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Abstract

In this paper, we present multiplicity results of exponential stability and attracting domains for Cohen-
Grossberg neural network (CGNN) with distributed delays. We establish new criteria for the coexistence of
2" equilibrium points and estimate their attracting domains. Moreover, we base our criteria on coefficients
of the networks and the derivative of activation functions within the attracting domains. It is shown that our

results are new and complement corresponding results existing in the previous literature.
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1. Introduction

Cohen-Grossberg neural network (see [1,2]) is usually
described by the following differential equations system

ducil—t(t) =-a (u, (t)){di (u, (t))—gbu 9; (u; (t))}

where ieN:={1,2,---,N} , N>2is the number of
neurons in the network; u, (t) describes the state vari-
able of neuron i attime t; a(-) represents an amplifica-
tion function and the function d, (-) can include a con-
stant term indicating a fixed input to the network; b (t)
weights the strength of the j unit on the ith unit at time
t; the activation function g; () shows how the neurons
react to the input. CGNN not only has a wide range of
applications in pattern recognition, associative memory
and combinatorial optimization but also includes a num-
ber of models from neurobiology, population biology
and evolution theory. Hence studies on stability of CGNN
with or without delays have been vigorously done and
many criteria have been obtained so far [3-14].

In the applications of neural network to associative
memory storage or pattern recognitions, the coexistence
of multiple stable equilibrium points is an important fea-
ture [15-19,20-21]. However, few papers focus on the
existence of multiple equilibrium points of CGNN and
their complex convergence analysis. Hence, we should
consider multistability of the following CGNN with dis-
tributed delays
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(1.1)

_jibijgj[j ki (t—s)u; (s)dsﬂ,

—o0

where the delay kernel function k; (t) is assumed to be
piecewise continuous and satisfying

t t

ki (1)=0, [k (s)ds=1; >0, [ k;(s)e”ds <o,
where o is a positive constant. In this paper, we not
only derive new criteria for the existence of 2" equi-
librium points of CGNN (1.1) but also estimate attracting
domains for these equilibrium points. When we relax our
conditions to be common assumptions, our results im-
prove corresponding results in [12]. Moreover, our re-
sults can extend the corresponding results in [3-13] to
local exponential stability of multiple equilibrium points
of Cohen-Grossberg networks. It is shown that our re-
sults are new and complement the existing results in the
literature.

The rest of this paper is organized as follows. In Sec-
tion 2, we should make some preparations by giving
some notations, assumptions and a basic lemma. Mean-
while, we discuss the existence of 2" equilibrium
points of CGNN (1.1). In Section 3, we not only discuss
local exponential stability of 2" equilibrium points of
CGNN (1.1) but also compare our results with existing
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ones in the literature. In Section 4, two examples are
given to illustrate the new results. Finally, concluding re-
marks are given in Section 5.

2. Coexistence of Equilibrium Points

In this paper, we denote by C((—oo,O],]RN the set of
all continuous and bounded mappings from' (—,0] to
R" equipped with p-norm ||||p (p=1) defined by

N P
- 3 e jaa |

Where ¢=(¢1,¢2,---,¢N)ec((-oo 0], RN), For any
given ¢eC((—,0,R"), we denote by u(t;$) the
solution of CGNN (1.1) with u(s)=¢(s) for all
se(-x,0]. Given any (>0, we define u,(s;¢)=
u(s+¢¢) forall se(—ox,0], then

u, (5¢) e C((-,0],R").

Throughout this paper we always assume that (S,)
Foreach ieN, a(-) isa continuous function defined
on R.Meanwhile, we assume that

O<a’<a(V)<a <+mo,veR.

(S,) Foreach ieN, a(-), g;(-)eC*(R) and there
exist constants d, d*, g such that

0<d/ <d;(v)<d, lim|g; (v)|< gy,
= lim g, (v)<g;(v)<supg,(v)=0;(0),veR

V>t veR
V(fi Gi (V) N

where ¢, =bli and lim,_,, d,(v)=z0.
Remark 2.1. For Hopfield-type neural networks
[5,8-10], we have & (v)=1, d;(v)=dyv, g;(v)=tanh(v),

where d; >0 is a constant. Obviously, we can check

d'i(v))<0,v¢O,VGR

that d,(v)=d, , d(v)=0, lim My e, tanh( )| <1
1=sup,_, tanh(v) tanh( ) =1-tanh?(v)>0

lim, ., tanh(v) =0, vtanh(v) <0. Hence, (S,) and
(S,) hold.

We say a constant vector u=(u,,---,u,) eR" isan
equilibrium point of CGNN (1.1) if for each ie N,

d; (u, (1)) = ji_lbijgi (”J (t))
Consider
F (V) =-d (V)+biigi (Ui (t)>

where veR, ieN. Then it follows
Lemma 2.1. Assume (S,)—(S,) and the following
assumption
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(HH)d <bylysupg, (v), ieN
veR

hold. For each ieN, there exist only two points v,
and v, with v,<O<v, such that F(v_)=0
and F, (v)-sgn{(v—V,)(v-V;,)} =0, where veR and
V£V, ¢ =12

Proof. We get from (H*) and (S,) that

F (0)=—d, (0)+byl;g, (02) >0
and

F(v) <—d +byl; Jlim g, (v)=-d' <0

as v — oo . It follows from (S, ) that vF, (v) <0 which
implies that F (v) is strictly increasing on (-o,0]
and is strictly decreasing on [0,+oo). Therefore, there
exist only two points v, and v,, with v, <0<v,
such that F (v, )=0 and

R (v)-sgn {(V_Vil)(v_viz)} =0,

where veR and v=v,_,¢=12 The proof is com-
plete.

It follows from (H]) that b, >0 for each ieN.
Now, we consider the following additional assumption:

(HS) (-1 -F(v)> i Ibylo;.c=12 ieN
j=1, j=i
Take ¢=1 in (HZA) it is easy for us to get that
F (V) + i Ibylo; <0.ieN (2.1)

j=1,j#i

Due to F(v)—>+w as v—>—oo, Lemma 2.1 and
the continuity of F,(v), there exists a unique v;; with
v <V, such that

( N
) ¥

j=1, j=i

Jo,loj =0,
- 2.2)
F(v)- Z | o} >0, for all ve[v,,v))
=1,j

Take ¢=2 in ( 2') by similar argument, we de-
rive that there exists a unique v;, with v,, <v, such
that

N

)"' Z |IJ|gJ e

U 2.3)
F (Vi) + Z by ot <0, for allv e (v}.v, |

j=1j=i
N
oSt
j=1

o T
=d; [ JZ_;|bij|gjj,v

Due to the monotonicity of d;(-), it is easy for us to

Let
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check that v <v) <0<V, <v5. For each ieN, de-
fine A, :[vﬁ,vfl],Aiz :[vfz,vilz]. Hence, we can con-
struct 2" subsets AT =A, xA,_ x-xAy cRY
2 SN
where
z:(g]_vgz:"'

With these notations, we have the following theorem:

Theorem 2.1. Under the assumptions (S;)—(S,)
and (H;*)—(HJ'), there exist at least 2" equilibrium
points of CGNN (1.1).

Proof. For each X =(g,,5,, "5y ) With ¢ =12,
ieN,wedefine F*=(F*FF, - F})

With F*:A* >R by

(- Sho ),

where U= (u,,U,,--,uy) €A, It is obvious that for
any ueA*, we have F*(u)e[vyv;]| for each
ieN. Foreach ¢, ieN, there are two cases for us to
further discussion.

Case I: If ¢, =1,i.e, u
(2.2) we get

= (0)-¢| Sho, (1)
<o |no(wi)+ 3 b |-

, then from (Hf‘)

1y

,gN) with ¢, =12, ieN.

<v}, then from (H') and

(2.4)

Case II: If ¢ =2, ie, u >V,
and (2.3) we get

= 0)-4*| S0, 1)
> {b,lg ()~ > |b"'|gﬂ=

j=1 j=i
Hence F>(u)eA, , that is F>(u)eA*> for all
ueA*. By Brouwer's fixed point theory, for each Y,
there exist at least one u* e A~ suchthat F>(u)=u*.
Therefore, there exist at least 2" equilibrium points of
CGNN (1.1). The proof is complete.
Next we should make some preparations for the com-
ing section. For each ieN, we define the following
subsets of C((—oo,O],R) as

Hy ={g € C((0,0], R )|g(s) < v}
Hip ={¢ € C((—=,0]. 2" ) g(s) 2 v

(2.5)

Hence, we have construct 2" subsets HZ> = H,, x
H,,, x-xHy, cC((—oo,O],RN). Given any Y =
(61:620-v6n ) With ¢, =12, we define semi-close
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subsets for each ieN,

I5j

0F ={veR|(-1)" v (-1 v, |.

For any geH*>, we getO* =0,

><OZ§2 SR ON
forall se(—,0].

SN

3. Stability and Estimation of Attracting
Domains

Theorem 3.1. Assume that assumptions (S,)—(S,)
and (H')-(H;') hold. For each ¥, if geH™, then
u (+¢)eH*> forall teR.

Proof. Fix X =(g,6,,,6y)- Forany geH>, we
should prove that u, (-;¢)e H* forall teR. For each
ieN, we only consider the case ¢, =2, i.e., ¢(s)=
v, forall se(-,0]. We assert that, for any sufficien-
tly small £>0(s<v},-v,), the solution u,(t;¢)>
vl, —& holds for all t>0. If this is not true, there ex-
ists a t">0such that u, (t")=v},—¢, G(t")<0 and
U (t)=vj—& for te(—w,t']. Due to (H/), (23)

and the monotonicity of g, () we derive from CGNN
(1.1) that

du; (t*)
dt

—a, (v, - ¢)

\2

x| d; (v, — &) -0, jk,, (t-s)

s)ds— Z|b”|g }

> —a (vf2 —g)

x| d, (v, =)=y (I

() -Slo: |
o)-Shoi | -0

(3.1)

which leads to a contradiction. Since the choice of ¢is
arbitrary, for each ieN , if ¢(s)=v), for all
se(-»,0], then u(t;¢)>v), holds for all t>0.
When ¢, =1, similar argument can be performed to
show that if ¢ (s)<v; for all se(-x,0], then
U (t;¢)<v; holds for all t>0 . Hence, for any
¢eH>, we have that u,(;¢)eH> forall t>0. The
proof is complete.

Definition 3.1. Let u* :(ulz,uzz,---,uﬁ) be an equilib-
rium point of CGNN (L.1) and Y (u*) = C((—0,0], R")
be a neighborhood of u>. If there exist x>0 and
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M >1 such that for any !//=(l//1,l//2,---,l//N)TeY(UZ)
andall t>0,

{Z|u () w? Mex{isf”foﬂ'f" Iﬂi
Where  u(t;y) = (u, (ty).u, (), uy (t;:,z/))T is

the solution of CGNN (1.1), then u* is said to be lo-
cally exponentially stable and Y (u*) is contained in
the attracting domain of u*.

The existence of 2" equilibrium points of CGNN
(1.1) follows from Theorem 2.1. For any given 2, let
x (t)=u, (t;¢)—u> with geH*> and ueA*>, where
i e N. Then CGNN (1.1) can be written as

()=
A (x (t)){&. (x (t))_%bﬁgj (L k; (t-s)x, (S)dsﬂ,
(3.2)
where

)
o [ e-spm s
o[ [k t-ome]-o 1)

Theorem 3.2. Assume that assumptions (S;)—(S,)
and (H,)-(H;') hold. For each X, if there exist
positive constants 4 (ieN) and p such that for each
ieN

1 N =
>pTlaﬂZ|bij|sup g, (v).[kij (s)e” ds (3.3)
= 0
134 AT :
+6271a}|bu|vsl£ gi(v).([kji(s)e" ds

Then u* is locally exponentially stable and H* is
contained in the attracting domain of u®.

Proof. Fix X =(g;,-+-,5y ) - Let
u(t)=(u (tw),uy (t;y/))T be a solution of CGNN
(1.1) with g H* and u* is an equilibrium point of
CGNN (1.1) in A*. By Theorem 3.1, we know
that u, (¢)e H> for all t>0. It is obvious that

u*eO* and u(t)eO> forall t>0.Foreach ieN,

Copyright © 2011 SciRes.

let x (t)=u, (t;g)—-u> and let X, (t)=e”|x(t

view of (3.2), we obtain

) In

DX, (t) < pX,(t)+e” [—di (m)af |Xi (t)|
alSa,(6) [ -9 o),
DX, (t)< (p—d- (7, )aio) X (1)
+alz|bu|g

t 3.4
jku (t=s)X;(s)ds. G4

where d; ()= mfd() and g(CJ)—SUPg()

Now we define a Lyapunov Kravsovskii functlon V()
as follows

V(1) =V, (1) +V, (1), v1<t>=ia.xr<t>

V(1) =2 Aat > [bylg, (¢ (35)

e eﬂﬂxp de

From (3.5), it is easy for us to estimate

V(0)< i Kl+—l|bu|g aTk“

i=1 0

sup Xip(s)}.

se(—,0]

sepS dsj
(3.6)

From (3.4), (3.5) and by simple calculations, we ob-
tain

D'V (t)siﬂ,, [pxip (t)(p-di(n)a?)

i=1

+pX () gV,

D kIJ epS
+a%i_llbu|g,-<4>fku<s>eﬂs
><(ij (t)—XJP(t—s))ds

By using the basic inequality pa®'b<(p-1)a®+b”
and (3.7), we obtain that

1z|b.,|g ©)

)ds} (3.7)
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N

D'V (t)<> 4 [p(p—di (n)a’)

i=1

(Pl Ll () [k (s)eds  (ag)

NA ©
i Zats, ()]t (e e )

It follows from (3.3) that D'V (t)<O .
V(t)<Vv(0) forany t>0 which leads to

N

z&eppt |Xi (t)|P

i=1

sii{[“ |bu|g a}]gkji (s)se"sds]

i=1 0

Hence

XP .
0, X6)
That is,
i|xi( | <Ae p”‘Z sup | (s |
i=1 i=1 se(-,0]
where
A=
max{/l } o

WQ%X{HZ Loyl (¢ a}{kii (s)se"sds}.
Therefore, we have

1
S tv) -7 | < e -],

where M =¥A . That is u* is locally exponentially
stable and H* is contained in the attracting domain of
u> . The proof is complete.

Take A4 =1 and p=1, itis easy for us to have the
following corollary.

Corollary 3.1. Assume that (S;)—(S,) and
(H/)=(HJ") hold. For any given X, if there exists a
constant o such that for each ie N,

N ©
0 i 1 3 S
o Vlgz d (v)-p> j§:1aj |bji|vse%ig g; (v).([kji (s)eds

(3.9)

Then u* is locally exponentially stable and H> is
contained in the attracting domain of u*.

Remark 3.1 For each jeN, if g,(-) is globally
Lipschitz continuous with a Lipschitz constant L; and
there exists a constant ;/J >0 such that

(d; (u)-d; (u))(u-v) "=, forall u,veR. Itis ob-

Copyright © 2011 SciRes.

vious that we have supg,(v)<L; and inf d, i(v)=
\/EOZ VEO

7;- If we replace Eofzdj(v) by 7;. s%pz)gj(v) by
j veOj

L; in(3.3), then we get

0, _ p_l 1 § i pS
& yi—pP> 0 aiZ|bij|Lj,[kij(S)e ds
) N 0 (3.10)

N o0
+—Z .|biJ.|LiJ'kji (s)e”ds

p j= 1 i 0

Take p=0, p=1 and I; =1 in (3.10), [9] proved
that there exists a unique equilibrium point of CGNN
(1.1) which is globally asymptotically stable. It is obvi-
ous that our criteria only base on parameters of the net-
work and the derivative of activation functions within the
confines of attracting domains, they can be easily
checked. However, when we relax condition (3.10) to be
(3.3), results in [7,9,11] are not applicable for CGNN
(1.2). It is obvious that our results are new and comple-
ment the corresponding results in [9].

From above remark, it is easy for us to have the fol-
lowing corollary.

Corollary 3.2. Under the following basic assumptions
(S;). For each ieN, a(-) is a continuous function
on R. Meanwhile, we assume that 0<a; <a; (V)<
and d,(-) is continuous increasing with

(di (u)-d, (u))(u_v)il 27,>0.

(S;) For each ieN, g;(-) is globally Lipschitz
continuous with a Lipschitz constant L, and there exists
a constant g;' >0 such that |g(v)|<g' for all
veR.

If there exist positive constants 4 (ieN) and p
such that for each ie N,

ah-p> p;1a3i|bij| L iy (s)ees

(3.11)
—z—a |b,J|ijJ, s)e”ds
=

Then there exists at least a unique equilibrium point of
CGNN (1.1). which is globally exponentially stable.

Proof. With assumptions (H/*)-(H;'), we only
consider mapping F =(F,F,,---,F) from A to A
defined by

st

where ueAX =A; x---xA, and A, [ o ,2] ieN.

By Brouwer’s fixed point theory, there exists at least one
equilibrium point GeA such that F(d)=d. Similarly
as Theorem 3.2, by (3.11) we can show that GeA is
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the unique equilibrium point of CGNN (1.1) which is
globally exponentially stable. The proof is complete.

Remark 3.2. Take p =0 and Iij =1.When p=12,
Corollary 3.2 leads to Theorem 3.2 and Theorem 3.3 in
[17]. It is obvious that Theorem 3.2-3.5 in [9] are only
our special cases of Corollary 3.2. Furthermore, our re-
sults can extend the existence of multiple equilibrium
points and their attracting behavior of Cohen-Grossberg
networks to [3-12].

4. Examples

Consider the following Cohen-Grossberg networks with
distributed delays

duélt(t) =—a; (U (t))d, (uy (1))
XTI RINEEMEr
+iblzgz(j klz(t—s)uz(s)dsj
du, (1) S (4.1)
(21t =_a2(u2(t))dz(uz(t))
_ébugl[f[okzl(t—s)ul(s) dsj
+ib2292 (:t[okzz (S)Uz (S) dS]

Example 4.1 Consider

Z.K.HUANG ET AL.

3, (u, (1)) = az(u2 t))=1d, (u, (t))=1.4u,(t),
d, (u, (t))=3.1u,(t), b, =6,
k, (5)=0.125e7°, ky, (5)=0.25¢"°,
Ky (s)=kz(s) =€, g,(v)=0,(v)=tanh(v),
b,, =3.6742, b, =3.1458, b,, =10.
Since |by|L, +|b,|L, > (L and p are defined in
Corollary 3.2), most results reported in [7,9-11] could
not applicable for CGNN (4.1) even though we take de-

lay kernels into consideration. It is obvious that
(S;)-(S,) hold and we have

=15 = _[kn s)ds=1,1, =2l, Iklz s)ds=1
F (v ):—1.4V+691(V), F, (v )=—3.1v+10g2(v),
g =g, =1

From some computations, we get v, =—1.3565,
Vi, =1.3565, v, =-1.19, v,, =1.19 such that F; (v, ) =0,
hence F, (v, )=(~1)"3.3544 and F, (v, )=(-1) 4.6168,
where ¢=1,2. From (2.2)-(2.3), we can estimate

v, =-1.8190v/, =1.8190 v}, =-1.9v}, =1.9

It is easy for usto get g, (v)=0.0999, g, (v)=0.0086.

Therefore, CGNN (4.1) satisfied our assumptions in
Theorem 3.2 and assumptions (H;*)—(H,') hold. Let
p=1 =116 and 4 =4,=1. From some calcula-
tions, we can check that (3.3) holds. By Theorem 3.2,
there exist only four locally exponentially stable equilib-
rium points of CGNN (4.1) located in A*. Moreover,
their attracting domains can be estimated by

H™ = {(p17,) € C((-0,0] R?)|s (5) < ~1.1819, y, (5) < 1.9}
H® = {(yy,0,) € C((~o0, 0], R? |y, (5) < -1.1819, y, (5) > 1.9
HEY = {(yy,0,) € C((~o0,0], R? )|y (5) 2 1.1819, p, (5) < -1.9
HEY = {(y.0,) €C((—0, 0] R? )|y (5) 211819, w, (5) 219

Example 4.2 Consider
a, (u; (1)) =a, (u, (1)) =1
d, (u, (t)) =1.4u, (t)-0.02tanh (u, (t)),
d, (u, (t)) =3.1u, (t)—0.02tanh (u, ()),
by =6,k (S) =Ky, (5) =Ky (5) =k (s)=€7°,

e*S
9,(v)=g,(v)=tanh(v), ky;(s) e
b,, =3.6724, b, =3.6724,b,, =10, b, = 3.1458

Copyright © 2011 SciRes.

We can estimate that
d/ =1.38<d,(v)=1.4-0.02tanh (v) <d; =14,
d} =3.08<d, (v)=3.1-0.02tanh(v) <d; =3.,
vd, (v) = -0.02tanh(v) > 0> vh, tanh(v) ,
vd, (v) = -0.02tanh (v) >0 > vb,, tanh(v) .

0, (S,)—(S,) hold. Similarly as Example 4.1, we
get v11 =-137, v, =137, v, =-121, v, =121
such that F, (v, ) 0, hence F (v, )=(-1)"3.372 and
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F, (v, )=(~1) 4.633, where ¢=1,2. From (2.2)-(2.3),
we can estimate

v, =-1.85v), =1.85v], =-1.91v], =1.91

We can check that assumptions (HlA)—gHZA) and
(3.3) hold. By Theorem 3.2, there exist only four stable
equilibrium points of CGNN (4.1) located in A* .
Moreover, their attracting domains H> can be esti-
mated as Example 4.1.

5. Concluding Remarks

In this paper, some new criteria are derived for the coex-
istence of 2N equilibrium points and attracting domain is
also given for each equilibrium point. It is shown that our
results are new and complement the previous results in
[7,9-11]. Furthermore, our results can extend correspon-
ding ones reported in [22-23] to local exponential stabil-
ity of multiple equilibrium points of neural network.
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