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Abstract 
In this paper we present a new optimization algorithm, and the proposed algorithm operates in 
two phases. In the first one, multiobjective version of genetic algorithm is used as search engine in 
order to generate approximate true Pareto front. This algorithm is based on concept of co-evolu- 
tion and repair algorithm for handling nonlinear constraints. Also it maintains a finite-sized arc-
hive of non-dominated solutions which gets iteratively updated in the presence of new solutions 
based on the concept of ε-dominance. Then, in the second stage, rough set theory is adopted as lo-
cal search engine in order to improve the spread of the solutions found so far. The results, pro-
vided by the proposed algorithm for benchmark problems, are promising when compared with 
exiting well-known algorithms. Also, our results suggest that our algorithm is better applicable for 
solving real-world application problems. 
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1. Introduction 
Many real optimization problems require optimizing multiple conflicting objectives with each other. These 
problems with more than one objective are called Multiobjective Optimization Problems (MOPs). There is no 
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single optimal solution, but a set of alternative solutions; these solutions are optimal in the wider sense that no 
other solutions in the search space dominate them when all objectives are considered. They are known as Pareto 
optimal solutions [1] [2]. MOPs naturally arise in many area of knowledge such as economics [3]-[5], machine 
learning [6]-[8] and electrical power system [9]-[12]. 

Deb [13] classified optimization methods as classical (traditional) methods and evolutionary methods (evolu-
tionary algorithms). Traditional multiobjective methods attempt to find the set of nondominated solutions using 
mathematical programming. In traditional methods such as weighted method and ε-constraint method which are 
most commonly used [1], the MOPs are transformed into a single objective problem which can be solved using 
nonlinear optimization techniques. 

On the other hand, evolutionary methods (evolutionary algorithms EAs) for MOPs optimize all objectives si-
multaneously and generate a set of alternative solutions. The simultaneous optimization can fit with population 
based approaches, such as EAs, because they generate multiple solutions in a single run. These population- 
based approaches are more successful when solving MOPs. There are many algorithms for solving uncon-
strained MOPs. A representative collection of these algorithms includes the vector evaluated genetic algorithm 
by Schaffer [14], the niched Pareto genetic algorithm (NPGA) [15] and the nondominated sorting genetic algo-
rithm by Srinivas and Deb [16], the nondominated sorting genetic algorithm II (NSGA-II) by Deb et al. [17], the 
strength Pareto evolutionary algorithm by Zitzler and Thiele [18], the strength Pareto evolutionary algorithm II 
(SPEA-II) by Zitzler et al. [19], the Pareto archived evolution strategy by Knowles and Corne [20] and the me-
metic PAES by Knowles and Corne [21]. These MOEAs differ from each other in both exploitation and explo-
ration; they share the common purpose, searching for a near-optimal, well-extended and uniformly diversified 
Pareto optimal front for a given MOP [22]-[25]. 

In case of constrained multiobjective optimization problems, there are a few evolutionary algorithms devel-
oped. Despite the developments for solving constrained optimization problems, there seem to be not enough 
studies concerning procedure for handling constraints. For example, Fonseca [26] suggested treating constraints 
as high-priority objectives, and Harade [27] proposed a few efficient constraint-handling guidelines and de-
signed a Pareto descent repair method. For MOPs, a properly designed fitness assignment method is always re-
quired to guide the population to evolve to the Pareto front, as the objective vector cannot be used as the fitness 
function value directly. Most of the existing MOEAs assign the fitness function values based on the Pareto do-
minance relationship. 

In this paper we present a new optimization algorithm, and the proposed algorithm operates in two phases: in 
the first one, multiobjective version of genetic algorithm is used as search engine in order to generate approx-
imate true Pareto front. Then in the second phase, rough set theory is adopted as local search engine in order to 
improve the spread of the solutions found so far. The remainder of the paper is organized as follows. In section 2, 
we describe some basic concepts and definitions of MOPs. Section 3 presents constraint multiobjective optimi-
zation via genetic algorithm. Experimental results are given and discussed in section 4. Section 5 indicates our 
conclusion and notes for future work 

2. Basic Concepts and Definitions 
2.1. Problem Formulation 
General multiobjective optimization problem is expressed by MOP: 
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where ( ) ( ) ( )( )1 2 , , , mf x f x f x  are the m objectives functions, ( )1 2, , , nx x x  are the n decision variables, 
and nS R∈  is the solution (parameter) space. 

Definition 1. (Pareto optimal solution): x∗  is said to be a Pareto optimal solution of MOP if there exists no 
other feasible x  (i.e., x S∈ ) such that, ( ) ( )j jf x f x∗≤  for all 1, 2, ,j m=   and ( ) ( )j jf x f x∗<  for at 
least one objective function jf . 

Definition 2. [28] (ε-dominance) Let : mf x R→  and ,a b X∈ . Then a is said to ε-dominate b for some ε > 
0, denoted as a bε , if and only if for { }1, ,i m∈   
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( ) ( ) ( )1 i if a f bε− ≤  

Definition 3. (ε-approximate Pareto set) Let X be a set of decision alternatives and 0ε > . Then a set xε  is 
called an ε-approximate Pareto set of X, if any vector a x∈  is ε-dominated by at least one vector b xε∈ , i.e. 

:  such that a x b x b aε ε∀ ∈ ∃ ∈   

According to definition 2, the ε value stands for a relative allowed for the objective values as declared in Fig-
ure 1. This is especially important in higher dimensional objective spaces, where the concept of ε-dominance 
can reduce the required number of solutions considerably. Also, makes the algorithms practical by allowing a 
decision maker to control the resolution of the Pareto set approximation by choosing an appropriate ε-value 

2.2. Use of Rough Sets in Multiobjective Optimization 
For our proposed approach we will try to investigate the Pareto front using a Rough sets grid. To do this, we will 
use an initial approximate of the Pareto front (provided by any evolutionary algorithm) and will implement a 
grid in order to get more information about the front that will let to improve this initial approximation [29]. 

To create this grid, as an input we will have N feasible points divided in two sets: the nondominated points 
(NS) and the dominated ones (DS). Using these two sets we want to create a grid to describe the set NS in order 
to intensify the search on it. This is, we want to describe the Pareto front in the decision variable space because 
then we could easily use this information to generate more efficient points and then improve this initial Pareto 
approximation. Figure 2 shows how information in objective function space can be translated into information 
in decision variable space through the use of a grid. We must note the importance of the DS sets as in a rough 
sets method, where the information comes from the description of the boundary of the two sets NS, DS. Then 
the more efficient points provided the better. However, it is also required to provide dominated points, since we 
need to estimate the boundary between being dominated and being nondominated. Once the information is 
computed we can simply generate more points in the “efficient side”. 
 

 
Figure 1. Graphs visualizing the concepts of dominance (left) and ε-dominance (right). 

 

 
Figure 2. Decision variable space (left) and objective function space (right) [29]. 
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2.3. Structure of an Iterative Multiobjective Search Algorithm 
The purpose of this section is to informally describe the problem we are dealing with. To this end, let us first 
give a template for a large class of iterative search procedures which are characterized by the generation of a 
sequence of search points and a finite memory. 

An abstract description of a generic iterative search algorithm is given in Algorithm 1 [30]. The integer t de-
notes the iteration count, the n-dimensional vector ( )tf  is the sample generated at iteration t and the set ( )tA  
will be called the archive at iteration t and should contain a representative subset of the samples in the objective 
space ( ) ( ) ( )1 2 , , , mF f x f x f x=     generated so far. To simplify the notation, we represent samples by n- 
dimensional real vectors f where each coordinate represents one of the objective values as shown in Figure 3. 

The purpose of the function ( ) ( )tf generate= ⋅  is to generate a new solutions in each iteration t, possibly 
using the contents of the old archive set ( )1tA − . The function ( ) ( ) ( )( )1 ,t t tA update A f−=  gets the new solutions 

( )generate ⋅  and the old archive set ( )1tA −  and determines the updated one, namely ( )tA . In general, the pur-
pose of this sample storage is to gather “useful” information about the underlying search problem during the run. 
Its use is usually two-fold: On the one hand it is used to store the “best” solutions found so far, on the other hand 
the search operator exploits this information to steer the search to promising regions. This procedure could easi-
ly be viewed as an evolutionary algorithm when the generate operator is associated with variation (recombina-
tion and mutation). However, we would like to point out that all following investigations are equally valid for 
any kind of iterative process which can be described as Algorithm 1 and used for approximating the Pareto set 
of multiobjective optimization problems. 

3. Constraint Multiobjective Optimization via Genetic Algorithm 
In any interesting multiobjective optimization problem, there exist a number of such solutions which are of in-
terest to designers and practitioners. Since no one solution is better than any other solution in the Pareto-optimal 
set, it is also a goal in a multiobjective optimization to find as many such Pareto-optimal solutions as possible. 
Unlike most classical search and optimization problems, GAs works with a population of solutions and thus are 
 

Algorithm 1. Iterative search algorithm. 
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Figure 3. Block diagram of Archive/selection strategy. 
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likely (and unique) candidates for finding multiple Pareto-optimal solutions simultaneously. There are two tasks 
that are achieved in a multiobjective GA. 1) Convergence to the Pareto-optimal set; and 2) Maintenance of di-
versity among solutions of the Pareto-optimal set. Here we present a new optimization system, which is based 
on concept of co-evolution and repair algorithms. Also it is based on the ε-dominance concept. The use of ε- 
dominance also makes the algorithms practical by allowing a decision maker to control the resolution of the Pa-
reto set approximation by choosing an appropriate ε value. 

3.1. Initialization Stage 
The algorithm uses two separate population, the first population ( )tP  consists of the individuals which initia-
lized randomly satisfying the search space (the lower and upper bounds), while the second population ( )tR  
consists of reference points which satisfying all constraints (feasible points), However, in order to ensure con-
vergence to the true Pareto-optimal solutions, we concentrated on how elitism could be introduced. So, we pro-
pose an “archiving/selection” strategy that guarantees at the same time progress towards the Pareto-optimal set 
and a covering of the whole range of the non-dominated solutions. The algorithm maintains an externally finite- 
sized archive ( )tA  of non-dominated solutions which gets iteratively updated in the presence of new solutions 
based on the concept of ε-dominance. 

3.2. Repair Algorithm 
The idea of this technique is to separate any feasible individuals in a population from those that are infeasible by 
repairing infeasible individuals. 

This approach co-evolves the population of infeasible individuals until they become feasible. Repair process 
works as follows. Assume, there is a search point Sω∉  (where S is the feasible space). In such a case the al-
gorithm selects one of the reference points (Better reference point has better chances to be selected), say r S∈  
and creates random points Z  from the segment defined between , rω , but the segment may be extended 
equally [8] [23] on both sides determined by a user specified parameter [ ]0,1µ ∈ . Thus, a new feasible indi-
vidual is expressed as: 

( )
( )
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2

1
, 1 2 , 0,1

1

z r

z r

γ ω γ
γ µ δ µ δ

γ ω γ

= ⋅ + − ⋅  = + − ∈
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3.3. Evolutionary Algorithm: Phase 1 
In the first phase, the proposed algorithm uses two separate population, the first population ( )0tP =  (where t is 
the iteration counter) consists of the individuals which initialized randomly satisfying the search space (The 
lower and upper bounds), while the second population ( )0R  consists of reference points which satisfying all 
constraints (feasible points). Also, it stores initially the Pareto-optimal solutions externally in a finite sized arc-
hive of non-dominated solutions ( )0A . We use cluster algorithm to create the next population 1tP + , if 

( ) ( )t tP A>  then new population 1tP +  consists of all individual from ( )tA  and the population ( )tP  are con- 
sidered for the clustering procedure to complete ( )1tP + , if ( ) ( )t tP A<  then P  solutions are picked up at  

random from ( )tA  and directly copied to the new population ( )1tP + . 
Since our goal is to find new nondominated solutions, one simple way to combine multiple objective func-

tions into a scalar fitness function [31] [32] is the following weighted sum approach 

( ) ( ) ( ) ( ) ( )1 1
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where x is a string (i.e., individual), ( )f x  is a combined fitness function, ( )if x  is the ith objective function 
When a pair of strings are selected for a crossover operation, we assign a random number to each weight as fol-
lows: 

( )

( )
1

.
,     1, 2, ,

.

i
i m

j
j

random
w i m

random
=

= =

∑
  



A. A. EL-Sawy et al. 
 

 
1998 

Calculate the fitness value of each string using the random weights iw . Select a pair of strings from the cur-
rent population according to the following selection probability ( )xβ  of a string x in the population ( )tP  

( )
( ) ( )( )
( ) ( )( ){ }

( )

( )( ) ( ) ( ){ }min

min

min

,   where  min

t

t
t t

t

x P

f x f P
x f P f x x P

f x f P
β

∈

−
= = ∈

−∑
 

This step is repeated for selecting 2P  Paris of strings from the current populations. For each selected pair 
apply crossover operation to generate two new strings, for each strings generated by crossover operation, apply a 
mutation operator with a prespecified mutation probability. The system also includes the survival of some of 
good individuals without crossover or mutation. The algorithm maintains a finite-sized archive tA  of non- 
dominated solutions which gets iteratively updated in the presence of a new solutions based on the concept of 
ε-dominance, such that new solutions are only accepted in the archive if they are not ε-dominated by any other 
element in the current archive, the use of ε-dominance also makes the algorithms practical by allowing a deci-
sion maker to control the resolution of the Pareto set approximation by choosing an appropriate ε value. 

3.4. Local Search Mechanism Inspired on Rough Sets Theory: Phase 2 
Upon termination of phase 1, we start phase 2, with initial approximate of the Pareto front (provided by the 
proposed algorithm in phase 1) which noted as NS. Also all dominated solutions are marked as DS. It is worth 
remarking that NS can simply be a list of solutions. 

From the set NS we choose NNS points previously unselected. If we do not have enough unselected points, 
we choose the rest randomly from the set DS. Next, we choose from the set DS, NDS points previously unse-
lected (and in the same way if we do not have enough unselected points, we complete them in a random fashion) 
these points will be used to approximate the boundary between the Pareto front and the rest of the feasible set in 
decision variable space. We store theses points in the set Items and perform rough sets iterations: 

1) Range Initialization: for each decision variable i, we compute and sort (from smallest and highest) the dif-
ferent values it takes in the set Items. Then, for each decision variable, we have a set of rang  values and com-
bining all these sets we have a non-uniform grid in decision variable space. 

2) Compute Atoms: we compute “NNS rectangular atoms” centered in the NNS efficient points selected. To 
build a rectangular atom associated to a nondominated point ex Items∈  we compute the following upper and 
lower bounds for each decision variable i: 
• Lower Bound i: Middle point between e

ix  and the previous value in the set irang  
• Upper Bound i: Middle point between e

ix  and the following value in the set irang  
• If there are no pervious or subsequent values in irang , we consider the absolute lower or upper bound of 

variable i. This setting lets the method to explore close to the feasible set boundaries. 
3) Generate Offspring: inside each atom we randomly generate offspring new points. Each of these points is 

sent to the set NS as follows. The idea is that “new solutions are only accepted in the archive if they are not 
ε-dominated by any other element of the current archive”. If a solution is accepted, all dominated solutions are 
removed. Algorithm 2 shows the operator for ε-approximate Pareto set. 

The pseudo code of the proposed algorithm is declared in Algorithm 3. 

4. Experimental Results 
In order to validate the proposed approach and quantitatively compare its performance with other MOEAs, we 
present in this section comparison study for some benchmark test functions with distinct Pareto-optimal front, 
which was used in [28] [33]-[35]. The degree of difficulty of these problems varies from simple to difficult. 
Graphical presentation, of the experimental results and associated observations are presented in this section. Ta-
ble 1 lists the parameter setting used in our algorithm for all runs and Table 2 lists the variable bounds, objec-
tive functions and constraints for all these problems. 

The problem BNH was used by Binh and Korn [33], SRN was used by Srinivas, Deb [16], TNK was pro-
posed by Tanaka [35] and OSY was used by Osyczka, Kundu [34]. All these problems are constrained multiob-
jective problems. 
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Algorithm 2. Operator for ε-approximate Pareto set. 
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Algorithm 3. The proposed algorithm (pseudo code of the proposed al-
gorithm). 
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Table 1. The parameter setting. 

Population size 200 

No. of Generation 200 

Crossover probability cP  0.9 

Mutation probability mP  0.02 

Selection operator Roulette Wheel 

Crossover operator Single point 

Mutation operator Polynomial mutation 

Relative tolerance ε  10e−6 
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Table 2. Test benchmark problems used in our study. 

Problem Variables bounds Objective function ( )f x  and constraints ( )g x  Characteristics of Pareto front 

BNH 
[ ]
[ ]

1

2

0,5

0,3

x

x

∈
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= − + − ≥

 Continuous non-convex 

 
The BNH and the SRN problems are fairly simple in that the constraints may not introduce additional diffi-

culty in finding the Pareto-optimal solutions as shown in Figure 4 and Figure 5. It was observed that all 
MOEAs methods performed equally well, and gave a dense sampling of solutions along the true Pareto-optimal 
curve. 

The TNK (Figure 6) and the OSY (Figure 7) are relatively difficult. The constraints in the TNK problem 
make the Pareto-optimal set discontinuous. The constraints in the TNK problem divide the Pareto-optimal set 
into five regions that can demand a proposed algorithm to maintain its sub-population at different intersections 
of the constraint boundaries. We compare our method with a reliable and efficient multiobjective genetic algo-
rithm NSGA II. The results show that our method can be used efficiently for constrained MOP than NSGA-II. 
For the OSY problem, it can be seen that our approach gave a good sampling of points at the midsection of the 
curve and also found a lot of points at extreme ends of the curve. In the other hand NSGA-II did not give a good 
sampling of points at the extreme ends of Pareto curve. 

Also, the proposed approach is applied to the problem was chosen from the engineering application, A welded 
beam design by Deb [36] and Two-Bar Truss [37] [38]. 

Welded Beam: A welded beam design is used by Deb [36], where a beam needs to be welded on another 
beam and must carry a certain load F as shown in Figure 8. 

It is desired to find four design parameters (thickness b, width t, length of weld l, and weld thickness h) for 
which the cost function of the beam and the deflection function at the open end are minimum. The overhang 
portion of the beam has a length of “14 inch” and “F = 6000 Ib” force is applied at the end of the beam. A little 
thought will reveal that a design for minimum deflection at the end (or maximum rigidity of the above beam) 
will make all four design dimensions to take large dimensions. Thus, the design solutions for minimum cost and  
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Figure 4. Pareto optimal front of BNH problem using our approach. 

 

 
Figure 5. Pareto optimal front of SRN problem using our approach. 

 

  
Figure 6. Pareto optimal front of TNK problem using our approach and NSGA-II. 
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Figure 7. Pareto optimal front of OSY problem using our approach and NSGA-II. 

 

 
Figure 8. Welded Beam design problem. 

 
maximum rigidity (or minimum-end-deflection) are conflicting to each other, which leads to Pareto-optimal so-
lutions. In the following, the mathematical formulations of the two-objective optimization problem of minimiz-
ing cost and the end deflection are presented: 
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In the Welded Beam design problem, the non-linear constraints can cause difficulties in finding the Pareto 
front. As shown in Figure 9 and Figure 10 our proposed approach outperformed NSGA and NSGA-II in both  
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Figure 9. Pareto optimal front of welded beam using our ap-
proach. 

 

 
Figure 10. Pareto optimal front of welded beam using NSGA, 
NSGA-II. 

 
distribution and spread. 

Two-Bar Truss: Figure 11 illustrates the two-bar truss that is to be optimized [37]. This problem was 
adapted from Kirsch [38]. It is comprised of two stationary pinned joints, A and B, where each one is connected 
to one of the two bars in the truss. The two bars are pinned where the join one another at joint C, and a 100 kN 
force acts directly downward at that point. The cross-sectional areas of the two bars are represented as x1 and x2, 
the cross-sectional areas of trusses AC and BC respectively. Finally, y represents the perpendicular distance 
from the line AB that contains the two-pinned base joints to the connection of the bars where the force acts 
(joint C). 

The problem has been modified into a two-objective problem in order to show the non-inferior Pareto set 
clearly in two dimensions. The stresses in AC and BC should not exceed “100,000 kPa” and the total volume of 
material should not exceed 0.1 m3. The reason the objective constraints have been imposed is that the Pareto set 
is asymptotic and extends from −∞ to ∞. As x1 and x2 go to zero,  volumef  goes to zero and ,stress BCf  go to infin-
ity. As x1 and x2 go to infinity,  volumef  goes to infinity and ,stress ACf  and ,stress BCf  go to zero. Hence, in order 
to generate Pareto optimal solutions in a reasonable range, objective constraints are imposed. The problem for-
mulation is shown below. 
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Figure 12 declares the Pareto optimal solution of the Two-Bar Truss. Obviously from the results, the pro-
posed algorithm is able to maintain an almost uniform set of non-dominated solution points along the true Pare-
to-optimal front. Figure 13 shows Pareto optimal front of Two-Bar Truss (MOGA Solution) [37] [38]. It is clear 
that the proposed algorithm outperformed the algorithm in [37] [38]. 

5. Conclusions 

Finding a good distribution of solutions near the Pareto optimal front in small computational time is a dream of 
multiobjective EAs researchers and practitioner. In this paper a new optimization algorithm was presented, and  
 

 
Figure 11. Two-bar truss problem. 

 

 
Figure 12. Pareto optimal front of two-truss using our approach. 
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Figure 13. Pareto optimal front of two-bar truss (MOGA solution) [37] [38]. 

 
the proposed algorithm operates in two Phases. In the first one, multiobjective version of genetic algorithm is 
used as search engine in order to generate approximate true Pareto front. This algorithm is based on concept of 
co-evo- lution and repair algorithm. Also it maintains a finite-sized archive of nondominated solutions which 
gets iteratively updated in the presence of new solutions based on the concept of ε-dominance. Then in the 
second phase, rough set theory is adopted as local search engine in order to improve the spread of the solutions 
found so far. Our proposed approach keeps track of all the feasible solutions found during the optimization. The 
results, provided by the proposed algorithm for benchmark problems and engineering applications, are promis-
ing when compared with exiting well-known algorithms. Also, our results suggest that our algorithm is better 
applicable for solving real-world application problems. 

For future work, we would like to apply our proposed algorithm for more complex real world application. 
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