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Abstract 
 
This paper develops a sampling method to estimate the integral of a function of the area with a strategy to 
cover the area with parallel lines of observation. This sampling strategy is special in that lines very close to 
each other are selected much more seldom than under a uniformly random design for the positions of the 
parallel lines. It is also special in that the positions of some of the lines are deterministic. Two different vari-
ance estimators are derived and investigated by sampling different man made signal functions. They show 
different properties in that the estimator that estimate the biggest variance gives an error interval that, in 
some situations, may be more than ten times the error interval computed from the other estimator. It is also 
obvious that the second estimator underestimates the variance. The author has not succeeded to derive an 
expression for the expectation of this estimator. This work is motivated towards finding the variance of 
acoustic abundance estimates. 
 
Keywords: Acoustic Abundance Estimation, Line Surveys, Sampling Design, Sampling in the Area,  

Variance Estimation 

1. Introduction 
 
This paper is about to find the variance in acoustic sur-
veys to estimate the abundance of fish stocks. Here, usu-
ally a ship with a downward looking echo sounder that 
pings sound pulses into the sea and receive sound reflec-
tions from fish, covers an area where the fish stock under 
estimation is supposed to be located. 

Estimating the variance of acoustic abundance esti-
mates of marine resources is an old problem, but up to 
now not much has been done based on sampling design.  

The author of this paper has worked with acoustic es-
timation of fish populations. Then it is natural that the 
methods will be related to the observations of the acous-
tic signal generated by fish echoes, although such meth-
ods will always have the potential to be used in other 
applications.  

The echo signal received from a modern echo sounder 
as a function of the area position of the echo sounder is 
an example of a function of which the area integral is 
necessary to estimate. This is explained in the next sec-
tion. 

The method presented here represents the use of un-
equal probability sampling design, and can be used in 

many sampling problems where a resource to be esti-
mated are distributed over an area. 

Sampling design in the area or volume is a neglected 
field in the sampling literature, but several applications 
are demanding appropriated methods. This includes es-
timating resources that are distributed over the area or 
volume. Such resources are sometimes observed con-
tinuous along lines, and sometimes at distinct positions. 
Reference to such problems is found in Stevens and Ol-
sen (2004). 

An important assumption for the present method is 
that a quantity associated with each point in an area can 
be measured continuously with a movable device. Then, 
the quantity may be observed on a system of lines cov-
ering the area of interest. 

Here, the unequal probability design has another pur-
pose than is usual. Instead of seeking inclusion prob-
abilities that are positively correlated with the quantity to 
be observed, as for the Horvitz-Thompson estimator in 
sampling design, we use a sampling design that has a 
reduced probability to select object very close to each 
other relative to a uniform probability design. The pre-
sent design thus produces samples that are better spatial 
balanced than that produced by a uniformly random de-
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sign. 
The present paper is an attempt to give a contribution 

to the field of line sampling. 
It is a hope that more specialists in sampling theory 

will work in this field. 
 
2. Review of Echo Integration in Terms of 

Energy 
 
This is a short review of a theory of echo-integration to 
estimate the abundance of fish.  

The traditional method of Echo Integration for esti-
mating the abundance of sound scatters (MacLennan, 
1990) is based on the integration of the echo-signal. This 
quantity represents sound energy, but the conversion of 
integrator values to abundance, or density, of scatters is 
based on “back scattering cross-section”, which repre-
sents sound intensity, or power. 

In 1982 R. E. Craig proposed to rewrite sonar theory 
that is based on power, to a theory based on energy 
(Craig, 1983). Before this proposal, however, a method 
of echo integration that bases the conversion to scatter 
abundance on the energy of single target echoes were in 
use (Aksland, 1983), although the theory of the method 
was published in 1986 (Aksland, 1986), and published 
when the split beam and dual beam system were in regu-
lar use (Aksland, 2005, Aksland, 2006). This alternative 
method of echo integration does not use the concept 
“back scattering cross-section” or “Target Strength”. The 
method is in fact based on much fewer concepts than the 
traditional echo integration method. The basis of the 
method is given below. 

Let     2 1 2; ,I z t z t z  be the depth integrated 20 
Log r TVG (Time Varied Gain) echo signal (echo inten-
sity) between times 1t  and 2t  after sound transmission. 
The parameter r is the distance from the transducer. In 
general, the times 2 , 1, 2i it r c i   depend on the 
transducer position  ,z x y . Here c is the sound speed. 
The downward looking transducer is free to be moved 
within a horizontal plane with Cartesian coordinates 
 ,x y , here called the transducer plan. Let Q be a given 
region of the transducer plan. 

2 ( )d
Q

EA I z A              (1)
 

where dA  is the area differential, is defined as the Echo 
Abundance within Q subject to the depth chan-
nel.    1 1,t z t z    In applications, the dept channel may 
also consist of several disjoint time intervals. This may 
be necessary when integrating echoes from a special type 
of scatters while excluding others. 

Let  2pI z  be the integrated echo pulse intensity 
from a single scatter at 20 log r TVG, as it is when the 

echo is resolved. 

2dp
Q

EVC I A                (2) 

where the integral is over an area where the integrand is 
significant is called the Echo Value Constant of the cor-
responding scatter. As for the Echo Abundance, this in-
tegral is also over the different transducer positions in the 
transducer plane. 

By transforming the Echo Value Constant (2) to polar 
coordinates  ,   in the object reference system (a 
polar reference system with origin in the scatter and 

0   pointing vertically upward), and using that 
2d tan d dA r    , it may be expressed as 

   
2

0 0

, d tan d
c

trEVC b
 

           (3) 

where  trb   is the transmit-receive beam function 
(here circular symmetric), c  is an angle where the in-
tegrand outside c  is negligible, and 
     2, ( , )p trI b       is called the back-scat- 

tering energy of the scatter. The back-scattering energy is 
the same as the beam compensated integrated 40 log r 
TVG echo pulse received from the scatter when the 
transducer is in direction  ,   in the object reference 
system. A necessary condition for this is that the ratio 
between the 40 log r TVG and 20 log r TVG functions 
satisfies exactly the relation 

2
2 240 log TVG

20log TVG 4

r c
r t

r
  . 

Note that the Echo Value Constant of a scatter de-
pends on both the level of the echo signal and the pulse 
length used, as well as on the beam function. For a fixed 
acoustic system it is a quantity that varies with the time 
since movement and other kinds of behaviour of the 
scatters will affect their Echo Value Constants. 

If c  in (3) is replaced with a variable angle  , the 
corresponding function is called the Echo Value, that is, 

     
2

0 0

, d tan dtrEV b
 

            (4) 

If   increases from zero, it turns out that the Echo 
Value increases at first, but flattens out when   ap-
proaches the outer part of the main lobe. When   is 
equal to or bigger than the angle 20  where the trans-
mit-receive beam has fallen 20 dB, the Echo Value is 
approximately constant due to the strong beam damping. 
It is the value of this flat region that is called the Echo 
Value Constant, and this property justifies its name. 

It can be proved that both the Echo Abundance and the 
Echo Value Constants of single scatters are independent 
of the distance between the transducer and scatters when 
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2I  does not include noise. These properties are due to 
the 20 log r TVG. 

Let EAEVC  be the average, or mean Echo Value Con-
stant over the scatters that contribute to the Echo Abun-
dance (EA). It can be proved (Aksland, 1986) that 

1

N

EAi
i

EA EVC N EVC


            (5) 

where N is the number of scatters and iEVC  is the Echo 
Value Constant of the i-th scatter that contributes to the 
Echo Abundance. Relation (5) is true if the depth integral 
of overlapping echoes is the same as the sum of the indi-
vidual integrated resolved echo pulses over all scatters. A 
necessary condition for this is that the phases of the ech-
oes from each single scatter are uncorrelated, and that 
shadow effects are negligible (Zhao and Ona, 2003). 

By writing (5) as 

EA

EA
N

EVC
  

we see that the mean Echo Value Constant correspond-
ing to an Echo Abundance is a constant that converts the 
Echo Abundance to the number of scatters. 

The mean Echo Value Constant may be estimated 
from integrated single target echoes at 40 log r TVG and 
corresponding detection angles provided that the echoes 
are representative for all echoes that contributes to the 
Echo Abundance. The detection angle of an echo is the 
angle between the beam axis and the direction between 
the transducer and the scatter, and can be detected within 
the main lobe with split beam and dual beam echo 
sounder systems. See Aksland, (2005), (2006) and (2010) 
for details. 
 
3. Estimating the Echo Abundance 
 
The Echo Abundance is the area integral of the echo in-
tensity as a function of the transducer position over an 
area. The alternative echo integrator-method defines and 
uses the Echo Abundance, so the sampling methods to be 
developed here refer to this method. A review of the the-
ory behind the alternative echo integrator-method is 
given in Section 2. 

Short reviews of other methods to estimate the Echo 
Abundance are given below. 
 
3.1. Review of Estimating the Echo Abundance 
 
A non statistical way of estimating the Echo Abundance 
within a given sea area Q is to observe the echo intensi-
ties     2 1 2; ,I z t z t z  , (see (1)), on a system of lines 
covering Q. Next fit some parametric class of surfaces 
over Q to the observed values of 2I . Then, the volume 

under the fitted surface within Q will be an estimator of 
the Echo Abundance. An example of this way to estimate 
the Echo Abundance is given in Aksland (1983). 

This method does not estimate the precision of the es-
timated Echo Abundance. 

The method can, nevertheless be recommended if the 
precision of the abundance estimate is not very important, 
or if it is believed that the precision of the Echo Abun-
dance is small compared to other factors of uncertainty 
affecting the abundance estimate. 

To estimate the Echo Abundance with precision is a 
challenge. Since acoustic data are observed along lines, 
application of probabilistic survey design methods are 
not appropriate except for special cases where each strata 
are covered with parallel lines of observations. This case 
is equivalent with sampling points on a line, where the 
integrated echo intensities are projected onto a line or-
thogonal to the parallel lines. The parallel lines are then 
projected to points of observation onto the orthogonal 
line. 

This restriction of probability sampling methods may 
be reduced through a generalization of the foundation of 
probability sampling theory. Then randomization of 
other types of lines covering an area may be used. In 
acoustic abundance estimation, coverings with zigzag 
lines are common. 

Estimation of the Echo Abundance belongs to the 
more general problem of estimating an integral 

( )d
Z

f z z               (6) 

where Z is a region of the Euclidean space, and  f z  
is observed on a subset of Z with dimension commonly 
less than the dimension of Z. In acoustic abundance es-
timation Z is of dimension 2, while the set observed has 
dimension 1 (a system of lines).  

Foote and Stefánson (1993) have described and dis-
cussed different methods for estimating fish abundance 
over an area from line-transects. They recommend 
kriging methods, but have only one reference to prob-
ability sampling (Cochran). 

There are mainly two classes of methods that are 
available for estimating (6) together with an estimate of 
the precision of the estimate. This is methods within 
random field models (geostatisics, kriging) and probabil-
ity survey sampling methods, respectively. 
 
3.2. Random Field Models 
 
Here  f z  is considered as a realization of a random 
process (field)   ,F z z Z . 

Methods based on parametric models with stationary 
increments are elaborated and known as “Geostatistics”, 
(Matheron 1963). Estimators are based on predictors for 
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the values attained by the process outside the sample 
(kriging), (Krige 1951). The sample may be selected 
subjectively. The predictors have certain minimum vari-
ance properties for given model parameters (usually 
trend and auto covariance functions), and these have to 
be estimated in applications. 

Objectives against the application of random field 
models are that it is difficult to judge whether the models 
are well related to the spatial distribution they are sup-
posed to describe. Also the bias caused by spatial distri-
butions that cannot adequately be taken to be a normal 
realization of the used random field model is difficult to 
judge. 

However, the fact that these methods allow subjective 
selected samples has lead many scientists to choose these 
methods. See the book by Rivoirard et al. (2000) and 
references therein. 

 
3.3. Probability Survey Methods 
 
The methods within probability survey sampling are 
mainly concerned with the estimation of the mean 

1

1 N

jj
y y

N 
   or the total Ny of an unknown finite 

vector  1 2, , , NY y y y   The foundation given below 
follows Cassel, Särndal and Wretman (1977). 

The estimation is based on a sample from the set of 
labels  1, 2, ,J N  , where J must be known. 

A sampling design,  P s , is a probability measure on 
the set   of all subsets of J. Selection of a sample is 
done in accordance with the selected sampling design. 
The data associated with a sample s is denoted by 

 , sD s Y , where sY  is the restriction of Y to s. In 
general, an estimator is a real function  t D , s . 

The combination     ,t D P s  is called a strategy. 
The art of probability sampling is to make use of all 

known information about Y to construct a strategy that 
will give the most precise and accurate estimates for a 
given sampling budget. 

An estimator that depends only on the values of Y on 
the selected sample and is otherwise independent on the 
labels of the sample is denoted label-independent. Most 
of the traditional and well-known estimators in probabil-
ity sampling are label-independent. 

A sampling design is non-informative if  P s  is in-
dependent of values of Y. Otherwise the design is infor-
mative. 

Many methods within probability sampling may easily 
be generalized to sampling from infinite populations. 
Sampling from Euclidean space, and from an area in 
particular, are good examples, where the infinite set of 
points are the sampling objects. If the population from 
which samples are selected are a subset of a Euclidean 

space, each object has a position, and there is a unique 
distance between each pair of points. Unfortunately, such 
quantities associated with sample objects are very sel-
dom and poorly treated in the probability sampling the-
ory. In particular, when sampling a subset of the Euclid-
ean space successively to estimate an integral, estimators 
that are label-dependent and sampling designs that are 
informative are likely to be better than the traditional 
estimators in probability sampling. 

Fortunately Thompson (1990) and Thompson and Se-
ber (1996) has worked with adaptive sampling methods 
that has informative sampling designs that give better 
precision than conventional estimates of populations 
having aggregation tendencies in their area distribution. 
These estimation methods have been used in biological 
sampling as well as in acoustic surveys (Harbitz, Ona 
and Pennington, 2009), (Conners and Schwager, 2002), 
(McQuinn et al., 2005). 

When sampling values of some function defined on a 
given subset of a Euclidean space, the observed values 
give information about the spatial structure of the func-
tion values. Information about this structure should be 
used when selecting the rest of the sample, as well as in 
constructing a good estimator. When sampling in the 
area, estimators that are the volume under some fitted 
surface to the observed data are likely to have good 
properties relative to other, more traditional, estimators 
in the sampling literature. The adapted sampling design 
methods mentioned above have not been developed far 
enough to be appropriate for all situations when estimat-
ing an integral over Euclidean space. 

The case of spatial label sets impose some general 
demands on the sampling design. 

a) The design should reduce the selection of “spatial 
unbalanced” samples                          (7) 

b) For successively selected samples, the design 
should be informative 

This indicates the need for developing new methods 
within the field of probability sampling. Bertil Matern 
(1969) has pointed out this and other problems related to 
the application of probability sampling methods, but not 
much has happened with the foundation of sampling de-
sign since then. 

Case a) in (7) above means that samples that do not 
cover the space properly, or are too patchy, are “spatial 
unbalanced”. A way to avoid this is to stratify the sample 
population into n strata, where 2n is the sample size, and 
chose a probability sample of size 2 in each stratum. 
When estimating the abundance of animals with aggre-
gation tendencies, which are rather usual, there is another 
advantage of stratifying the sampling population as fine 
as possible. The population variance of small strata are 
likely to be smaller than the population variance of big-
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ger strata. Then, under the assumption of equal total 
sample sizes, the use of many small strata is likely to 
give more precise estimates than an estimator based on 
fewer and bigger strata. See Des Raj (1968), ch. 4. 

Case b) in (7) holds because when starting to collect a 
successive sample, information on the spatial structure of 
the population variable is gained. To increase the preci- 
sion, this knowledge should be used when selecting the 
sampling design for the position of the next observation. 
 
4. A Strategy for Parallel Line Survey 
 
Assume that we know approximately the area where a 
pelagic resource is located. This resource can be ob- 
served with a downward looking transducer that is 
moved within the actual area. Cover first the area along 
parallel lines that runs completely through the locations 
occupied by the resource so that sailing between the dif- 
ferent lines are outside this region. The first covering has 
the role of a pilot survey that is selected subjectively. 

Next return and go two parallel legs with random lo- 
cations between each neighbour lines of the pilot survey. 
The randomized legs should also go completely through 
the resource. Figure 1 illustrates this survey. 

In this survey, the pilot survey, which is deterministic, 
defines strata boundaries. Two random lines are selected 
within each stratum, stochastically independent of the 
selection within other stratums. To reduce the likelihood 
of selecting lines very close to each other, or to close to 
one or both lines of the pilot survey, the positions for the 
lines are selected with unequal probabilities. 

In a strata let the positions of the two selected random 

lines be lx  and 1 hx , respectively, where 1l hx x  , 
and the values observed are ly  and hy . The strata 
width is set equal to 1 since this will not represent any 
loss of generality. The function  y x  is then observed 
at the values 0, lx , 1 hx  and 1 for x . In the follow- 
ing,  y x  will be called the signal function. 

We choose the following sampling strategy for the 
stratum: 

The estimator is given by 

       0 1

1
1 1 1

2 l h h l l hT x y x y x y x x y x         (8) 

This is the same as the area under the step function 
shown in Figure 2, and defines a label-dependent esti- 
mator. 

The sampling design is given by the following prob- 
ability density: 

   , 120 1

for 0, 0, 1
l h l h l h

l h l h

f x x x x x x

x x x x

  

   
     (9) 

A plot of this density in terms of x for lx  and y for 
1 hx  is shown in Figure 3. 

It is seen that this sampling design reduces the likely- 
hood considerable that the lines will be selected close 
together, or close to some strata boundary relative to a 
uniform sampling design, where the probability density 
is constant for all x  and y . 

This sampling strategy fulfils to a certain degree de- 
mand (7a) for a strategy for estimating an integral over a 
subset of the Euclidean space. The estimator (8) repre- 
sents the area under a simple interpolation to the observed 

 

 

Figure 1. The pilot survey: thin lines. The probability survey: thick lines. The isolines illustrate the distribution of the echo 
intensity that is not known during observation. The whole survey is projected onto the line perpendicular to the parallel 
lines.  
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Figure 2. Graphical illustration of the estimator (area un-
der step function). This is the same as the area under the 
straight-line curve through the observed values. 
 

 

Figure 3. The joint probability density for the positions of 
the left ( x ) and right ( y ) random lines in a stratum. 

 
values while the sampling design reduces the likelihood 
for selecting lines close together. However, the present 
sampling design is not informative, as it is independent 
of any observed values from the survey. Unfortunately, 
this strategy does not make use of the observed variation 
along the parallel lines. 

A generalization of this method where the sampling 
design depends on the observations on the strata bounda-
ries, may appear in the future. The following are some 
statistical properties of the present strategy, which are 

derived in the Appendix I: 
The random variables lx  and hx  have identical 

marginal distributions with probability density 
 3

20 1 , 0 1x x x   , and the conditional density of 
one of the variables, z , given the other, x , is 

 
 3

1
6 ,0 1

1

z x z
z x

x

 
  


,. These distributions are used 

when generating random values for lx  and hx . Further 

     

   

2

2

1 1 2
E , E ,E ,

3 7 21
11

E , E
28 2

l l l h

l
l h h l

x x x x

x
x x x x

  


 

    (10) 

          

 

1

0 1 0

1 2 3 4
0 1 0

1
E 5 1 1 1

6
or 

1
E( ) ( ) 5 2 2 ( )

6

T y y x x x x y x dx

T y y x x x x y x dx

     

     





 

(11) 

In general T is biased, but T is unbiased if  y x  is 
linear. Moreover, when the graph of  y x  is a straight 

line over the strata, T is equal to  1

0
dy x x  for every 

selected positions of lx  and hx . This follows from 
Figure 2, and implies further that Var 0T   for the 
class of linear functions  y x a bx   for all real con-
stants a  and b . 

It is possible to specify a bigger class of functions 
  y x for which T is unbiased. However, T is in general 

biased, and although most estimators given in the sam-
pling literature are unbiased, the lack of unbiasedness for 
T is caused by the fact that T was selected without this in 
mind. It is seen from Figure 2 that T has positive bias if 
 y x  is convex and negative bias if  y x  is concave 

on  0,1 , because then  y x  will be below (above) the 
straight-line function in Figure 2. However, T is sup-
posed to be summed over several strata, and it is the total 
bias over all strata that are important here. This is likely 
to be small because the individual strata biases will be 
both positive and negative. An in depth theoretical 
analysis of the bias of the sum of T over the strata seems 
to be difficult. Some considerations are given in the 
Discussion. 

To be able to find a formula for  Var T , the ex-
pected value of 2T  is given. 

        

       
        

12 2 2 2 3 4 5 6 2
0 1 0 1 0

1 12 3 4 5 6 2 3 4 5 6
0 10 0

1 2 2 3

0 0

1 1
E 3 4 3 5 10 20 18 6 d

84 2
5 10 5 2 2 d 2 5 10 15 10 2 d

60 1 d d
z

T y y y y x x x x x x y x x

y x x x x x y x x y x x x x x x y x x

z z y z x x z x x y x x z

        

          

    



 
 

          (12)
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Formula (12) may also be expressed with the polynomials on factorial form. 

         

             

        

12 2 2 2 3 4 2
0 1 0 1 0

1 1 2 32 3
0 10 0

0, 0
1

1 1
E 3 4 1 3 2 8 12 6 d

84 2

1 5 1 2 d 1 5 2 1 d

60 1 1 1 1 d d
x z
x z

T y y y y x x x x x x y x x

y x x x x y x x y x x x x y x x

x z xz x z y x y z x z
 
 

        

       

     



 


 

With (11) and (12), expressions for the variance and 
mean square error of T may be derived. The variance 
expression given here is obtained by squaring the last 

expression of (11) and subtracting it from the first ex-
pression of (12). 

     

       

        

12 2 2 3 4 5 60
0 1 0 1 0

1 12 3 4 5 6 2 3 4 5 6 21

0 0

21 12 2 3 2 3 4

0 0 0

1
Var( ) 5 25 40 20 6 6 d

126 3
1

5 20 40 30 6 d 3 5 10 20 18 6 d
3 2

60 (1 ) ( ) ( ) d d 25 2 2 d
z

y
T y y y y x x x x x x y x x

y
x x x x x x y x x x x x x x x y x x

z z y z x x z x x y x x z x x x x y x x

         

           

        



 

  

   (13) 

An estimator for  Var T  may be obtained from (13) 
by computing it for the signal function  y x  given by 
the piecewise straight-line function through the observed 
values (see Figure 2). However, it is not easy to evaluate 
the expectation of this estimator. Since the integrals in 
(13) are tractable for piecewise linear functions for 

 y x , a program that computes this estimator has been 
developed. 

This estimator cannot take negative values since it is 
the variance of T for a given signal function. 

Another variance estimator is: 

             
        

                

2 22 2 2 2
0 1 0 1

0 1

2

1 1
Var 13 1 1 1

126 4

1 1
1 1 1

2 3 2 3

1 1 ˆ1 1 1 E 1 1 1
2 4

h l l h

l h h l l h

h l l h h l l h

T y y y y x y x x y x

y y
x x x y x x y x

x y x x y x x y x x y x

       

               
    

           

    (14) 

where 2Ê is an estimator of 
        2E 1 1 1h l l hx y x x y x    . Formula (14) is 

not in a form that can be directly applied because an es-
timator for the last line has to be inserted. The formula is 
derived in Appendix I. 

Another reason why the proposed variance estimators 
cannot be directly used is that it is derived for strata of 
with 1. This was done to simplify mathematical deriva-
tions, but it may easily be generalized to the case with 
different strata widths. 

Assume that we have n strata with widths , 1,L,ix i n . 
Let (8) be denoted by iT  in strata number i. Then, iT  

is an estimator of  1

0
dy x x , where ix x x , and  

x  runs from 0 to ix  over strata number i. Since the 
Echo Abundance in strata number i is equal to 

 
0

dix
y x x , we have that i ix T  is an estimator of the 

Echo Abundance in strata number i, while 
1

n

i i
i

x T

  is the 

corresponding estimator for the total Echo Abundance. 

Since    2Var Vari i i ix T x T , (7) or an alternative 
multiplied with 2

ix , is an estimator for  Var i ix T , and 
these may be summed over all strata to obtain an estima- 

tor for the variance of 
1

n

i i
i

x T

 . 

Note that in strata number i, l l ix x x , and 

h h ix x x , where x  and i hx x  are the absolute 
positions of the two randomized legs in the strata. 

Results from sampling a set of artificial functions are 
given in Appendix II. 
 
5. Discussion 
 
Estimating the Echo Abundance may also be useful in 
the classic echo integrating method. However, the pre-
sent methods are independent of what quantity that is 
estimated. 
 
5.1. Estimating the Echo Abundance 
 
Many acoustic surveys are carried out in a way where the 
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covering of the resource is done subjectively using 
common sense decisions. Among such decisions there 
can be found quite wise ideas to generalize the theory of 
sampling design. Although most coverings are done in 
some systematic ways using the available knowledge of 
how the actual resource distributes over the area, the 
cruise leaders will always also want to use observation 
data from the finished part of the survey to decide upon 
the remaining covering. When covering a resource sub-
jectively, legs are never selected very close to each other, 
but when using sampling design, this may happen. Many 
cruise leaders will consider close legs as a waist of 
money. But within sampling design from a finite popula-
tion, every object must have a positive probability to be 
selected in the sample. Moreover, to be able to estimate 
the variance of the used estimator, every pair of objects 
should have a positive probability to be selected. This is 
a strict requirement for the Horvitz-Thompson estimator 
based on unequal probabilities given in RAJ (1968). This 
is the reason why close legs should have a positive 
probability to be selected when using sampling design to 
select parallel lines. There are certain problems with un-
equal probability designs. See Tillé (1996), but these do 
not affect the present methods. 

There is another way to avoid the possible selection of 
close legs. This is when the echo intensity as a function 
of the area position is modelled stochastically. In Cassel, 
Särndal and Wretman (1977) it is shown how super 
population models reduce the importance of a sampling 
design and may even allow estimation of variances from 
subjectively selected samples. However, when variances 
are estimated from subjective samples based on some 
stochastic model for the area echo intensity, all prob-
abilities comes from this model, and the variance esti-
mates cannot be expected to be more reliable than the 
underlying stochastic model. 

An advantage with probability sampling methods to 
estimate populations with difficult area distribution, is 
that the estimators do not depend on some underlying 
super population model, but on man made probabilities 
expressed by the chosen sampling design. As long as 
samples are selected in accordance with the sampling 
design, the estimates are objective. Subjective knowl-
edge is used with probability sampling methods in vari-
ous ways, for instance when forming strata, and in gen-
eral when deciding upon the sampling design. Whenever 
it is felt that an estimate based on probability sampling 
design is biased, or are subject to other kinds of errors, 
this feeling comes from knowledge that is not used when 
deciding about the sampling strategy. All supplementary 
knowledge should be used when deciding the sampling 
strategy. 
 
5.2. Miscellaneous 
 
This paper shows that it is possible to reduce the prob- 

ability to select legs close to each other, but the probabil-
ity should not be zero. An estimator that is biased within 
strata in general may bother someone, but since it is the 
bias of the estimator summed over all strata that is of 
importance, the bias within strata is not serious. The bias 
for every signal function  y x  for which (8) can be 
integrated can be computed analytically. If   2y x x , 
which is convex, the bias is + 10.7%. When 
  21y x x  , the bias has the same absolute value, but 

is negative. If the likelihood to observe signal functions 
with biases that cancel each other is similar, then the bias 
of the estimated sum over many strata will tend to zero 
when the number of strata increases. However, this is not 
likely to occur exactly. An example that may occur is a 
function that is zero everywhere except for a very high 
value over a short distance caused by a fish school. If the 
school happens to stay close to a strata boundary, the 
estimator within the actual strata may have a consider-
able negative bias. The opposite situation to this, where 
the function has a high value everywhere except for a 
short distance where it is zero, is very unlikely to occur. 
However, to find out more about the bias of the estimator 
(8) summed over strata, the best study would be to com-
pute by programming the true value as well as the ex-
pectation for a lot of different functions  y x  defined 
over many strata. The study in Appendix II throws some 
light on this problem, but more signal functions and 
strata numbers are needed. However, the figures in Ap-
pendix II show that the bias usually shrinks when the 
number of strata is increased from 5 to 10. Otherwise, 
the figures in Appendix II indicate that the difference 
between (13) and (14) is less when the sampling density 
is small and when sampling signal functions with sharp 
and big variations. 

Some may have noted that the estimator iT  and 1iT   
corresponding to strata no i and i + 1 both contain the 
observed value on the common strata line. But this does 
not violate the stochastic independence of iT  and 1iT   
because observed values from the pilot survey (on strata 
boundaries) are not stochastic. 
 
5.3. The Estimators of Variance 
 
The two estimators developed in this paper may not be 
the best. The estimator based on (13) is obviously too 
small. This is indicated in the Appendix II. Estimator (14) 
is almost unbiased in theory, but Appendix II indicates 
that it is too big. 

The interval, Estimate  SD T , based on (14), con-
tains the true value in almost all cases in Appendix II, as 
well as in other cases. However, the square root of an 
unbiased estimator of the variance of an estimator has an 
expectation that is less than the expectation of the Stan- 
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dard Deviation of the estimator. Therefore, if  Var T  
is unbiased, Estimate  Var T , should not be grater 
than the Estimate  SD T  in average. 

If the estimator based on (13) has much less expecta-
tion than  Var T , it is dangerous to increase it with a 
constant factor, because the right factor may vary with 
the shape of the signal function, and as well on the sam-
pling density. One possible reason why this estimator 
estimates a too small variance, is that in all strata where 
the observed numbers 0y , ly , hy  and 1y  all happen 
to have values close to some straight line, the estimated 
variance in these strata are close to zero. 

A difference between the used man made signal func-
tions in the Appendix II and real signal functions based 
on the Echo Abundance generated by a fish population is 
that the latter is not static. This means that observed val-
ues are hardly equal if they are observed twice at differ-
ent times. As the man made signal functions used are 
continuous with continuous derivative, a function like 
this will converge to linear within strata when the strata 
widths goes to zero. Therefore, the variance estimator 
based on (13) may produce estimates that tend too fast to 
zero when the number of strata increases. It is not sure 
that the estimator has this property if it used on real 
non-static signal functions. 

Another way to find an estimator for  Var T  is to 
express it as a multiple polynomial 


0 1Var( ) i j m n

ijmn l hT c y y y y   

where ijmnc  are constants, or polynomials in lx  and 

hx . The problem is to find coefficients ijmnc  so that 
    E Var VarT T . This is a generalization of the 

method given in Des Raj (1968) to find an unbiased 
variance estimator when sampling with unequal prob-
abilities. The present author has not yet succeeded to find 
an estimator by this method. 
 
5.4. Sampling with Unequal Probabilities 
 
In the literature about sampling design, interesting results 
about sampling with unequal probabilities have been 
derived (see Des Raj (1968)). It may be tempting to try 
the Horvitz-Thompson estimator and variance estimator 
here, but in the present case this estimator is not appro-
priate. This is because the estimator does not make use of 
the observed values on the strata boundaries. 

Also, there are different reasons to apply unequal 
probabilities in the present case and in the Horvitz- 
Thompson’s case. The reason for choosing a not uniform 
random sampling strategy when sampling an area is to 
spread the sample better than is obtained with a uniform 
random sampling strategy. Living resources’ have social 

behaviour, and then it is believed that the echo intensities 
at positions close to each other are seldom very different. 
This is the reason to spread the sample in the present 
case. 

The general reason for selecting unequal probabilities 
in the Horvitz-Thompson’s case is that probabilities can 
be chosen that are positive correlated with the variable to 
be observed. 
 
5.5. The Future 
 
The author of this paper does not look upon the present 
results as a finite solution. It is more a start of using 
sampling design to estimate the variance. Hopefully, the 
results of this paper build on some principles that are 
new in sampling design. The combination of a subjective 
and a randomized covering where the estimator is label 
dependent and depends on both deterministic and ran-
domized observations is not common. It is a hope that 
generalized methods building on this principle can be 
developed. A real challenge is to combine the common 
subjective coverings with additional randomized obser-
vations for estimating the variance. 

Use of adaptive sampling strategies in sampling design 
is difficult. But if sampling designs can be based on the 
non-random observations from a deterministic part of the 
survey, the same variance reductions may be obtained 
with less statistical difficulties. 

 
6. Conclusions 

 
A special sampling strategy is proposed for covering an 
area with parallel lines of observation. The strategy con-
sists of a deterministic covering followed by a random-
ized covering between the deterministic covering. 

A label dependent estimator is proposed that depends 
on both deterministic and randomized observations. The 
sampling design is with unequal probabilities with the 
purpose to produce better spatial balanced samples. 

The theoretical Expectation and Variance of this esti-
mator are derived, and two estimators of the variance 
have been found. Further properties of the estimators of 
variance are studied by sampling man made functions. 
This study showed that one of the estimators is likely to 
underestimate the variance. 

The two variance estimators may not be the best for 
the proposed sampling strategy. However, if the pro-
posed strategy is generalized and based on similar prin-
ciples, the results in this paper is important as a special 
case. 

Estimating the variance of an estimated integral based 
on a line sample requires a generalization of the founda-
tion of sampling design. This is a big job. 
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Appendix I 
 
Derivation of Results 
 
Let us write the probability distribution (9) as 

   , 120 1 , 0, 0, 1f x z xz x z x z x z         (15) 

Where x  and z  are variables for lx  and hx , re- 
spectively. Note that this distribution is symmetric in the 
variables x  and z . This means that the marginal di- 
stributions of lx  and hx  are identical, and 

   
   

E E , 0, 0

and E E

n m m n
l h l h

l h h l

x x x x m n

x x x x

  

  

The marginal density of lx  is obtained by integrating 
(15) with respect to z . 

   

  

 

1 1

0 0

1
2

0

3

, d 120 1 d

120 1 d

20 1

x x

x

f x z z x z x z z

x x z z z

x x

 



  

  

 

 



 

Hence, the marginal density is given by 

   3
20 1 , 0 1g x x x x         (16) 

Now 

   

 

1 32

0

1 2 3 4 5

0

E 20 1 d

20 3 3 d

1
E

3

l

h

x x x x

x x x x x

x

 

   

 



   (17) 

and 

   

 

  
    

      

1 1

0 1 , 0 1

1 11 1

0 0

1 11 1 2

0 0

2 3
1 1

0

1 31

0

E 120 1 d d

1 d d

120 1 d

1 1 1
120 d (18)

2 3

120
E 1 d

2 3

n m n m
l h

x z z

zm n

zm n n

n n

m

nn m m
l h

x x x z x z x z

z x x z x z

z z x x x

z z z
z z

n n

x x z z z
n n

 

    

 

  

 




  

  

  

      
   

 
 



 

 




 

By using special cases of (18), the expectation formu-
las except the conditional in (10) are derived. 

The conditional distribution of hx given lx  is given 
by 

   
 

 
 

 
 

3

3

, 120 1

20 1

1
6 , 0 1

1

f x z xz x z
h z x

g x x x

z x z
z x

x

 
 



 
   



    (19) 

The conditional expectation follows as: 

 
 

 

1 2

0
3

6 1 d 1

21

x

h l

z x z z x
E x x x

x


  

  



  (20) 

Below, the relation    1 1

0 0
d 1 df x x f x x    is used  

some times. To show the relation, change 1x x   in 
the integral. 

By using (8), 

      
    

         

0 1

0 1

1
E E E E 1

2

E 1 1

(21)
6

1
E 1 E 1 1

2

l h h l

l h

h l l h

T y x y x x y x

x y x

y y

x y x x y x

   

   




      

 

Next evaluate the two expectations in the brackets by 
using (9). 

    
     

    

0 1
0 1

1 1

0 0

E 1

120 1 1 d d

 120 1 1 d d

h l

x
z x

x

x y x

z xz x z y x x z

xy x z z x z z x

 
  





   

   



 

 

By integrating with respect to x , the following expres-
sion is obtained. 

        1 2 4 5

0
E 1 10 2 2 dh lx y x x x x x y x x      (22) 

Likewise, 

    
     

     

0 1
0 1

1 1

0 0

E 1 1

120 1 1 1 d d

120 1 1 1 d d

l h

x z
z

z

x y x

x xz x z y z x y

zy z x x x z x z

  
 



 

    

    



 

 

By integrating with respect to x , and then substitute 
1 z  with x , d dx z  , we get. 

        1 3 4 5

0
E 1 1 10 2 3 dl hx y x x x x y x x      (23) 

By combining (21), (22) and (23), an expression for 
 E T is obtained. 
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       

     

1

0 1 0

1 2 3 4
0 1 0

1
E( ) 5 1 1 1 d

6 (24)
1

5 2 2 d
6

T y y x x x x y x x

y y x x x x y x x

       

     




 

Formula (24) has been checked with the functions 
 22, and 1a bx x x   for  y x . These results are 

identical with the results obtained by deriving  E T di-
rectly from (8) and using (10). 

Deriving formula (12) is a bit tedious. It follows from 
(8) that 

 

 
 

22
0 1

2 2 2 2 2
0 1

0 1

0 1

4 (1 ) ( ) (1 ) (1 )

      ( ) (1 ) ( ) (1 ) (1 )

        2 (1 ) (1 ) ( ) (25)

        2 (1 ) (1 ) (1 )

        2(1 )(1 ) ( ) (1

l h h l l h

l h h l l h

l h h h l

l l h l h

h l l h

T y x y x x y x x y x

y x y x x y x x y x

y x x y x x y x

y x x y x x y x

x x y x y x

      

      

   

    

    )

 

Then, the expectation of each term is derived by using 
(9) and (10) and trying to split double integrals. 

     2 2 2
0 1 0 1 0 1

1
E 3 4

21l hy x y x y y y y       (26) 

    
     

        

2 2

2 2

0, 0
1

1 1 2 22 2

0 0

E 1

120 1 1 d d

120 1 1 1 d d

h l

x z
x z

x

x y x

z xz x z y x x z

xy x x z z z z z x

 
 





   

    



 

 

By evaluating the integral with respect to z  and con-
tracting, the following result are obtained: 

    
   

2 2

1 2 5 6 2

0

  E 1

2 3 5 5 3 d

h lx y x

x x x x y x x



   
       (27) 

Next 

    
     

        

2 2

2 2

0, 0
1

1 1 2 22 2

0 0

E 1 1

120 1 1 1 d d

120 1 1 1 1 d d

l h

x z
x z

z

x y x

x xz x z y z x z

z y z z x x x x x z

 
 



 

    

     



 

 

Integrating with respect to x , contracting and chang-
ing the integrator variable z  with 1 x , gives 

    
   

2 2

1 3 4 5 6 2

0

   E 1 1

2 10 20 13 3 d

l hx y x

x x x x y x x

 

   
     (28) 

Continuing 

   

     

       

0, 0
1

1 12 2

0 0

E 1

120 1 1 d d

120 1 1 1 d d

l h l

x z
x z

x

x x y x

x z xz x z y x x z

x y x x z z z z z x

 
 



  

   

      



 

 

Evaluating and contracting gives 

   

   1 2 3 5 6

0

   E 1

10 2 2 d

l h lx x y x

x x x x y x x

  

   
           (29) 

The next term follows. 

    
     

        

0,
1

1 1 2 3

0 0

E 1

120 1 1 d d

120 1 ( 1 1 d d

h h l

x z o
x z

x

x x y x

z z xz x z y x x z

xy x x z z z z z x

 
 





   

    



 

 

Evaluating and compressing gives 

    
   1 2 4 5 6

0

E 1

2 2 5 10 10 3 d

h h lx x y x

x x x x x y x x



    
 (30) 

Next term 

    
     

        

2

0,
1

1 1 2 3

0 0

E 1

120 1 1 1 d d

120 1 1 ( 1 1 d d

l l h

x z o
x z

x

x x y x

x x z x z y z x z

zy z z x x x x x z

 
 





    

     



 

 

Evaluating and compressing 

    
   1 4 5 6

0

   E 1 1

2 5 8 3 d

l l hx x y x

x x x y x x

 

  
            (31) 

The next last term 

   

     

       

0, 0
1

1 12 2

0 0

E 1

120 1 1 1 d d

120 1 1 1 1 d d

h l h

x z
x z

x

x x y x

z x xz x z y z x z

z y z z x x x x z x

 
 



  

    

       



 

 

Integrating and changing z  with 1 x  in the inte-
gral with respect to z  gives 
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    
   1 3 4 5 6

0

E 1 1

10 2 5 4 d

h l hx x y x

x x x x y x x

 

   
  (32) 

And finally the last term 

         
        

0, 0
1

E 1 1 1 33

120 1 1 1 1 d d

l h l h

x z
x z

x x y x y x

x z xz x z y x y z x z
 
 

  

       

This formula could be used for the last term in (12). 
However, it is possible to derive alternative versions. 
One is given here. 

       

        

   

        

        

1 1

0 0

1

0

1 2

0

1 2 2 3

0 0

  E 1 1 1

120 1 1 1 1 d d

120 1 1

1 1 1 d d

120 1 d d

l h l h

z

z

z

x x y x y x

z z y z x x x z y x x z

z z y z

z x x x x y x x z

z z y z z x x x x y x x z





  

     

  

   

    

 





 

 

Hence 

       
   

    

1

0

2 2 3

0

  E 1 1 1

120 1

   d d

l h l h

z

x x y x y x

z z y z

x x z x x y x x z

  

 

   





       (34) 

Inserting (26) – (33) or (34) into (25) gives (12). 
Formula (12) has been controlled with a linear func-

tion for  y x .  Var 0T   for linear functions, and 

this were obtained by the control. The derivation of (11) 
and (12) do not involve complicated mathematics, but 
rather an extensive algebraic task with risk of making 
errors. 

This section is concluded with deriving (14). There 
may be several ways to obtain an estimator for  Var T . 
The version derived here is rather straightforward. 

Since      22Var E ET T T  , we try to estimate 
both terms. As 2T  is an unbiased estimator of  2E T , 
we can use 2T  and subtract an estimator for 

    22E ET T    . 
2T  is given by (25), but the expectation of the first 

term  2

0 1l hy x y x  is computable from the data. 
Therefore  2

0 1l hy x y x  is replaced by its expected  

value   2 2
0 1 0 1

1
3 4

21
y y y y   in the expression for 2T .  

This will reduce the variability of the estimator. This is 
confirmed by trying both versions during sampling arti-
ficial signal functions, and the version with the first 
terms equal to   2 2

0 1 0 13 4 21y y y y   is smallest on  
all occasions. 

An expression for  2E T  follows from (21). 

   

          

        

22
0 1

0 1

2

1
E

36
1

E 1 1 1
6
1

E 1 1 1
4

h l l h

h l l h

T y y

y y x y x x y x

x y x x y x

 

     

    

 

Using the arguments in the expectation operators as 
estimators for the expectations, and performing the sub-
traction  2 2ÊT T  the following estimator is ob-
tained. 

          
        

                

2 22 2 2 2
0 1 0 1

0 1

2

1 1
Var( ) 13 1 1

126 4

1 1
1 1 1

2 3 2 3

1 1
1 1 1 E 1 1 1

2 4

h l l h

l h h l l h

h l l h h l l h

T y y y y x y x x y x

y y
x x x y x x y x

x y x x y x x y x x y x

      

               
    

            

 

This expression is identical with (14). The last line 
cannot be estimated unbiased by using  
        2
1 1 1h l l hx y x x y x    , as this would yield an 

over estimate of         2E 1 1 1h l l hx y x x y x    , 
This follows from the general result,  

 2 2Var E EX X X  , that holds for any random vari-
able X . However,  

        
        

        

2

2

E 1 1 1

E 1 1 1

Var 1 1 1

h l l h

h l l h

h l l h

x y x x y x

x y x x y x

x y x x y x

   

    

    

 

and it is believed that the variance term is small relative 
to the expectation terms in general. Therefore, (14)  

with         21
1 1 1

4 h l l hx y x x y x      as the last 

line was used in Appendix II. 
Estimator (14) depends on xl  and xh even if the 

signal function is linear. This means that it takes values 
that in general are different from zero even when the 
variance is zero, as in the linear case. To try estimator 
(14), a program that calculates it has been made. Results 
from using (14) in the main paper are given in Appendix 
II. 
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Estimator (14) depends on lx  and hx  even if the sig-
nal function is linear. This means that it takes values that 
in general are different from zero even when the variance 
is zero, as in the linear case. To try estimator (14), a pro-
gram that calculates it has been made. Results from using 
(14) in the main paper are given in Appendix II. 

In some difficult cases the variance estimator takes 
negative values. This happens on some sampling occa- 
sions with 5 strata, but also more seldom with 10 strata 
on the signal functions a and b in Appendix II. The stan- 
dard deviation is set to zero in such cases. 

 
Appendix II 

 
Sampling man made functions 
 
The two variance formulas based on (13) and given by 
(14) have been tried by sampling several artificial signal 
functions. An immediate impression from these investi- 
gations is that the two variance estimates show different 
properties with the variance estimator based on (13) be- 
ing the smallest. 

The advantage with sampling known artificial signal 
functions is that the parameter to be estimated can be 
calculated as well as the expected value (11) and varia- 
nce (13) of the estimator (8) used. From this, the bias and 
deviation between estimated and true value follows. In 
the present case, however, the variance (13) was not 
computed. From repeated independent samples the vari- 
ability of the estimate is shown, and this indicates some- 
thing about the theoretical variability of the estimator. 

Results from 30 repeated independent samples of four 
different signal functions are given. Each signal function 
is sampled with 5 and 10 strata for comparison.  

The signal functions were constructed by means of the 
10 first terms in a Fourier series and added some higher 
frequencies. To ensure that the signal functions are 
non-negative, they were put equal to zero if they were 
negative. There are many parameters in such functions, 
and it is possible to make any function shape. However, 
since real signal functions are integrated echo intensities 
over depth and along a fixed direction in the area, they 
will seldom show very sharp variations. 

The strata widths are constant and equal to one for 5 
strata, and half width for 10 strata. Then the integral over 
the signal function is the same for 5 and 10 strata. 

However, when fish concentrate to schools, real signal 
functions may be difficult to sample, in particular when 
the area of distribution is small. The signal functions a 
and b shown in Figure 4 and 6 are of this kind. 
The results of 30 repeated independent samplings are 
shown in Figure 5. Note that the y-axis is similar in 
these plots. 

It is seen from Figure 5 that the error interval based 
on (14) seems not to be wider than the error interval 

 
Figure 4. The first signal function (a) sampled with 5 and 10 
strata, respectively. On the first sampling occasion, the 
function was observed at the locations where there are ver-
tical lines, including the grid. 
 

 
Figure 5. Estimate, true value, expected value and estimates 
of two error bounds for 30 independent samples of signal 
function a based on sampling with 5 (upper) and 10 strata 
(lower graph). 
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based on (13). It is also seen that the error interval based 
on (14) has zero width several places, especially for 5 
strata. 

For each signal function that was sampled 30 times, it 
was counted how many times the error intervals con- 
tained the true value, and how many times they con- 
tained the expected value of the estimator. For signal 
function a, these numbers are given in Table 1. 

The next signal function (b) is shown in Figure 6. 
This is also a difficult function to estimate. 

The result of 30 independent samples of signal func-
tion b is shown in Figure 7. 

Here is seen that the two error intervals seems to be of 
the same order for 5 strata, but for 10 strata the error in-
terval based on (14), main paper, is the biggest. 

The numbers of times the error intervals contain the 
true value and the expected value of the estimator are 
given in Table 2. See Table 1 for more information. 

The next signal function is shown in Figure 8. This 
 

Table 1: Numbers of times the error interval contained the 
true value and expected value, respectively out of 30 inde-
pendent samples of signal function a. 

 5 strata 10 strata 

Estimate ± 2SD based on (13) 13   13 24   21 

Estimate ± SD based on (14) 11    7 17   18 

 

 
Figure 6. Signal function b sampled with 5 and 10 strata, 
respectively. The first sampling locations within each stra-
tum are shown as red vertical lines. 

 
Figure 7. Estimate, true value, expected value and two es-
timates of error bound based on 30 independent samples of 
signal function b based on sampling with 5 (upper) and 10 
strata (lower graph). 
 
Table 2: Numbers of times the error interval contained the 
true value and expected value, respectively out of 30 inde-
pendent samples of signal function b. 

 5 strata 10 strata 

Estimate ± 2SD based on (13) 13   13 24   25 
Estimate ± SD based on (14) 15   17 30   30 

 

 
Figure 8. Signal function c sampled with 5 and 10 strata, 
respectively. The sampling positions in each stratum are 
shown as vertical lines. 
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function start with low values reaches a maximum before 
it declines and goes to zero. 

The results of estimating the area under signal func-
tion c is shown in Figure 9. 

Here the error interval based on (14) is the biggest 
both for 5 and 10 strata. This case is seldom in that the 
bias for 10 strata is bigger that the bias for 5 strata. 

The numbers of times the error intervals contain one 
of two parameters are given in Table 3. See Table 1 for 
explanation. 

The last signal function (d) is shown in Figure 10. 
This is a function with small sharp variations, and is an 
easy function to estimate. 

The results of estimating the area under signal func-
tion d are shown in Figure 11. 

Figure 11 and others indicate that the error intervals 
stabilize, gets narrower as well as less variable when the 
functions are sampled with 10 strata compared with 5 
strata. But it also seems that the error interval based on 
(13) decreases faster than that based on (14) when the 
sampling density increases. 

The numbers of times the error intervals for signal 
function d contain one of two parameters are given in 
Table 4. See Table 1 for more explanation. 
 

 
Figure 9. Estimate, true value, Expected value and two es-
timates of the error bounds for 30 independent samples of 
signal function c based on sampling with 5 (upper) and 10 
strata (lower graph). 
 
Table 3. Numbers of times the error interval contained the 
true value and expected value, respectively out of 30 inde-
pendent samples of signal function c. 

 5 strata 10 strata 

Estimate ± 2SD based on (13) 11   14 11   18 

Estimate ± SD based on (14) 30   30 30   30 

 
Figure 10. Signal function d sampled with 5 and 10 strata, 
respectively. The function is observed at the x-positions of 
the vertical lines, including the grid at the first sampling 
occasion. 
 

 
Figure 11. Estimate, true value, Expected value and two 
estimates of the error bounds for 30 independent samples of 
signal function d based on sampling with 5 (upper) and 10 
strata (lower graph). 
 
Table 4. Numbers of times the error interval contained the 
true value and expected value, respectively out of 30 inde-
pendent samples of signal function d. 

 5 strata 10 strata 

Estimate ± 2SD based on (13) 22   25 8   26 

Estimate ± SD based on (14) 29   30 30   30 
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The results from sampling signal function d shows that 
the estimator based on (13) shrinks considerable from 
sampling with 5 strata to sampling with 10 strata. That 
the unknown value is within the error interval in only 8 
cases for 10 strata is not good, but the expected value is 
contained in the error interval 26 of 30 times. Since the 
expected value is rather close to the true value here, it 
may be concluded that not many estimates are far from 
the true value. But this may, nevertheless, indicate an 
unfortunate property with this estimator in that it may be 
considerably to small if the sampling density is high 
while the signal function is smooth. 

The Figures in Appendix II indicate that the variance 
estimator based on (13) is negatively biased. It is not 
easy, although not impossible, to derive the expectation 
of this estimator. Therefore, the estimator is tried on arti-

ficial signal functions. 
The estimator given by (14) has not good properties, 

as the estimates within strata may be negative. When all 
within strata estimates are summed over several strata, 
the resulting variance has better properties, but based on 
the present figures it is hard to believe that this estimator 
is nearly unbiased. Note that the error interval based on 
(14) is calculated as Estimate ± estimated standard de-
viation, while that based on (13) is calculated as Estimate 
± two times the estimated standard deviation. 

Some of the chosen signal functions are difficult to es-
timate, in particular signal function a and b as shown in 
the Figures 4 and 6. This may occur in fisheries acous-
tics when fish concentrate to schools. To improve preci-
sion in such cases, the sampling effort has to be in-
creased. 

 


