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S

Abstract

We demonstrate the functional inverse of a Winter map, which is an analog of the exponential map,
for Lie algebras over fields of prime characteristic.
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“Historically,” note Strade and Farnsteiner in [1], “Lie algebras emerged from the study of Lie groups.” In
Section 1.1 of [1], they give a simple example of the close connection between Lie algebras and Lie groups. In
prime characteristic, David Winter [2] has defined maps which mimic the zero-characteristic exponential maps.
See also Lemma 1.2 of [3]. In this paper, we focus on the following “Winter maps”: if x is an element of a
characteristic- p Lie algebra L suchthat (ad  x)” =0, we set

(ad  x)° +(ad x)° +m+(ad x)
21 3l (p-1)!

where | is the identity transformation of L. Such ad-nilpotent elements of degree less than p do exist in
some graded Lie algebras, as can be seen from Lemma 2.3 and Proposition 2.7 of Chapter 4 of [1], as well as
from Lemma 1 of [4]; of course, it is well known that non-zero-root vectors of simple classical-type Lie algebras
are ad-nilpotent of degree less than or equal to four.

We will show here that for xeL such that (ad x)" =0, the inverse of &(ad  x) as a linear trans-
formation of L is f(ad L (—X)) , 0 that such transformations generate a group G of linear transformations
of L. We will also show that /l(é(ad LX)) =ad X, where, for g a linear transformation of L,and | as
above, we define

E(ad x)=1+ad x+

1(g)=(g-1)- 8= (01 (e=1)" M

2 3 (p-1)!

Thus, like In(x) and exp(x), A is, inasense, the functional inverse of ¢&.
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Lemmallf x and c areelementsof L suchthat (ad x)"=0, and (ad c)"

+2p—2 pi (ad L.x)-j (afj c)i’j
ey i)

Proof. We group terms with respect to total degree in ad | x and ad ¢ o

Lemma2 Let a,beF,andsupposethat x isanelementof L such that (ad Lx)p

f((a)adLX)f((b)adLX):5((a+b)ade).
Proof. We have by Lemma 1 that &((a)ad  x)&((b)ad ) equals
- a0 (ad )
L& j(i-j)

which we can write in terms of binomial coefficients as

S o

By the Binomial Theorem, the above expression is equal to

+0

which we can rewrite as

and recognize as £((a+b)ad X). o
Lemma 3 For any integer n=2 and any integer j, 0< j<n,we have

Zn:(—l)k(lr:jkj -0

k=0

Proof. We proceed by induction on n and |j
0-2+2=0. Forany n>2,when j=1,we have

S0 =S 2 Joe
S

P (k+1)!(n—(k+1))!

B ol (n-1)
=2 () ki((n-1)—k)!

(k+1)

n ny, i
Now, for any n=3 and any positive integer j less than n, suppose that Zk:l(—l)k [ka' =0 for all

positive i lessthan j. Then we have

. When n=2, we must have j=1

=0, then

=0. then

, and we have
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:<—n>{§(—1> "B e B )“[”k‘lj}
g g (T ro-mg] o

i=1
by induction, and the fact that ZE:O(—l)" {U =(1—1)” =0"=0 (the“ j=0 case™). o

Lemma4 Let x beanelementof L such that (ad x)p =0. Define

(0,0

O]

(ot ) =3 0 ( -y ®

Proof. We proceed by induction on n. Since when n=1, (3) is just (2), the initial step of the induction

proof is established. Suppose (3) is true for n=k =1. Then (5(a )k+1 equals

‘HHMM KY, i ok || & (ad X))
[Zo (s+k)! %[JJ( Y (k=) ][Zo (i+1)! J

We group terms with respect to total degree (t+k +1, in this case) in ad  x and get that

(sfad =" S 3 (e ) D EICT

S 3 (r+k)(t-r+ (53

Rewriting the above expression using another binomial coefficient, we get that (5 (ad Lx))k+1 equals

p—(k+1) (ad )t+k+l

t okt ak(tHk+1
t; (t+k+1)'rz,2( )( j( - ( r+k ]
We change the order of summation to get
p—(k+1)-1 (ad )t+k+l

(ot )= 5 S [ o

We replace the index of summation r by r—k toget

(5(ad LX))k+1=P—(kZ+1> (ad | )Hkﬂki( ).(kjf(utﬂj(k_j)r'

t=0 O+k+ﬂ 1) =
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Adding and subtracting terms, we get

. p—(k+1)-1 (ad )t+k+1
(6(ad LX))k =

5 (t+k+1) kE( )m{ikz?[utﬂj(k—j)’
kl[t+k+lj( j)r_rtgil(t+t+lj(k—i)r}

Setting q=k - j, we see, as in the proof of Lemma 3, that when r > 1,

O EE Ve e

MM

by that same Lemma 3. Thus,

EU )y e )

=0 J)r=o r
Kt +k+1)k2 ik A KEt+k+1

S L
=0 r j=0 J r=0 r

so from the Binomial Theorem, we get that (5(ad x))*" equals

P*(z (ad X)++ k 1( ) ( ){( —j+1)t+k+l—l—(k—j)HkH}-

= (t+k +1)1 93

We now distribute to get that (5 (ad Lx))k+l equals

p(kZﬂ)lM{:zl[K](—l)" (k= J+1)" " (-2 ‘:Z:@(_l)j (- j)w}

= (t+k+1) |30
We replace the latter index of summation j by j—1 to getthat (5(ad Lx))k+1 equals

= (t+k+1)! =]

We change the order of summation and factor to get that (5(ad LX))k+1 equals

B I A ST K S

By binomial arithmetic (5 (ad LX))k+1 equals

S ¥ R

p—(k+1)- (ad X)t+k+1
= (t+k+1)!

The above displayed formula is just (3) for n=k+1; i.e., (5(ad LX))k+l equals
Pk (ad x)t+k+1 k (k +1] kel
k+1-j .
; (t+k+l) ,Z(:,( b i ( i)

Thus, the induction step is complete. o
Theorem The linear transformation &(ad  x) of L has af(adL(—x)) as its inverse, whereas the map ¢
of adL tothe group of non-singular linear transformations of L has A asits inverse, in the sense that



T. B. Gregory

(@). &(ad x)&(ad | (-x))=1,and
(b). A(&(ad x))=ad x.

Proof. (a) If, in Lemma 2, we let a=1 and b=-1, we see that (a) is true.
(b) Since &(ad  x)—1 equalsthe 5(ad  x) of Lemma 4, we have that l(é(ad Lx)) equals

(6(ad ) (s(ad ) (6(ad X))

(3(a )L AT AT

which, by Lemma 4 equals

Wecancelan n anda j and combinethe —1 factors to get that

et )5BS

t=1 =1 | j=1

We replace the index n by n+1 and we replace theindex j by j+1,and we get that

j j+1
We now appeal to a little more binomial arithmetic to observe that since [JJ = [J J and
J J

t t t+1
(j+( ]=£_+ j,itfollows by induction that
J j+1 j+1

from which we obtain that
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We replace the index j by j—1 to getthat

pl(ad  x) & ity
A(g(ad Lx)):ZuZ(_l)J 1[ jjt 1
Finally, we use Lemma 3 to see that we are left with ad  x o
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