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Abstract 
In this article, the modified simple equation method has been extended to celebrate the exact so-
lutions of nonlinear partial time-space differential equations of fractional order. Firstly, the frac-
tional complex transformation has been implemented to convert nonlinear partial fractional dif-
ferential equations into nonlinear ordinary differential equations. Afterwards, modified simple 
equation method has been implemented, to find the exact solutions of these equations, in the 
sense of modified Riemann-Liouville derivative. For applications, the exact solutions of time-space 
fractional derivative Burgers’ equation and time-space fractional derivative foam drainage equa-
tion have been discussed. Moreover, it can also be concluded that the proposed method is easy, 
direct and concise as compared to other existing methods. 
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1. Introduction 
Nonlinear partial differential equations have shown a variety of applications in almost every field of life, such as 
in electromagnetics, acoustics, electrochemistry, cosmology, biological and material science [1]-[4]. Fractional 
differential equations can be considered as the general form of the differential equations, as they are involved 
with the derivatives of any real or complex order (for details see [3]). 

Knowing the importance of differential equations of fractional order, lots of authors are working to find the 
exact or numerical solutions of the equations. For examples, the adomian decomposition method [5], Pade ap-
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proximation method [6] and generalized differential transform method [7] [8] have been used to find the numer-
ical solutions for fractional order differential equations. The ( )G G′ -expansion method was introduced, by 
Wang et al. [9], to find the travelling wave solutions of nonlinear evolution equations. This method was further 
extended [10] [11] to find the solutions of fractional order differential equations, the Jacobi elliptic function ex-
pansion method [12], the tanh-function method for finding solitary wave solutions [13], the homotopy perturba-
tion method [14], the first integral method [15], the solitary wave ansatz [16] etc. 

In this article, a new approach has been developed to find the exact solutions of nonlinear partial differential 
equations of fractional order by the fractional complex transformation [17] and modified simple equation me-
thod [18] [19], in the sense of modified Riemann-Liouville derivative. For this, we first use the fractional com-
plex transformation on these equations to convert into ordinary differential equations. Then, the modified simple 
equation method can be applied to find the exact solutions. Two applications are being considered to find the 
solution of nonlinear Burgers’ equation with time-space fractional derivatives, which has the following form [5]: 
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and time-spce fractioanl derivative foam drainage equation [11]: 
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The rest of the article is organized as follows, in section 2 the basic definitions and properties of the fractional 
theory are considered regrading to modified Riemann-Liouville derivative. In section 3, the modified simple 
equation method has been proposed to find the exact solutions for NPDEs of fractional order with the help of 
fractional complex transformation. The two applications are being considered to find the exact solution in sec-
tion 4. In last section 5, the conclusion has been drawn. 

2. Preliminaries and Basic Definitions 
In this section, the extended method has been applied in the sense of the Jumarie’s modified Riemann-Liouville 
derivative of order α . For this, some basic definitions and properties of the fractional calculus theory are being 
considered (for details see [3]). Thus, the fractional integral and derivatives can be defined following [20] [21]: 

Definition 2.1 A real function ( ) , 0f s s > , is said to be in the space ,C Rκ κ ∈ , if there exists a real number 
p κ>  such that ( ) ( )1

pf s s f s= , where ( ) ( )1 0,f s C∈ ∞ , and it is said to be in the space mCκ  if mf Cκ∈ , 
m N∈ . 

Definition 2.2 The Jumarie’s modified Riemann-Liouville derivative, of order α , can be defined by the 
following expression: 
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Moreover, some properties for the modified Riemann-Liouville derivative have also been given as follows: 
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( ) ( )( ) ( ) ( ) ( ) ( ) ,s s sD f s g s f s D g s g s D t sα α α= +  

( ) ( ) ( ) ( ) ( )( ) .s g s sD f g s f g s D g s D f g s g t
αα α α′ ′= =            

3. The Modified Simple Equation Method 
In this section, the modified simple equation method [18] has been discussed to obtain the solutions of nonlinear 
partial differential equations of fractional order, in very easy way. 
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For this, we consider the following NPDE of fractional order: 

( ), , , , , , , , , 0,  for 0 , , 1,t s x t t t s s s s xP u D u D u D u D D u D D u D D u D D uα β γ α α α β β β β γ α β γ= < <          (3.1) 

where u is an unknown function and P is a polynomial of u and its partial fractional derivatives along with the 
involvement of higher order derivatives and nonlinear terms. 

To find the exact solutions, the method can be performed using the following steps. 
Step 1: First, we convert the NPDE of fractional order into nonlinear ordinary differential equations using 

fractional complex transformation introduced by Li et al. [17]. 
The travelling wave variable 

( ) ( ) ( ) ( ) ( )
, , , 

1 1 1
Kt Lx Myu t x y u

α β γ

ξ ξ
α β γ

= = + +
Γ + Γ + Γ +

                     (3.2) 

where K, L and M are non-zero arbitrary constants, permits us to reduce Equation (3.2) to an ODE of ( )u u ξ=  
in the following form 

( ), , , , 0.P u u u u′ ′′ ′′′ =
                                 (3.3) 

Step 2: Suppose that the solution of Equation (3.3) can be expressed as a polynomial of ( ) ( )( )ψ ξ ψ ξ′  in 
the form: 
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where iA′ s are arbitrary constants. 
Step 3: The homogeneous balance can be used, to determine the positive integer m, between the highest order 

derivatives and the nonlinear terms appearing in (3.4). 
Step 4: After the substitution of (3.4) into (3.3), we collect all the terms with the same order of ( )ψ ψ′  

together. Equate each coefficient of the obtained polynomial to zero, yields the set of algebraic equations for 
, , , ,K L M λ µ  and ( ) 0,1, 2, ,iA i m= 

. 
Step 5: After solving the system of algebraic equations, the variety of exact solutions can be celebrated. 

4. Applications to the Modified Simple Equation Method 
In the following subsections, two applications (given in Equations (1.1) and (1.2)) are being considered to find 
the exact solutions by the proposed method. 

4.1. Nonlinear Time-Space Fractional Burgers’ Equation 
In this section, the modified simple equation method has been applied to construct the exact solutions for the 
nonlinear space-time fractional Burgers’ Equation (1.1). It can be observed that the fractional complex transform 

( ) ( ) ( ) ( )
, ,  

1 1
Kx Ltu x t u

β α
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= = +
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                          (4.1) 

where K and L are constants, permits to reduce the Equation (1.1) into an ODE of the following form: 
2 0,Lu aKuu bK u′ ′ ′′+ + =                                 (4.2) 

Now by calculating the homogeneous balance (i.e., 1m = ), between the highest order derivatives and nonli-
near term presented in the above equation, we have the following form 

( ) ( )
( )0 1u A A

ψ ξ
ξ

ψ ξ
′ 

= +   
 

                                (4.3) 

where 0 1, ,A A K  and L are arbitrary constants. To determine these constants substitute the Equation (4.3) into 
(4.2), and collecting all the terms with the same power of 1 2,ψ ψ− −  and 3ψ −  together, equating each coeffi-
cient equal to zero, yields a set of algebraic equations. 
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( ) 2
0 0,L A aK bKψ ψ′′ ′′′+ + =                                 (4.4) 

( )( ) ( )2 2
0 1 3 0,L A aK A aK bKψ ψ ψ′ ′ ′′− + + − =                          (4.5) 

and 

( )( )3
12 0.bK A a ψ ′− =                                   (4.6) 

The above Equation (4.6), yields the value 1
2bKA

a
= . 

The general solution of the Equation (4.4) is 

( ) 0
0 1 2 2e ,   where  .m aALc c c m

bKbK
ξψ ξ ξ= + + = − −                      (4.7) 

While 0 1,c c  and 2c  are arbitrary constants. Consequently to this, the exact solution of the Equation (1.1) 
has the following form 
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For, the value 1
2bKA

a
=  the Equation (4.5) reduces to 

( )( )2 2
0 0,L A aK bKψ ψ ψ′ ′ ′′+ + =  

which also gives the same results. 

4.2. Nonlinear Time-Space Fractional Derivative Foam Drainage Equation 
Applying the fractional complex transformation on the Equation (1.2), which reduces into the following form: 

( )2 2 2 21 2 .
2

Lu K uu K u u K u′ ′′ ′ ′= + +                           (4.8) 

Now by calculating the homogeneous balance, which is 1m = . We have the following form of the Equation 
(3.4) 
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                              (4.9) 

where 0 1, ,A A K  and L  are arbitrary constants. To determine these constants, equate the coefficients of 1ψ − , 
2 3,ψ ψ− −  and 4ψ −  equal to zero, yields the set of algebraic equations. 
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and 

( )( )4
1 0.K A ψ ′− =                                (4.13) 

The above Equation (4.13), yields the value 1A K= . 
Case 1: The general solution of the Equation (4.10) is 
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2
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where 0 1,c c  and 2c  are arbitrary constants. Consequently to this, the exact solution of the Equation (1.2) has 
the following form 
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Case 2: For the value 1A K= , the general solution of the equation (4.11) is 
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while 0 1,c c  and 2c  are arbitrary constants. Consequently to this, the exact solution of the Equation (4.1) has 
the following form 
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Case 3: For the value 1A K= , the general solution of the Equation (4.12) is 
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0 1 2 3
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where 0 1 2, ,c c c  and 3c  are arbitrary constants. Consequently to this, the exact solution of the Equation (1.2) 
has the following form 
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Which are the required results. 

5. Conclusion 
The modified simple equation method has been extended to solve the nonlinear partial differential equation of 
fractional order, in the sense of modified Riemann-Liouville derivative. First, the fractional complex transfor-
mation has been used to convert the fractional order differential equations into ordinary differential equations. 
Then, the modified simple equation method has been used to find the exact solutions. The two applications have 
been considered to find the new exact solutions for the nonlinear time-space fractional derivative Burgers’ equa-
tion and time-space fractional derivative foam drainage equation. It can also be concluded that the proposed 
method is very simple, reliable and a variety of exact solutions to NPDEs of fractional order are proposed. 
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