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Abstract 

In this article we are going to introduce the neural network approach to approximate the solution 
for optimization problems. Using this approach we are able to approximate the optimum values 
for the large class of functions in particular giving the prices of different products that are resulted 
from refining the crude petroleum into different substances. We are going to design a neural net-
work that can provide us with a decomposition of the given crude petroleum into resulted prod-
ucts in such a way that is most beneficial for the refinery. 
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1. Introduction 

Many problems in the industry involved optimization of certain complicated function of several variables. 
Furthermore there are usually set of constrains to be satisfied. The complexity of the function and the given 
constrains make it almost impossible to use deterministic methods to solve the given optimization problem. 
Most often we have to approximate the solutions. The approximating methods are usually very diverse and 
particular for each case. Recent advances in theory of neural network are providing us with completely new 
approch. This approach is more comprehensive and can be applied to a wide range of problems at the same time. 
In the preliminary section we are going to introduce the neural network methods that are based on the works of 
D. Hopfield, Cohen and Grossberg. One can see these results at (Section-4) [1] and (Section-14) [2]. We are 
going to use the above methods to find the maximum of the refinery under certain assumptions. Our calculations 
are based on the system of neural networks which is combined of four different neural networks which will be 
utilized. It will provide us with the desired results that will be included in final section. The results in this article 
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are based on our common work with Greg Milbank of praxis group. Many of our products used neural network 
of some sort. Our experiences show that by choosing appropriate initial data and weights we are able to 
approximate the stability points very fast and efficiently. In Section-3 we introduce the extension of Cohen and 
Grossberg theorem to larger class of differential equations. The appearance of new generation of super 
computers will give neural network much more vital role in the industry, machine intelligent and robotics. The 
references [1]-[4] can help the readers to get comprehensive ideas about neural networks, linear programming 
and matrices. 

1.1. On the Structure and Application of Neural Networks 

Neural networks are based on associative memory. We give a content to neural network and we get an address 
or identification back. Most of the classic neural networks have input nodes and output nodes. In other words 
every neural networks is associated with two integers m  and n . Where the inputs are vectors in nR  and 
outputs are vectors in mR . neural networks can also consist of deterministic process like linear programming. 
They can consist of complicated combination of other neural networks. There are two kind of neural networks. 
Neural networks with learning abilities and neural networks without learning abilities. The simplest neural 
networks with learning abilities are perceptrons. A given perceptron with input vectors in nR  and output 
vectors in mR , is associated with treshhold vector ( )1 2, , , mθ θ θ  and m n×  matrix ( ),i jw . The matrix W  
is called matrix of synaptical values. It plays an important role as we will see. The relation between output 
vector ( )1 2, , , mO o o o=   and input vector vector ( )1 2, , , nS s s s=   is given by ( ),1

k n
i i k k iko g w s θ=

=
= −∑ , 

with g  a logistic function usually given as ( ) ( )tanhg x xβ=  with 1 0β> >  This neural network is trained 
using enough number of corresponding patterns until synaptical values stabilized. Then the perceptron is able to 
identify the unknown patterns in term of the patterns that have been used to train the neural network. For more 
details about this subject see for example (Section-5) [1]. The neural network called back propagation is an 
extended version of simple perceptron. It has similar structure as simple perceptron. But it has one or more 
layers of neurons called hidden layers. It has very powerful ability to recognize unknown patterns and has more 
learning capacities. The only problem with this neural network is that the synaptical values do not always 
converge. There are more advanced versions of back propagation neural network called recurrent neural network 
and temporal neural network. They have more diverse architect and can perform time series, games, forecasting 
and travelling salesman problem. For more information on this topic see (Section-6) [1]. Neural networks 
without learning mechanism are often used for optimizations. The results of D. Hopfield, Cohen and Grossberg, 
see (Section-14) [2] and (Section-4) [1], on special kind of differential equations provide us with neural 
networks that can solve optimization problems. The input and out put to this neural networks are vectors in mR  
for some integer m . The input vector will be chosen randomly . The action of neural network on some vector 

1
mX R∈  consist of inductive applications of some function ; m mf R R→  which provide us with infinite 

sequence 1 2, , , ,nX X X  . where ( ) ( )1
1 1

n
n nX f X f X−

−= = . And output (if exist) will be the limit of of the 
above sequence of vectors. These neural networks are resulted from digitizing the corresponding differential 
equation and as it is has been proven that the limiting point of the above sequence of vector coincide with the 
limiting point of the trajectory passing by 1X . Recent advances in theory of neural networks provide us with 
robots and comprehensive approach that can be applied to wide range of problems. At this end we can indicate 
some of the main differences between neural network and conventional algorithm. The back propagation neural 
networks, given the input will provide us the out put in no time. But the conventional algorithm has to do the 
same job over and over again. On the other hand in reality the algorithms driving the neural networks are quite 
massy and are never bug free. This means that the system can crash once given a new data. Hence the 
conventional methods will usually produce more precise outputs because they repeat the same process on the 
new data. Another defect of the neural networks is the fact that they are based on gradient descend method, but 
this method is slow at the time and often converge to the wrong vector. Recently other method called Kalman 
filter (see (Section-15.9) [2]) which is more reliable and faster been suggested to replace the gradient descend 
method. 

1.2. On the Nature of Crude oil and Its Decomposition 

Crude oil is naturally occurring brown to black and is flammable liquid. It is principally found in oil reservoirs. 
Regardless of their origin all crude oils are mainly constituted of hydrocarbons mixed with variable amounts of 
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sulfur nitrogen and oxygen compounds. The ratio of the different constituents in crude oil how ever vary  
appreciably from one reservoir to another. Crude oil are refined to separate the mixture into simpler fractions 
that can be used as a fuel, lubricates, or as intermediate stuck to petrochemical industries. The hydrocarbons in 
crude oil are mostly paraffines naphthenes and various aromatic hydrocarbons. The relative percentage of the 
hydrocarbons that appear in crude oil vary from oil to oil . In the average it is consistent of 30/100 paraffines, 
40/100 naphthalene, 15/100 aromatic and 6/100 asphalt. The most marketable components of of petroleum are, 
natural gas, gasoline, benzine, diesel fuel, light heating oils, heavy heating oils and tars. The hydrocarbon 
components are separated from each other by various refinery process. In the process called fractional dissolu- 
tion petroleum is heated and into a tower. The vapor of different components condense on collector at different 
heights in the tower. The separated fractions are then drown from the collectors and further processed into 
various petroleum products. As the light fractions specially gasoline are in high demand so called cracking 
procession have been developed in which heat and certain catalyst are used to break up the large molecules of 
heavy hydrocarbons into smaller molecules of lighter hydrocarbons. Some of the heavier fractions find eventual 
use as lubricating oil, paraffins, and medical substances. We can summarize the above decomposition methods 
in the following: 

1) Fractional desolation: In this method which is used at the first stage, we use different levels of heat and 
pressure to desolate different products . 

2) Chemical processing: In this method the given products are processed using chemical processing as in the 
the following. i) Each product can break down into smaller hydrocarbons. ii) Couple of smaller hydrocarbons 
will be combined to produce heavier hydrocarbons. Now given a market price for a Gallon of crude oil and 
expenses involved in producing a Gallon of each of the products we are going to introduce a method that can 
calculate the most beneficial decomposition of a given crude oil into resulted products. At this point we have to 
mention that the actual process of refining the crude oil might be much more complicated than a simplified 
version we use here. Our methods are based on some simple but sensible assumption about the process refinery. 
The a system of neural networks which is a combination of four neural networks will provide us with desired 
results. These neural networks are also able to extract some vital technical information about the process of 
refinery just by considering the given basic data. 

1.3. Preliminary Model of the Problem in Finding the Maximum Income of Refinery 

In this Section we are going to set some assumption regarding to the process of refining the crude oil and its 
decomposition. These assumption as we mentioned before are some how simplistic and will lead to the system 
of linear programming that will provide us with optimal solution. Since in reality the equations and constrains 
can be more complicated we introduce the algorithm based on theory of neural network. This algorithm can 
estimate the optimum for the cases where the functions and constrains are not linear. Suppose we are given a 
function ( )1 2, , , nP u u u  of n  variables 1 2, , , nu u u  to be optimized. Furthermore for 1, 2, ,i n= 

, let 
( )( )i ig u , to be the set of 2C  function. Assume we want to optimize the function P , given we have to satisfy  

the following constrains ( ) ( ) ( ),, 0i j i i j j k ki j kc g u g u g u cφ = + + =∑ ∑ , where ( ) ( ), ,i j kc s d s′ ′  and c  are  
constants. Following the arguments at (Section-4) [1] and (Section-14.9) [2] we define energy function 
E P γφ= + . Let us assume that P  can be expressed as ( ) , 1, 2, ,i iiP P u i n= =∑  , where each iP  is a 1C  
function. Thus we have ( )i iiE P u γφ= +∑ . Suppose , ,i j j ic c= . and ( )( ) 0i ig u ′ ≥  Now for 1, 2, ,j n=   
consider the following set of n  differential equations. ( ) ( ),d dj j j j i i iiu t b u c uϕ= +∑ . Using the results of     
(Section 14.9) [2], for each integer 1, 2, ,j n=   we get ( ) ( ) ( )0.52j j j ju g uϕ γ=  and  

( ) ( ) ( )
0

dju
j j j j j j jP u d g u c n bγ γ ϕ λ λ′+ + = ∫ . Therefore we have, ( ) ( ) ( )( ) ( )j j j j j j j jb u P u g u d uγ ϕ′ ′ ′= − + . 

Finally the results of (Section-14-9) [2], implies that as a function of time E , is a decreasing function which 
guaranties that the above neural network will converges to optimum of E  as the vector ( )1 2, , , nU u u u=   
converge to the vector ( )* * , 1, 2, ,jU u j n= = 

, as time goes to infinity. Let us by NLP  the set of all 
optimization systems that we can find their optimum using the above process.suppose Given a polynomial Q  
in 1 2, , , nu u u . Then using routine arguments in theory of functions of several variables we know that nR  can 
be divided into the union of finite disjoint open sets. On each of this open sets the value of the function has the 
same sign. Next we define the function f  acting on nR  with f , equal to the absolute value of Q . Thus 
f  becomes a positive function on the domain nR  of Q . Now given a system P  of differential equation 
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( )d di iu t P= , with iP  polynomial,suppose we can write that ( ) ( )( ) ( )d d ,i i i j i ju t u f u j i g u= − ≠ . Where all 
the functions in the i'th expression are polynomials of less degree than iP . Now let us define a simple energy  
function ( )( ) ( )2 2

,j k jj jG f u k j u= ≠ −∑ ∑ . By small variations around the boundary of G  we can  

assume that G  is 1C  function. Finally let us define the energy function G  as in the following. There exist a 
sequence of disjoint open sets ( )iV  and a sequence of numbers ( )iυ  with iυ  takes one of the values 1 or 
−1. Then by making an appropriate choice for the above sets and integers E  can be defined on each of the sets 

iV  to be equal to iGυ , such that the value of E , will be strictly positive except at the critical point on which 
it vanishes. Furthermore 0.dE dt <  This implies that E  is a Lyapunov function for the system P  and 
the convergence to a critical point is asymptotically stable. Unfortunately the above arguments the existence of 
the critical points for the system. 

Theorem Suppose for each i , iP  is a polynomial in term of its variables ( )i i
u , satisfying the above 

conditions. Then P  is in NLP . 
Let us pick up small compact subset nO R⊂  containing the the equilibrium point 0u . Furthermore suppose 

the set of functions iP 's are analytic functions. Then for any each   small enough there exists an energy 
function ( )E   where d d 0E t < , as long as E  acts on O  minus the set of all elements that are   close to 

0u . This implies that if the set of functions involving the system P  are analytic and if we can guess the region 
in which 0u  is located then practically we can assume that P  belong to NLP . This in fact need some extra 
initial work and assumptions about the polynomials involved in the above process of approximating the 
functions iP  in the above differential equations. The problem with the above methods is how to pick the initial 
conditions in order not to end up in the local minima or local maxima. This will take some dedication. The 
experience shows that the best alternative is to choose the initial vector inU  randomly and choose γ  to be of 
the same size as the average of ju ’s. Equally this can be done using generalized Hebb rule as given by the 
Formula (2.9) [1]. Now we introduce the set of neural networks that will approximate the solution to the refinery 
problem. 

To begin with we assume the weight of the given crude oil is one gallon. Let us assume that 1 2, , , np p p , be 
the set of all hydrocarbons that can be extracted from crude oil. Let 1 2, , , nq q q , be the corresponding 
percentage of them in one gallon of the given crude oil. During the refining process the product ip , will 
contribute ,1iq  gallon of its weight to produce other substances . Conversely it receives ,2iq  gallons as a result 
of chemical process between other products. The final amount of product ip , at the end of refining process iQ , 
will be given in the following 

,1 ,2i i i iQ q q q= − +                                    (1) 

it makes sense to assume that for a given products ip  and jp , there exist coefficients ,i jc  and ,i je , such that 
the amount of contribution of product ip  to product jp  is equal to ,i jc  and the cost of this transformation is 
equal is equal to , , ,i j i j i jw c e= ⋅ . 

 ,2 , ,i k k l k iq q c= Σ                                    (2) 

,1 ,2 ,i k k i kq q c= Σ                                     (3) 

,1 j i jc= Σ                                     (4) 

,1 i i jc= Σ                                     (5) 

Suppose the price of one gallon of product ip  is iPr . This implies that the total profit P  of the refinery is 
equal to the sum of the market price of resulted products minus the total expenses, i.e., 

( ), ,1 , ,1 ,2 , ,1 ,i i i i j i i j i i i i i j i i jP Q Pr q w q q q q w= Σ −Σ = Σ − + −Σ                           (6) 

And we wish to maximize P . Furthermore we have the following inequalities, 

,1 0iq ≥                                    (7) 

,2 0iq ≥                                    (8) 

,1i iq q≥                                    (9) 
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Assuming the values , ,, , , , 1, 2, ,i i j i jq c e i j n= 
 are known, the above system is the system of linear 

programming in term of 2n  variables ,1 ,2, , 1, 2, ,i iq q i n= 
 and its solution will provide us with the maximal 

benefit. On the hand we might seek a brand of crude oil that can maximize the profit P . In this case we use the 
fact that the maximum amount of product ip  that can be inside the gallon of crude oil is given to be less or 
equal than a given number iM . In this case we have to add another set of n  variables to the above system of 
linear programming and the following constrains: 

1i iqΣ =                                      (10) 

0 i iq M≤ ≤                                     (11) 

And the solution of this new system of linear progamming will identify the brand of crude oil that will bring 
maximum benefit. The problem is to find the coefficients ,i jc  and ,i jw . In the proceeding Sections we will 
find ways to get away with this problem and also simplify the above system of linear programming in order to 
bring down the number of constrains. 

2. Connection to Perron Frobenius Theory 

Let ( ),i jA a=  be n n×  irreducible matrix with positive entries. The perron-frobenius theory states that the 
greatest eigenvalue r  of A , is positive number. Further more it is a single root of the characteristic poly- 
nomial of A  and has the largest absolute value among all other roots. Therefore the corresponding right 
eigenspace associated to r  is one dimensional. The same is true for the left eigenspace.Let V  be the right 
eigenvector for A , (Respectively Let W  be the left eigenvector for A ), such that 1tW V = . Then it is well 
known that as k  tends to infinity, ( )lim k k tA r VW= . Now considering Equations (4) and (5) we can see that 
the matrix ( ),i jC c=  is stochastic matrix. Considering C  as an operator then using the fact that all the entries 
of C  are all positive, then the adjoint operator *C can be defined as ( ) ( )* *

, ,i j j iC c c= =  Furthermore 
Equations (2) and (3) imply that the following equalities: 

*
2 2q C Cq=                                    (12) 

*
1 1Q q CC=                                    (13) 

hold for each fixed i n≥ . But *
1D CC=  and *

2D C C=  are self adjoint matrices which implies that for 
1, 2i , iq  is an eigenvector for the matrix iD  corresponding to the eigenvalue equal to one. One the other 

hand the equalities (4) and (5), and the fact that the entries of iD  are all positive and less or equal than one, 
implies that the Perron Frobenius eigenvalue of iD  is equal to one. Hence iq  is a Perron Frobenius 
eigenvector for iD . Now summing the Equation (3) over the index i  then (12) and (13) imply the following 
equation 

,1 ,2i iq qΣ = Σ                                    (14) 

Let us set the following notations 

( )1 22
1 ,1i iqα = Σ                                     (15) 

( )1 22
2 ,2i iqα = Σ                                    (16) 

Then 1 1 1V q α=  and 2 1 1V q α=  are standard Perron Frobenius eigenvectors for 1D  and 2D  
respectively. Now set ( )1 ,1 1 1iV v q α= =  and ( )2 ,2 2 2iV v q α= = . Then replacing 1q  in (6) by 1 1Vα , we get, 

, ,1 ,i i i i j i i jP Q Pr v w= Σ −Σ                                    (17) 

Let us set the following notation, 

, ,1 ,i j i i jv wω = Σ                                    (18) 

Then the Equation (17) can be written as in the following, 

( )1i i iP Q Pr α ω= Σ −                                    (19) 
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Let us define, 

( ) ,1 ,2 ,2 ,1, k j k jdet k j v v v v= −                                    (20) 

Now by (1) and the above arguments we have, 1 ,1 2 ,2i i i iQ q v vα α= − + . Consider two fixed indices, 
0 ,k j n≤ ≤ , such that ( ), 0det k j ≠ . Then the following equations, 

2 ,2 1 ,1k k k kQ q v vα α= + −  

2 ,2 1 ,1j j j jQ q v vα α= + −  

will provide us with values of 2α  and 1α . 
Let us define, ( ) 1

, ,k j k jdetσ ω
−

= , , , ,2k j k j kvβ σ= , and , , ,2k j k j jvγ σ=  

, , , ,i i i k j j k j k k j k k j jP PrQ Q Q q qβ γ γ β= Σ − − − −                (21) 

In order to maximize P  given by the Equation (21), we need to know the two values ,k jγ  and ,k jβ . This 
can be done by training a simple perceptron which we call neural network(A), with non-linear separability 
function, input data, , , , 1, 2,i i iQ q Pr i =  , output data P  And weights that can be taken to be the values 

, ,,k j k jγ β . As we can see at (Section-5) [3], once we train the above perceptron with large enough set of contem- 
porary data the corresponding weights will converge and give us the above values.Let us define the following 
vectors. ( ) , 1, 2, ,iQ Q i n= =  , ( ) , 1, 2, ,iq q i n= =  , ( ) , 1, 2,iPr pr i n= =  . 

3. Final Conclusions 

At this Section we formulate the final form of our neural network. Our neural network consists of four parts. At 
Part-I, we fixed two integers 0 ,k j n≤ ≤ , such that ( ), 0det k j ≠ . Next using Neural network(A), which is 
based on simple perceptron we will calculate the values ,k jβ  and ,k jγ  in term of large enough number of 
input vectors , ,Q Pr q  and output vector P  that would be used to train neural network(A). In Part-II, we use 
neural network(B) that is based on linear programming (20), calculating the variables ( ) , 1, 2, ,iQ i n=   to 
maximize the profit P . The only constrains that are imposed on this neural network are the facts that the above 
variables are all positive and the following equation, 1i i i iQ qΣ = Σ = . At Part-III, neural network(C) will find 
the kind of crude oil that is the most beneficial for the refinery. Assuming that maximal percentage of the 
product iq , inside the crude oil to be less or equal than the known number iM . It means that at this stage we 
have to add another n  positive variables iq , satisfying the following set of constrains, 0 i iq M≤ ≤ , to the 
linear programming (20). This new linear programming will provide us the values for the two vectors 

( ) , 2,3, ,iQ Q i n= =   and ( ) , 1, 2, ,iq q i n= =  , and maximal value for P  in term of Q  and q . Finally we 
can train neural network(D) that is based on back propagation. This neural net work is trained, using enough 
number of data which takes q  and Pr  as an input with P  and Q  as an output. After the training is 
completed neural network(D) is able to give us P  and Q  as soon as we plug in the vectors q  and Pr .  
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