ,     
2

0= 8886.73,  =4,  T =293,  =0.0168   . 

The non-dimensional temperature T , displacement 
, and stress component u xx  distributions were evalu-

ated on the x -axis. Further by setting the phase-lag of 
the heat flux t  to zero, the results due to the Lord and 
Shulman's theory are obtained. The computations were 
carried out for one value of time, namely for 0.1t  . 

The graphs of the temperature, displacement and 
thermal stress due to phase-lag of the heat flux qt are 
exhibited graphically in Figures 1-3. The results carried 
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Figure 1. Displacement vs. distance for different values of 
phaselag of the heatflux. 
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Figure 2. Temperature vs. distance for different values of 
phaselag of heatflux. 
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Figure 3. Thermal stress vs. distance for different values of 
phaselag of heatflux. 
 
out for three values of , namely =0.05, 0.1 and 0.2. qt qt

We can deduce that: 
1) The parameter  has significant effects on all the 

fields. 
qt

2) The wave has a finite speed of propagation. This 
result shows that the DPL model agree with the general-
ized thermoelasticity. 

3) The temperature and displacement starts with its 
maximum value at the origin and decreases until attain-
ing zero beyond a wave front for the generalized theory, 
which agree with the boundary conditions. 

4) The magnitude of the stress increases rapidly as x  
increases and it attains a peak value at , thereaf-
ter it decreases slowly with increasing 

 = 0.1x
x  whereas the 

magnitude of the peak value is reduced with the increase 
of t . q

Figures 4-6 show the heat, the displacement, and the 
stress respectively with distance x  at the same instance 

 with different values of the phase-lag of tem-
perature gradient parameter 

0.1t 
 0 qt t t   

0.05 t 

 which means 
coupled thermoelasticity model of Biot,  which 
means generalized thermoelasticity model of Lord and Shul-
man and for  ( t  and ) means 
that DPL model and we found that, the parameter 

0t 

0.080t  
t  

has a significant effects on all the fields. 
In all these figures, it is clear that the values of solu-

tions for L-S theory are large in comparison with those 
for DPL model. This may be due to the nature of the 
boundary conditions, which we take. 
 
6. Conclusions 
 
In the framework of this article, a problem of a half- 
space whose surface is rigidly fixed and subjected to the 
effects of a thermal shock on the surface within the con-
text of the theory of generalized thermoelasticity pro- 
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Figure 4. Displacement vs. distance for different values of 
phaselag of gradient of temperature. 
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Figure 5. Temperature vs. distance for different values of 
phaselag of gradient of temperature. 
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posed by Tzou. 

According to the above results, we can conclude that: 
1) As the phase-lag of the heat flux q constant in-

creases the corresponding components of temperature, 
t
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displacement and stress decrease. 
2) The increases of the phase-lag of gradient of tem-

perature t  decrease the components of temperature, 
displacement and stress distributions. 

3) We found that, the parameters  and qt t  have 
significant effects on all the fields. 

4) The phenomenon of finite speeds of propagation is 
manifested in all these figures. 

The comparison of different theories of thermoelastic-
ity, i.e. Lord and Shulman theory and Chandrasekharaiah 
and Tzou model is carried out. 
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