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Abstract 
The object of this paper is to present a new generalization of the Hermite matrix polynomials by 
means of the hypergeometric matrix function. An integral representation, differential recurrence 
relation and some other properties of these generalized forms are established here. Moreover, 
some new properties of the Hermite and Chebyshev matrix polynomials are obtained. In particu-
lar, the two-variable and two-index Chebyshev matrix polynomials of two matrices are presented. 
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1. Introduction 
Special functions have been developed deeply in the last decades to special matrix functions due to their 
applications in certain areas of statistics, physics and engineering. The Laguerre and Hermite matrix polyno- 
mials are introduced in [1] as examples of right orthogonal matrix polynomial sequences for appropriate right 
matrix moment functionals of integral type. The Hermite matrix polynomials, ( ),nH x A , have been introduced 
and studied in [2] [3] where ( ),nH x A  involves a parameter r rA ×∈  whose eigenvalues are all situated in 
the open right-hand half of the complex plane. The two-variable Hermite matrix polynomials, ( ), ,nH x y A , 
have been presented in [4] as an extension of ( ),nH x A . Moreover, some properties and other generalizations 
of ( ),nH x A  are given in [5]-[11]. As one of qualitative properties of the two-variable Hermite matrix 
polynomials, the Chebyshev matrix polynomials of the second kind are introduced in [4], see also [12] [13]. 

The main aim of this paper is to consider a new generalization of the Hermite matrix polynomials and to 
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derive some properties for the Hermite and Chebyshev matrix polynomials. The structure of this paper is the 
following. This section summarizes previous results essential in the rest of the paper and gives the development 
of the two-variable Hermite matrix polynomials. A matrix version of Kummer’s first formula for the confluent 
hypergeometric matrix function is derived in Section 2. In Section 3, the addition theorem and three terms 
recurrence relation for the Chebyshev matrix polynomials of the second kind are obtained and further we 
introduce and study the two-variable and two-index Chebyshev matrix polynomials of two matrices. Finally, 
Section 4 deals with the study of the Generalized Hermite matrix polynomials by means of the hypergeometric 
matrix function. 

In what follows, r r×  denotes the set of complex matrices of size r r×  and the matrices I  and θ  in 
r r×  denote the matrix identity and the zero matrix of order r , respectively. For a matrix A  in r r× , its 

spectrum ( )Aσ  denotes the set of all eigenvalues of A . We say that a matrix A  in r r×  is a positive 
stable if  

( ) ( )Re 0 for every eigenvalue .Aµ µ σ> ∈                     (1) 

If ( )f z  and ( )g z  are holomorphic functions of the complex variable z , which are defined in an open set 
Ω  of the complex plane and A  is a matrix in r r×  with ( )Aσ ⊂ Ω , then from the properties of the matrix 
functional calculus ([14], p. 558), it follows that ( ) ( ) ( ) ( )f A g A g A f A= . 

If 0D  is the complex plane cut along the negative real axis and Log(z) denotes the principle logarithm of z,  

then 1 2z  represents ( )1exp Log
2

z 
 
 

. If A is a matrix in r r×  with ( ) 0A Dσ ⊂ , then 
1
2A A=  denotes  

the image by 1 2z  of the matrix functional calculus acting on the matrix A . 
Let A  be a matrix in r r×  which satisfies the condition (1). The two-variable Hermite matrix polynomials 

[2VHMPs] are generated by [4]  

 ( ) ( )2

0

1exp 2 , , ,
!

n
n

n
xt A yt I H x y A t

n≥

− = ∑                    (2) 

and are defined by the series  

 ( ) ( )
( ) ( )

2 2

0

1
, , ! 2 ,

! 2 !

k kn n k

n
k

y
H x y A n x A

k n k

   −

=

−
=

−∑                    (3) 

where ν    is the standard floor function which maps a real number ν  to its next smallest integer. 
It is therefore evident, for 1y = , that  

 ( ) ( ),1, , ,n nH x A H x A=                                  (4) 

where ( ),nH x A  is the Hermite matrix polynomials as given in [2]. Furthermore,  

( ) ( )2, , , .n
n nH x y A y H x y A=  

According to [4], we have  

 ( ) ( ) ( ) ( )!, , 2 , , ; 0 ,
!

k k

n n kk

nH x y A A H x y A k n
n kx −

∂
= ≤ ≤

−∂
                   (5) 

( ) ( )
( ) ( )2

1 !
, , , , ; 0 .

2 ! 2

kk

n n kk

n nH x y A H x y A k
n ky −

−∂  = ≤ ≤  −∂  
                   (6) 

Also, the 2VHMPs appear as a solution of the second order matrix differential equation in the form  

 ( )
2

2 , , 0.ny xA nA H x y A
xx

 ∂ ∂
− + = ∂∂ 

                   (7) 

and satisfy the three terms recurrence relationship  

 ( ) ( ) ( ) ( )1 2, , 2 , , 2 1 , , ; 2n n nH x y A x AH x y A n yH x y A n− −= − − ≥                   (8) 
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with ( )0 , ,H x y A I=  and ( )1 , , 2H x y A x A= . 
From (5), the relation (8) gives  

 ( ) ( ) ( )
1

1, , 2 2 2 , , .n nH x y A x A y A H x y A
x

−

−
∂ = − ∂ 

                   (9) 

Iteration (9) yields a another representation of the 2VHMPs in the form  

 ( ) ( ) ( )
1

, , 2 2 2 .
n

nH x y A x A y A I
x

− ∂ = − ∂ 
                   (10) 

Another remarkable representation of the 2VHMPs, which is due essentially to ([4], Theorem 7), has the 
elegant form:  

 ( ) ( ) ( )
2

1
2, , exp 2 2 .

n

nH x y A y A x A
x

− ∂
= − ∂ 

                   (11) 

Applying (11) provides the formula  

 ( ) ( ) ( )
2

1
2, , exp 2 , , .n nH x y z A y A H x z A

x
− ∂

+ = − 
∂ 

                   (12) 

In fact, the addition and multiplication theorems are  

 ( )
=0

, , , , , , ,
2 2

n

n n k k
k

n y yH ax bz y A H ax A H bz A
k −
     + =      

    
∑                    (13) 

and  

 ( ) ( )2, , , , .n
n na H x y A H ax a y A=                    (14) 

If ( ),A k n  and ( ),B k n  are matrices in r r×  for 0n ≥  and 0k ≥ , then it follows that [10] [15] [16]:  

 ( ) ( )
0 0 0 0

, , ,
n

n k n k
A k n A k n k

≥ ≥ ≥ =

= −∑∑ ∑∑                    (15) 

and  

 ( ) ( )
2

0 0 0 0
, , .

nn

n k n k
B k n B k n k

  

≥ = ≥ =

= −∑∑ ∑∑                    (16) 

2. The Confluent Hypergeometric Matrix Function 
In this section, the confluent hypergeometric matrix function is given. For the sake of clarity in the presentation, 
we recall some concepts and results related to the generalized hypergeometric matrix functions, that may be 
found in [15] [18] [19]. 

The reciprocal gamma function denoted by ( ) ( )1 1z z−Γ = Γ  is an entire function of the complex variable z . 
Then, for any matrix A  in r r× , the image of ( )1 z−Γ  acting on A , denoted by ( )1 A−Γ  is a well-defined 
matrix. Furthermore, if  

 is invertible for every integer 0,A nI n+ ≥                    (17) 

then ( )AΓ  is invertible, its inverse coincides with ( )1 A−Γ  and it follows that ([17], p. 253) 

 ( ) ( ) ( )( )1 ; 1,nA A A I A n I n= + + − ≥
                   (18) 

with ( )0A I= . 
If A is a positive stable matrix in r r× , then the gamma matrix function, ( )AΓ , is well defined as [18]  

 ( )
0

e d .t A IA t t
∞ − −Γ = ∫                    (19) 
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From ([19], p. 206), we have  

 ( ) ( ) ( )1 ; 0.nA A nI A n−= Γ + Γ ≥                    (20) 

Definition 2.1 [15] Let p  and q  be two non-negative integers. The generalized hypergeometric matrix 
function is defined in the form:  

 ( ) ( ) ( ) ( ) ( )
11

1 1 1 1
0

, , ; , ; ,
!

n

p q p q p qn nn n
n

zF A A B B z A A B B
n

−−

≥

  =    ∑                  (21) 

where iA  and jB  ( )1 ,1i p j q≤ ≤ ≤ ≤  are matrices in r r×  such that the matrices jB  satisfy the 
condition (17).  

According to [15], it follows that:  
• If p q≤ , then the power series (21) converges for all finite z .  
• If 1p q= + , then the power series (21) is absolutely convergent for 1z <  and diverges for 1z > .  
• If p q≤  then the power series (21) diverges for 0z ≠ .  
With 1p =  and 0q =  in (21), one gets the following relation due to ([3], p. 213)  

 ( ) ( )
0

11 , 1,
!

A n
n

n
z A z z

n
−

≥

− = <∑                                (22) 

which can be written by (19) and (20) in the form  

 ( ) ( ) ( )11
0

1 e d .A z t A Iz A t t
∞− −− −− = Γ ∫                                 (23) 

For 2p =  and 1q =  in (21), we obtain the hypergeometric matrix function as given in [3] in the form  

 ( ) ( ) ( ) ( ) 1

0
, ; ; ; 1.

!

n

n n n
n

zF A B C z A B C z
n

−

≥

 = < ∑                    (24) 

Moreover, the confluent hypergeometric matrix function is well defined for all finite z , when 1p q= = , in 
the form  

 ( ) ( ) ( ) 1

0
; ; .

!

n

n n
n

zA B z A B
n

−

≥

 Φ =  ∑                                (25) 

One can easily get the following result.  
Proposition 2.2  

 ( ) ( ) 1d ; ; ; ;
d

A B z A A I B I z B
z

−Φ = Φ + +                    (26) 

and  

 ( ) ( ) ( ) ( ) 1d ; ; ; ; .
d

k

k k kA B z A A kI B kI z B
z

−
 Φ = Φ + +                      (27) 

In [20], the following theorem was proved:  
Theorem 2.3 Let A and B be two matrices in r r×  such that  
1. A  and B A−  are positive stable,  
2. AB BA= ,  
3. B jI+  is invertible for all 0j ≥ .  
Then for a positive integer 0n ≥  the following holds  

 ( ) ( ) ( ) ( ) ( )1 1, ; ;1 .F nI A B B A nI B nI B A B− −− = Γ − + Γ + Γ − Γ                    (28) 

Indeed, by (20) we can rewrite the formula (28) in the form  

 ( ) ( ) ( ) 1
, ; ;1 .n nF nI A B B A B

−
 − = −                      (29) 

A matrix version of Kummer’s first formula for the confluent hypergeometric matrix function is presented in 
the following theorem:  
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Theorem 2.4 Let A and B be two matrices in r r×  satisfy the conditions of Theorem 2.3. Then  

 ( ) ( ); ; e ; ; .zB A B z A B z−Φ − − = Φ                                (30) 

Proof. From (15) and (25) we have  

 ( ) ( ) ( ) ( ) ( )1

0 0
e ; ; .

! !

nn
z k

n n
n k

nI z
A B z A B

k n
−−

≥ =

− −
 Φ =  ∑∑                             (31) 

By (29) and taking into account the conditions of Theorem 2.3 we find  

 ( ) ( ) ( ) ( )1

0
e ; ; ,

!

n
z

n n
n

z
A B z B A B

n
−−

≥

−
 Φ = −  ∑                               (32) 

and so (30) follows. □ 

3. Generalized Chebyshev Matrix Polynomials 
In [20], the Chebyshev matrix polynomials of the first kind ( ),nT x A  was defined by  

 ( ) ( ) ( )
( )

( ) ( )( )1

0

1 1 !
, 1 .

2 ! !

kn k
n k

k

n n k
T x A A A kI x

k n k
−

=

− + −
= Γ Γ + −

−∑                     (33) 

From (20) and (25) with the use of  

 
0

! e d ,t nn t t
∞ −= ∫                                      (34) 

we give an integral representation of ( ),nT x A  in the form  

 ( ) ( ) ( )( )1
0

1, e ; ; 1 2 d .
1 !

t n
nT x A t nI A t x t

n
∞ − −= Φ − −

− ∫                    (35) 

The generalized Chebyshev matrix polynomials of the second kind [GCMPs] are defined by the series [4]  

 ( )
[ ] ( ) ( ) ( )

( )

2
2

2

0

1 ! 2
, ,

! 2 !

n kk
n

n k k
n

k

n k A
U x y A x y

k n k

−

−

=

− −
=

−∑                    (36) 

and specified by the integral representation  

 ( )
0

1, , e , , d .
!

t n
n n

yU x y A t H x A t
n t

∞ −  =  
 ∫                    (37) 

According to (14), the integral representation (37) becomes  

 ( ) ( )
0

1, , e , , d .
!

t
n nU x y A H xt yt A t

n
∞ −= ∫                    (38) 

The use of the relations (5) and (8) in (37) yields the differential recurrence relation  

( ) ( ) ( ) ( )
1

1, , , , 2 2 , , .n n nnU x y A x U x y A y A U x y A
x x

−

−
∂ ∂

= −
∂ ∂

 

According to [4], we have ( ) ( ),1, ,n nU x A U x A=  and ( ) ( )2, , ,n
n nU x y A y U x y A= , where 

( ),nU x y A  is the Chebyshev matrix polynomials of the second kind [CMPs]. 

As a direct consequent of ([4], Lemma 5), we state the following result.  
Proposition 3.1 For a real number 2K > , it follows that  

 ( ) ( ) ( )2 222 2, , 1 ,
! 2 2

nn
n

n

y x nU x y A K
n

− +
  + ≤ − Γ   

  
                   (39) 

where 2x K A<  and 0.y >   
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Let us now introduce the two-variable and two-index Chebyshev matrix polynomials of two matrices 
[2V2ICMP] through the integral representation  

 ( ) ( ) ( ), 0

1, , , e , , , , d ,
! !

t
m n m nU x y A B H xt t A H yt t B t

m n
∞ −= ∫                    (40) 

where A  and B  are two matrices in r r×  satisfy the condition (1). From (3) and (34) we obtain that 

( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 2

,
0 0

1 !
, , , 2 2 .

! ! 2 ! 2 !

i jm n m i n j

m n
i j

m n i j
U x y A B x A x B

i j m i n j

+      − −

= =

− + − −
=

− −∑ ∑                    (41) 

Indeed, by (14), the integral representation (40) becomes  

 ( ), 0

1 1 1, , , e , , , , d .
! !

t m n
m n m nU x y A B t H x A H y B t

m n t t
∞ − +    =    

   ∫                    (42) 

It is worthy to mention that, on taking 0n =  or 0m = , the Equations (40), (41) and (42) of the 2V2ICMP 
reduce to the Equations (38), (36) and (37) of the [CMPs], respectively. 

It is evident that the formula (37) provides  

 ( )
0

1 1, e , , d .
!

t n
n nU x z A t H x z A t

n t
∞ −  + = + 

 ∫                    (43) 

Thus, by applying (13) in (43), we obtain  

( ) ( ) 0
0

1 1 1, e , , , , d ,
! ! 2 2

n
t n

n n k k
k

U x z A t H x A H z A t
k n k t t

∞ −
−

=

   + =    −    
∑ ∫  

which, in view of (14), one gets  

( ) ( )
( )2

0
0

1 1 1, 2 e 2 , , 2 , , d .
! !

n
n k kn t

n n k k
k

U x z A t H x A H z A t
k n k t t

∞ − +− −
−

=

   + =    −    
∑ ∫  

This, by the formula (42), leads to the addition theorem for the Chebyshev matrix polynomials of the second 
kind in the form  

 ( ) ( )2
,

0
, 2 2 , 2 , , .

n
n

n n k k
k

U x z A U x z A A−
−

=

+ = ∑                    (44) 

4. Generalized Hermite Matrix Polynomials 
By using the hypergeometric matrix function it is convenient to consider a new generalized form of the Hermite 
matrix polynomials. The generalized Hermite matrix polynomials [GHMPs] of two matrices and two variables 
are presented here. Let A  and B  be two matrices in r r×  such that A  satisfies the condition (1) and B  
satisfies the condition (17). We can define the GHMPs in the form:  

 ( ) ( )
( ) ( )

2 2

,
0

1
, , ! 2 ,

! 2 !

kn n kB
n n k

k
H x y A n B x A

k n k

   −

=

−
=

−∑                    (45) 

where  

 ( ), , ; ; .k
n kB y F kI B nI y= − −                                      (46) 

Note that, by (24), the expression (46) can be written in the form  

 ( )
( ) ( ),

0

! !
.

! !

k
k j

n k j
j

k n j
B B y

j k j
+

=

−
=

−∑                                    (47) 

when B  is the zero matrix, then the GHMPs reduce to the two-variable Hermite matrix polynomials, ..ei , 
( ) ( ), , , , .n nH x y A H x y Aθ =  
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In view of (19), (20) and (34), the expression (46) can be also written in the following integral representation  

 ( ) ( )1
, 0 0

e 1 d d .
k

t uk n B
n k

yuB y B t u t u
t

∞ ∞ − +−  = Γ + 
 ∫ ∫                    (48) 

It is clear that  

( ) ( ) ( ), , 1 , , .nB B
n nH x y A H x y A− = −  

and  

( ) ( ),0, 2 .
nB

nH x A x A=  

By using (19), (20) and (34), the formula (45) leads to 

( ) ( ) ( ) ( ) ( )
( )

2
2

1
0 0

0

1 2
, , e 1 d d .

! 2 !

n kk kn
t uB n B I k

n
k

x A yuH x y A B t u y t u
k n k t

−
  ∞ ∞ − +− −

=

−  = Γ + −  
∑∫ ∫  

Hence, by (3), we obtain the integral representation of the GHMPs in the form  

 ( ) ( ) ( )
1

0 0
, , e , 1 , d d .

!
t uB n B I

n n

B yuH x y A t u H x y A t u
n t

−
∞ ∞ − + −Γ   = +  

  
∫ ∫              (49) 

In view of (12), the integral representation (49) becomes  

( ) ( ) ( )
1 2 2

1
20 0

, , e e , , d d exp 2 ,
!

B u B I n t
n n

B y uH x y A u t H x A t u y A
n t x

−
∞ ∞ −− − −Γ    ∂

= −   ∂   
∫ ∫  

which, by (37), provides the following form by means of the generalized Chebyshev matrix polynomials  

 ( ) ( ) ( ) ( )
2

1 1 2
2 0

, , exp 2 e , , d .B u B I
n nH x y A y A B u U x y u A u

x
∞− − − − ∂

= Γ ∂ 
∫          (50) 

Thus, by exploiting (19), (20) and (36) in (50), one gets  

( ) ( ) ( ) ( )
( ) ( ) ( )

222 21
2

0

1 !
, , exp 2 2 .

! 2 !

k kn n kB
n k

k

n k y
H x y A y A B x A

k n kx

   −−

=

− − ∂
=  −∂ 
∑  

By (11) and (6), it follows that  

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

22

2
0

22 1

0

! 1 !
, , , ,

! ! 2 !

1
, , .

!

kkn
B
n n kk

k

k kn k

nkk k
k

n k y n
H x y A B H x y A

k n n k

y
B nI H x y A

k y

  

−
=

   −

=

− −
=

−

− ∂ = −  ∂

∑

∑
 

Hence from (25) we arrive at the following representation of the GHMPs  

 ( ) ( )2, , ; ; , , .B
n nH x y A B nI y H x y A

y
 ∂

= Φ − − ∂ 
                   (51) 

The use of the second order matrix differential Equation (7) in the integral representation (49) gives  

( ) ( )
1 2

20 0
e 1 , 1 , d d ,

!
t u n B I

n

B yu yut u y xA nA H x y A t u
n t x tx

θ
−

∞ ∞ − + −Γ  ∂ ∂     + − + + =      ∂∂     
∫ ∫  

which, with the help of (5), obtaining the differential recurrence relation  
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( ) ( )
2

12 , , , , 2 .B B I
n ny xA nA H x y A B H x y A A

x xx
+
−

 ∂ ∂ ∂
− + = ∂ ∂∂ 
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