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Abstract 
We consider the block matrices and 3-dimensional graph manifolds associated with a special type 
of tree graphs. We demonstrate that the linking matrices of these graph manifolds coincide with 
the reduced matrices obtained from the Laplacian block matrices by means of Gauss partial di-
agonalization procedure described explicitly by W. Neumann. The linking matrix is an important 
topological invariant of a graph manifold which is possible to interpret as a matrix of coupling 
constants of gauge interaction in Kaluza-Klein approach, where 3-dimensional graph manifold 
plays the role of internal space in topological 7-dimensional BF theory. The Gauss-Neumann me-
thod gives us a simple algorithm to calculate the linking matrices of graph manifolds and thus the 
coupling constants matrices. 

 
Keywords 
Graph Manifolds, Continued Fractions, Laplacian Matrices, Kaluza-Klein 

 
 

1. Introduction 
Graphs can serve as a universal remedy for the codification and classification of topological spaces, matrices, 
dynamical systems, etc. In this article, we consider the following question: how the topological invariants of 
manifold corresponding to a tree graph (graph manifold) can be calculated using the method of Gauss-Neumann 
partial diagonalization of Laplacian matrix defined for the same graph. This calculation can be useful in multi-
dimensional models of Kaluza-Klein type, where coupling constants of gauge interactions are simulated by the 
rational linking matrices of the internal space [1]. We constructed various models [2] [3] where the role of in-
ternal spaces is played by a specific family of 3-dimensional graph manifolds, whose rational linking matrices 
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describe the hierarchy of gauge coupling constants of the real universe. The basic structure blocks of these graph 
manifolds are Seifert fibered Brieskorn homology spheres, defined as the link of Brieskorn singularity 
( ) ( ) { }31 2 5

1 2 3 1 2 3: , , : 0aa aa a a a z z z SΣ = Σ = + + =  , with 1 2 3, , a a a  pairwise relatively prime positive numbers [4]. 
Bh-spheres belong to the class of Seifert fibered homology spheres (Sfh-spheres). On each of these manifolds, 
there exists a Seifert fibration with unnormalized Seifert invariants ( ),i ia b  subject to  

( )( ) 3
1 1i iie a b a a
=

Σ = = −∑ , where 1 2 3a a a a=  and ( )( )e aΣ  is its rational Euler number, the well known 
topological invariant of a Bh-sphere. The topological operation known as plumbing [5] is used to past together 
Bh-spheres according to plumbing diagrams (Figure 4) which can be transformed in plumbing graphs (Figure 
3). This type of graphs and their Laplacian block matrices is the main object of attention in this article. 

The paper is organized as follows. In section 2 we define the type of tree graphs considered in this paper 
(plumbing graphs) and Laplacian matrices for these plumbing graphs. We recall also the Gauss-Neumann me-
thod of partial diagonalization by means of which we obtain the reduced rational tridiagonal matrix for each 
plumbing graph. In section 3 we construct graph manifolds codified by the plumbing graphs defined in section 2 
and calculate the main topological invariant for these 3-dimensional manifolds, namely rational linking matrix. 
Then we demonstrate that the linking matrices of these graph manifolds coincide with the reduced matrices ob-
tained from the Laplacian block matrices by means of Gauss-Neumann partial diagonalization procedure. Final-
ly, we conclude formulating our main results and considering an example of their application for the topological 
field theory. 

2. Block Matrix Representation for a Graph pΓ  of Tree Type 
We begin from the definition of graph Γ  as a finite one-dimensional simplicial complex, which does not con-
tain multiple edges and loops, i.e. we consider only the graph of tree type. An integer weight ie  is assigned to 
each vertex of Γ . Vertices with at least three edges are called nodes. For simplicity we shall use graphs with 
nodes of minimal valence (n = 3) only (a generalization to 3n ≥  is obvious). Suppose that the set of nodes   
of the graph Γ  is non-empty. Considering the graph Γ  as a one-dimensional simplicial complex, we take the 
complement Γ − . This complement is the disjoint union of straight line segments which are the maximal 
chains of Γ . Figure 1 shows a maximal internal chain { }1, , kv v  of length k between two nodes IN  and 

JN , with weights { }1, , ke e  embedded in a tree graph Γ . The chain is maximal because it cannot be in-
cluded in some larger chain. Figure 2 shows a maximal terminal chain { }1, , kv v  of length k also with 
weights { }1, , ke e . 

In this paper we shall considered only the simplest type of graphs which are called plumbing graphs. An ex-
ample of plumbing graph pΓ  is given in Figure 3. This type of graphs is used to codify the plumbing graph 
manifolds [5] which will be constructed in the following section, where it will be clear why weights of plumbing 
graph are called Euler numbers. In Figure 3 the Euler numbers I

i  and I
ie  decorate the vertices with valence 

1 and 2. The nodes are marked by NI with 1, ,I R=   and form a straight line or chain structure. We associate 
 

 
Figure 1. A maximal internal chain of length k. 

 

 
Figure 2. A maximal terminal chain of length k. 
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Figure 3. The plumbing graph pΓ . 

 
to each node a weight equal to zero that is connected with using of the unnormalized Seifert invariants for 
Bh-spheres, which are the block elements for the construction of graph manifolds [6]. 

Now let’s define a Laplacian matrix for the plumbing graph pΓ  as follows: 

( )
, if ;

1, if and is connected to by an edge;
0, otherwise,

A
AB

p A B

e A B
Q A B v v

=
Γ = − ≠



 

with integer numbers Ae  corresponding to each vertex Av . This is a tridiagonal block matrix containing all the 
information about the graph pΓ . The I-th fragment of the matrix ABQ  which corresponds to the I-th piece of 
the graph pΓ  shown in Figure 3 is represented as 

( )

1

1

1

1

1

1
1 0 0 0 1

0 1 0

0 1
1 0

0 1 1
1 0 0 1 0 1

1 1
1

1
1 1

1 0 1
1

I

I

I

I
n

I
m

I

AB I
p

I

I
n

I

e

Q
e

e

−

−

+

− 
 − − 
 −
 
 −
 − 
 − −
 

Γ = − − − 
 − −
 

− 
 − 
 − −
 

− − 
 − 





 

 












 

Note that 0I  denotes an integer number 0 corresponding to the node IN . Now we pay attention to the 
tridiagonal submatrices (blocks) of type 

1

0 1
1 1

1
1

1 1
1 0

ab

n

e

B

e

− 
 − − 
 −

=  
− 

 − −
  − 





 

and notice that using Gauss-Neumann partial diagonalization [7] the matrix is equivalent to the rational block 
matrix 

[ ] [ ] [ ]1 2 1 1 red, , ,ne e e e e B⊕ ⊕ ⊕ ⊕   

where 
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red *

1

1   

q
p p

B
q

p p

 
 
 = −
 
 
 

 

and [ ]1, , n
p e e
q
= −  , [ ]1* , ,n

p e e
q

= − 
, [ ][ ][ ] [ ]1 2 1 3 2 1 1, , , , ,np e e e e e e e e= −   . Here we are using the stan-

dard definition of continued fraction 

[ ]1 1

2

1, , .
1

1

n

n

e e e
e

e

= −
−

−





 

Applying the general Gauss-Neumann partial diagonalization method for the matrix ( )AB
pQ Γ  we obtain a 

similar result where redQ  is a rational tridiagonal matrix of rank R  (the number of nodes of the graph pΓ ) 
whose elements on the diagonal are a sum of three terms representing each maximal chain connecting to the 
node. 

( )

0 1 1

0 1 1

1

1

1 1

red 1 1

, if 1;

, if 2, , 1;

, if

1 , if 1 or 1

0, other case

I I I

I I I

R R R
IJ

p R R R

I

b q b I J
a p a
q q b I J R
p p a
q b bQ I J R
p a a

J I J I
p

∗ −

−

∗ − +

− +


+ + = =




+ + = = −

Γ = − + + = =



= − = +







                   (1) 

where 1 , ,
I

I
I I

mI
a
b

 = −     are continued fractions for a terminal chain, and 1 , ,
I

I
I I

nI
p e e
q

 = −    for a internal  

chain. We have used the notation q∗  to indicate that the order of the numbers on the continued fraction is in-  

verse, i.e. 1, ,
I

I
I I
nI

p e e
q∗

 = −  
. So, we can reduce each chain of pΓ  to a rational number b

a
, q

p
 or q

p

∗

  

which is represented as a continued fraction, and thus reduce the original block tridiagonal matrix ( )pQ Γ  to a 
tridiagonal matrix ( )red pQ Γ  whose size depends just of the number of nodes of pΓ . It is important to note that 
it is possible to obtain the original matrix ( )pQ Γ  from the reduced matrix ( )red pQ Γ . 

3. Rational Linking Matrix for Graph Manifold ( )pM Γ  
In this section we will construct a plumbing graph manifold ( )pM Γ  codified by the same graph pΓ  as in 
section 2. Now we see the weight ie  as the Euler number of the principal S1-(U(1)-)bundle, corresponding to 
i-th vertex iv . We define the bundle ( )iM e  associated to each vertex iv  as S1-bundle over 2S  with the 
Euler number ie , which can be pasted together from two trivial bundles over 2D  as follows [8] [9] 

( ) ( )2 1 2 1 2 1 1 1 1 1 2 1, :
iH iD S D S H D S S S S S D S× × ∂ × = × → × = ∂ ×  

where 
1 0

.
1i

i i

xx x
H

e y e xy y
− −      

= =      − −      
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Note that the above is a well known description of the lens space ( ),1iL e , so the total space of the bundle is 
( ) ( ),1i iM e L e= . To perform pasting operation, which is known as plumbing between the S1-bundles, we must 

use the trivial bundles over annuli ( ) 1 1
iA i HM e A S A S= × ×  where A is an annulus or twice punctured sphere 

2S . The manifold ( )pM Γ  is pasted together from the manifolds ( )A iM e  as follows [9]: whenever vertices 
iv  and jv  are connected by an edge ijσ  in pΓ  we paste a boundary component 1 1S S×  of ( )A iM e   

to a boundary component 1 1S S×  of ( )A jM e  by the map 
0 1
1 0

J  
=  
 

:  

1 1 1 1,
i jH J HA S A S A S A S× × × ×  

 so the base and fiber coordinates are exchanged under the plumbing 
operation. Thus the edge ijσ  corresponds to the torus 2 1 1

ijT S S= ×  along which the pieces ( )A iM e  and 
( )A jM e  pasted together. 

For example, the plumbing of the chain shown in Figure 1 gives us the pasting 

( ) ( ) ( ) ( )1 1 1 1 ,
i k

I J
J H J J H JM N A S A S A S A S M N× × × ×       

where ( )IM N  is a 1S -bundle associating with the node IN . This chain corresponds to a Seifert fibered 
thick torus (homeomorphic to [ ]2 0,1T × ) in graph manifold ( )pM Γ . Also, the terminal maximal chain shown 
in Figure 2 corresponds to a Seifert fibered solid torus (homeomorphic to 2 1D S× ) in ( )pM Γ . The using of 
graphs with nodes of valence 3n =  (as in Section 2) corresponds to plumbing of Brieskorn homology spheres 
(Bh-spheres) [4]. 

Now recall that each edge σ  of pΓ  relates to the embedded torus ( )2
pT Mσ ⊂ Γ  and the collection of all 

these tori cuts the graph manifold ( )pM Γ  into disjoint union of circle bundles over n times punctured sphere 
2

1
, 1 3.n

ll
S p n

=
≤ ≤



  In general, the bundles are over compact surfaces of genus g with some boundary com-
ponents, see [8] [9]. Such a collection of tori W  is called a graph structure on ( )pM Γ  by Waldhausen [10]. 
We want to define the Jaco-Shalen-Johannson (JSJ) graph structure JSJ W⊂   of the Waldhausen graph struc-
ture and to specify the corresponding JSJ-decomposition of graph manifold ( )pM Γ  on the set of Seifert fi-
bered pieces ( )JSJ

IM N . Let us denote ( )p  the set of maximal chains in the graph pΓ . This set can be 
written as a disjoint union ( ) ( ) ( ) ,i tp p p=     where ( )i p  denote the set of interior chains and ( )t p  
is the set of terminal chains. The edges of pΓ  contained in a chain ( )C p∈  correspond to a set of parallel 
tori in ( )pM Γ . Choose one torus 2

CT  among them and define 

( )
2

JSJ
i

CC p
T

∈
=


                                      (2) 

This set of tori performs the well known JSJ-decomposition of the graph manifold ( )pM Γ  [11]. 
By construction, each piece ( )JSJ

IM N  (denoted as JSJ
IM  for brevity) of JSJ-decomposition that corres-

ponds to the node IN  contains a unique piece ( )I
WM N  (which we shall denote as I

WM ) of Waldhausen de- 
composition associated with the same node IN . One can extend in a unique way up to isotopy the natural Sei-
fert structure without exceptional fibers on I

WM  to a Seifert fibration on JSJ
IM  with exceptional fibers. Thus 

in these terms the JSJ-decomposition of the manifold ( )pM Γ  is defined completely by ( ) 1
,R I

p JSJI
M M

=
Γ =



 
where R is the number of nodes in pΓ  and the bar over M means the closure of the piece JSJ

IM . 
Note that there exists an uncertainty in the choice of the torus 2

CT  for each internal chain which appear in the 
JSJ-structure (2). We can remove this uncertainty in following way. Let us perform the maximal extension of the 
natural Seifert fibration from each I

WM  and denote the obtained Seifert fibered piece of ( )pM Γ  by ˆ IM . It is 
clear that ˆ ˆI JM M ≠ ∅  if and only if there exists a chain IJC  joining the nodes IN  and JN . If we start 
with plumbing of R Bh-spheres ( ){ }1 2 3, , 1, ,I I Ia a a I RΣ =  , the resulting graph three-manifold will be integer 
homology sphere [4] [9] (-homology sphere), which in general case does not have the global Seifert fibration. 
But we can construct the JSJ-covering { }ˆ: 1, ,IM I R= =  , such as each ˆ IM  is a Seifert fibered space and 
it is maximal in the sense described above. 

Suppose that we perform the plumbing operation according to the plumbing diagram p∆ , shown on the Fig-
ure 4. Thus our plumbing diagrams will always have the pairwise coprime weights around each node and cor-
respond to -homology spheres [5]. 

We construct the plumbing graph pΓ  for a -homology sphere, following [5] [8] [9] (as a result we shall 
obtain a graph of type shown in Figure 3). First of all we calculate the characteristics of maximal chains. For 
terminal chains the integer Euler numbers I

i  are defined by the continued fraction: 
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Figure 4. A plumbing (splicing) diagram Δp. 

 

1 , , ,
I

I
I I

mI

a
b

 − =                                        (3) 

where ( ),I Ia b , 0, , 1I R= +  are the Seifert invariants, numerated in the following way 
0 1 0 1 1 1

3 3 1 1 2 2, ; , , 1, , ; , .J J J J R R R Ra a b b a a b b J R a a b b+ += = = = = = =                 (4) 

For internal chains the integer Euler numbers I
ie  are defined by 

1 , , ,
I

I
I I

nI

p e e
q

 − =  
                                   (5) 

where the Seifert (orbital) invariants ( ),I Ip q , 1, , 1I R= −  characterize the thick tori ( ) [ ]2, 0,1I ITT p q T≅ × , 
which are created by the plumbing operations performed between the nodes IN  and 1IN + , see [6] [9]. These 
invariants identify also the extra lens spaces ( ),I IL p q  which arise in four-dimensional plumbed V-cobordism 
(corresponding to the graph pΓ ) with 

( )1 1 1 1 1 1
2 3 1 3 1 2 2 3 1 2 1 3 1 3,    I I I I I I I I I I I I I I I Ip a a a a a a q b a a a b a a b+ + + + + += − = + +  

for the ordering fixed by the plumbing diagram in Figure 4. From this representation of the plumbing graph it is 
clear that for 2, , 1I R= −  the set ˆ IM  of JSJ-covering   has the form 

( ) ( ) ( )1 1ˆ , , , ,I I I I I I I I
WM M TT p q TT p q ST a b− ∗ −=                         (6) 

where ( ),I IST a b  is a Seifert fibered solid torus with Seifert invariants ( ),I Ia b  and 

1, , ,
I

I
I I
nI

p e e
q∗

 − =  
                                   (7) 

For the cases 1I =  and I R=  the formulas are different from (6): 

( ) ( ) ( )1 1 1 0 0 1 1ˆ , , , ,I
WM M TT p q ST a b ST a b=                           (8) 

( ) ( ) ( )1 1 1 1ˆ , , , .R R R R R R R R
WM M TT p q ST a b ST a b− ∗ − + +=                       (9) 

Moreover ( ) ( )1 *ˆ ˆ , ,   2, , 1.I I I I I IM M TT p q TT p q I R+ ∗= ≅ = −   Here the symbol *≅  indicates that  
( ),I ITT p q  and ( ),I ITT p q∗  are homeomorphic, but their Seifert structures are characterized by different in-

teger Euler numbers defined by (5) and (7) respectively. Thereby the thick torus between the nodes NI and 1IN +  
has two Seifert fibrations: the first is the extension of the natural Seifert fibration defined on the piece I

WM  and 
the second one is obtained as extension from the piece 1I

WM + . These Seifert fibrations are connected by the ma-
trix [6] [9]: 

1 2

1 01 0 1 00 1 0 1
11 11 0 1 0  

I I
I

I I
n

q p
S

ee ep q

∗

∗

−− −      −    
= =          −− −         

  

in the following sense. Recall that edges of pΓ  contained in a chain , 1I IC +  (between the nodes NI and 1IN + ) 
correspond to the set parallel tori in ( )pM Γ . On any of these tori there exist two bases formed by the section 
lines and the fibers pertain to the Seifert fibrations extended from I

WM  and 1I
WM + , which we denote as the pair 

of columns 
1

2 3

1

and .
I I

I I

s s
f f

+

+

   
   
   

                                  (10) 
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Subindices 2 and 3 manifest that ( )1 2 3, ,I I Ia a aΣ  and ( )1 1 1
1 2 3, ,I I Ia a a+ + +Σ  are plumbed together along the sin-

gular fibers with Seifert invariants 2
Ia  and 1

3
Ia +  (see Figure 4). Then the transformation between these sec-

tion-fiber bases is described by 
1

2 3

1

,
  

I II I

I I
I I

s sq p
f fp q

+∗

∗
+

    −
=    
    

 

where Ip∗  is defined from ( )det 1I I I I IS q q p p∗ ∗= − + = − . 
Now we introduce the one-form bases ( )2 , I

Iσ κ  and ( )3 1
1, I

Iσ κ +
+ , duals to the bases (10) in the following 

sense: 

1 1
2 3 1 2 3

2 3 2 3 1
1 11; 0,I I I I

I I I

I I I
I I I Is s f f f s s

σ σ κ σ σ κ κ+ +
+

+
+ += = = = = = =∫ ∫ ∫ ∫ ∫ ∫ ∫  

where the integrals are calculated over any such section line or fiber as, for example, in [12]. Thus we obtain the 
corresponding transformations between the the dual one-forms: 

2 3 1 3 1
1 1;      .I I I I I I I

I I Iq p p qσ σ κ κ σ κ∗ + ∗ +
+ += − + = +                      (11) 

We suppose that the forms σ  and κ  are dual with respect to the bilinear pairing defined as 

1
2 2 3 3

1 1 1ˆ ˆ ˆ ˆ, : d ; , : d ,I J I J
J J J J J J

I I I I I IM M M M
σ κ σ κ δ σ κ σ κ δ++ + += ∧ = = ∧ =∫ ∫

 

          (12) 

Also we shall used the integrals 

( ) ( ) ( )
, 1 1 , 1, 1 1 1

, , ,
d ; d ; d ,I I I I I I

I I I I I I I I I I I I
TT p q TT p q TT p q

κ κ κ κ κ κ∗
+ + + + + +Λ = ∧ Λ = ∧ Λ = ∧∫ ∫ ∫  

which define the linking (intersection) numbers of the fiber structures Iκ  and 1Iκ +  defined on thick torus 
( ) ( )*, ,I I I ITT p q TT p q∗≅ . We can obtain the rational linking matrix for ( ) ( )*, ,I I I ITT p q TT p q∗≅  by means 

of multiplication of the Equations (11) by d Iκ  and 1d Iκ +  and integration over ( ) ( )*, ,I I I ITT p q TT p q∗≅ . 
Applying the duality conditions (12) we obtain: 

, 1 1, , 1, 11    ;   .
I I

I I I I I I I I
I I I

q q
p p p

∗
+ + + +Λ = Λ = Λ = Λ =                        (13) 

The rational numbers ,I IΛ  and 1, 1I I+ +Λ  are also known as Chern classes of the line V-bundles associated 
with the Seifert fibrations with the U(1)-invariant connection forms Iκ  and 1Iκ +  on the lens spaces ( ),I IL p q  
and ( ),I IL p q∗  respectively [12]. 

Now we are ready to calculate the rational linking matrix for the graph manifold ( )pM− Γ  (see Figure 3): 

( ) d .
p

IJ I J
M

K κ κ
Γ

= − ∧∫  

We integrate here over the three dimensional graph manifold ( )pM− Γ  to obtain a positive definite linking 
matrix. This manifold has the opposite orientation with respect to the graph manifold ( )pM Γ  obtained directly 
by plumbing of Bh-spheres, which are defined as links of singularities. This construction of the graph manifold 

( )pM Γ  gives the possibility to represent it also as a link of singularity that guarantees its rational linking ma-
trix to be negative definite (for details see [5]). 

From the tree structure of the graph pΓ , and from the first equation in (13) we immediately obtain, that for 
I J≠  the nonzero elements are only 

( )1
, 1 1, 1 1

ˆ ˆ ,

1d d ,I I I I
I I I I I I I I

IM M TT p q
K K

p
κ κ κ κ+

+ + + += = − ∧ = − ∧ = −∫ ∫


 

for 1 1.I R≤ ≤ −  
If 2, , 1I J R= = − , we have 

( ) ( ) ( )1 1ˆ , , ,
d d d d .I I I I I I

II I I I I I I I I
IM TT p q TT p q ST a b

K κ κ κ κ κ κ κ κ− ∗ −= − ∧ = − ∧ − ∧ − ∧∫ ∫ ∫ ∫  

Here we use the decomposition (6) of the piece ˆ IM , and that the integral over trivial Seifert fibration I
WM  

is zero. Then according to the two last equations in (13) we obtain the matrix element 
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1

1 ,
I I I

II
I I I

q q bK
p p a

∗ −

−

 
= − + + 

 
                               (14) 

also known as the Chern class of line V-bundle associated with the Seifert fibration of ˆ IM . 
For 1I =  and I R=  the matrix elements are 

( ) ( ) ( )1 0 0 1 1 1 1
11 1 1 1 1

ˆ , , ,
d d d d ;I I I I

M ST a b TT p q ST a b
K κ κ κ κ κ κ κ κ= − ∧ = − ∧ − ∧ − ∧∫ ∫ ∫ ∫           (15) 

( ) ( ) ( )1 1 1 1ˆ , , ,
d d d d ;R R R R R R R

RR R R R R R R R R
M TT p q ST a b ST a b

K κ κ κ κ κ κ κ κ− ∗ − + += − ∧ = − ∧ − ∧ − ∧∫ ∫ ∫ ∫      (16) 

0 1 1 1 1
11

0 1 1 1 1; .
R R R

RR
R R R

b q b q b bK K
a p a p a a

∗ − +

− +

   
= − + + = − + +   

   
                  (17) 

Here we have used the decompositions (8) and (9) as well as the notations (4). 

4. Conclusions 
Comparing the reduced matrix ( )red pQ Γ  (1) with the results (14) and (17) for the rational linking matrix K of 
the graph manifold ( )pM− Γ  we observe that decomposing the rational invariants into continued fractions ac-
cording to (3), (5) and (7), we can create the graph pΓ  (related to diagram p∆ ) and obtain the rational linking 
matrix K of ( )pM− Γ  just by Gauss-Neumann diagonalization on the Laplacian matrix of pΓ . This is the 
main result of this article. 

We want to conclude with an example of an application of our results for the topological field theory. In [3] 
[13] we built a set of graph manifolds whose Seifert invariants are constructed on the base of the first 9 prime 
numbers 1 2 92, 3, , 23p p p= = = . The rational linking matrix of these graph manifolds are positive definite 
and have diagonal elements (and eigenvalues) simulating the low-energy coupling constants hierarchy of the 
fundamental interactions of real universe. An example of such matrix is [13] 

1 2

2 3 8

8 12 29

29 44 89

89 134

9.69 10 3.13 10 0 0 0
3.13 10 7.21 10 1.44 10 0 0

0 1.44 10 1.76 10 1.93 10 0
0 0 1.93 10 3.68 10 3.12 10
0 0 0 3.12 10 2.66 10

IJK

− −

− − −

− − −

− − −

− −

 × − ×
 
− × × − × 
 = − × × − ×
 

− × × − × 
 − × × 

, 

whose elements are all rational and the diagonal ones are described in (14) and (17) by a sum of three continued 
fractions. The matrix IJK  inverse to IJK  is integer one [6], the inversion of the rational linking matrices can 
be done with the help of any program such as MathematicaTM to verify this property, any error on calculation 
of IJK  leads to non-integer elements in resulting matrices IJK . It is also worth mentioning that in the present 
example the Laplacian block matrix ( )AB

pQ Γ , corresponding to the matrix ( )red
IJ IJ

pK Q= Γ , has  
( )( ) 20rank 4.019 10AB

pQ Γ ≈ ×  [13], while ( )rank 5IJK = . 
In the 7-dimensional Kaluza-Klein approach to the topological field theory (BF-model), the rational linking 

matrices of the 3-dimensional graph manifold may be really interpreted as coupling constants matrices [1]. So, 
the Gauss-Neumann method gives us a simple algorithm to calculate the linking matrices of graph manifolds 
and thus the coupling constants matrices (despite the probably huge rank of the original block matrix ( )AB

pQ Γ ). 

References 
[1] Verlinde, E. (1995) Global Aspects of Electric-Magnetic Duality. Nuclear Physics B, 455, 211-225.  

http://dx.doi.org/10.1016/0550-3213(95)00431-Q  
[2] Efremov, V.N., Mitskievich, N.V., Hernandez Magdaleno, A.M. and Serrano Bautista, R. (2005) Topological Gravity 

on Plumbed V-Cobordisms. Classical and Quantum Gravity, 22, 3725-3744.  
http://dx.doi.org/10.1088/0264-9381/22/17/022 

[3] Efremov, V.N., Hernandez Magdaleno, A.M. and Moreno, C. (2010) Topological Origin of the Coupling Constants 
Hierarchy in Kaluza-Klein Approach. International Journal of Modern Physics A, 25, 2699-2733.  

http://dx.doi.org/10.1016/0550-3213(95)00431-Q
http://dx.doi.org/10.1088/0264-9381/22/17/022


F. I. Becerra López et al. 
 

 
1902 

http://dx.doi.org/10.1142/S0217751X10048482 
[4] Saveliev, N. (2002) Invariants for Homology3-Spheres. Springer, Berlin, 223.  

http://dx.doi.org/10.1007/978-3-662-04705-7 
[5] Eisenbud, D. and Neumann, W. (1985) Three-Dimensional Link Theory and Invariants of Plane Curve Singularities. 

Princeton University Press, Princeton, 172. 
[6] Saveliev, N. (2002) Fukumoto-Furuta Invariants of Plumbed Homology 3-Spheres. Pacific Journal of Mathematics, 

205, 465-490. http://dx.doi.org/10.2140/pjm.2002.205.465 
[7] Neumann, W. (1997) Commensurability and Virtual Fibration for Graph Manifolds. Topology, 36, 355-378.  

http://dx.doi.org/10.1016/0040-9383(96)00014-6 
[8] Hirzebruh, F. (1971) Differentiable Manifolds and Quadratic Forms. Marcel Dekker, New York, 56-58. 
[9] Neumann, W. (1981) A Calculus for Plumbing Applied to the Topology of Complex Surface Singularities and Dege-

nerating Complex Curves. Transactions of the American Mathematical Society, 268, 299.  
http://dx.doi.org/10.1090/S0002-9947-1981-0632532-8 

[10] Waldhausen, F. (1967) Eine Klasse Von 3-Dimensionalen Mannigfaltigkeiten. I. Inventiones Mathematicae, 3, 308- 
333. http://dx.doi.org/10.1007/BF01402956 

[11] Popescu-Pampu, P. (2007) The Geometry of Continued Fractions and the Topology of Surface Singularities. In: 
Brasselet, J.-P. and Suwa, T., Eds., Singularities in Geometry and Topology 2004, Advanced Studies in Pure Mathe-
matics, Vol. 46, 119-195. 

[12] Beasley, C. and Witten, E. (2005) Non-Abelian Localization for Chern-Simons Theory. Journal of Differential Geo-
metry, 70, 183-323. 

[13] Efremov, V., Hernandez, A. and Becerra, F. (2014) The Universe as a Set of Topological Fluids with Hierarchy and 
Fine Tuning of Coupling Constants in Terms of Graph Manifolds. arXiv:1309.0690v2 

http://dx.doi.org/10.1142/S0217751X10048482
http://dx.doi.org/10.1007/978-3-662-04705-7
http://dx.doi.org/10.2140/pjm.2002.205.465
http://dx.doi.org/10.1016/0040-9383(96)00014-6
http://dx.doi.org/10.1090/S0002-9947-1981-0632532-8
http://dx.doi.org/10.1007/BF01402956


Scientific Research Publishing (SCIRP) is one of the largest Open Access journal publishers. It is 
currently publishing more than 200 open access, online, peer-reviewed journals covering a wide 
range of academic disciplines. SCIRP serves the worldwide academic communities and contributes 
to the progress and application of science with its publication. 
 
Other selected journals from SCIRP are listed as below. Submit your manuscript to us via either 
submit@scirp.org or Online Submission Portal. 

 

    

    

    

    

mailto:submit@scirp.org
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper

	Block Matrix Representation of a Graph Manifold Linking Matrix Using Continued Fractions
	Abstract
	Keywords
	1. Introduction
	2. Block Matrix Representation for a Graph  of Tree Type
	3. Rational Linking Matrix for Graph Manifold 
	4. Conclusions
	References

