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Abstract 
In this article, Yukawa interaction is used to study the relativistic spin-1/2 particles and obtain 
their energy levels. The role of Yukawa potential on the spin and pseudospin symmetry solution is 
investigated systematically by solving the Dirac equation with attractive scalar S(r) and repulsive 
vector V(r) potentials. Bound state spectrum and wave functions of Yukawa potential are obtained. 
It is found that the energy eigenvalues strongly depend on the potential parameters. 
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1. Introduction 
The nature of interactions between nucleons is one of the fundamental and essential concepts of nuclear physics. 
It is required to clarify the nuclear structure of nucleus which comprises of relativistic spin-1/2 particles. The 
Dirac equation is the most perfect example of a relativistic equation which is able to describe the relativistic ef- 
fects in a simple manner. In recent years, considerable attention has been paid to exactly solvable Dirac equation 
[1]. To the best of our knowledge, this equation is exactly solvable for only a few simple interactions and the so- 
lutions usually come with a strong constraint on the potentials [2]. For example, some authors assumed that the 
scalar potential is equal to the vector potential and obtained the exact solution of Dirac equation with some typi- 
cal simple potentials by using different methods. These investigations include the harmonic oscillator potential 
[3], the triaxial and axially deformed harmonicoscillator potential [4], Eckart potential [5] [6], Woods-Saxon 
potential [7], Hulth´en potential [8], pseudo harmonic oscillator [9] and ring-shaped Kratzer-type potential [10], 
ring-shaped non-spherical oscillator [11] and double ring-shaped oscillator potential [12], Hartmann potential 
[13] [14], Rosen-Morse type Potential [15], generalized symmetrical double-well potential [16], Scarf-type po- 
tential [17], etc. [18]. The methods include the standard method, super symmetry quantum mechanics [5] [19] 
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and [20], and the Nikiforov-Uvarov (NU) method [21] and so on. Formerly, Yukawa potential has been used in 
nonrelativistic quantum mechanics to study the interactions between nonrelativistic particles. Recently there has 
been much interest in solutions of Dirac equation for spin-1/2 particles with high energies [22]. In addition, 
thespin and pseudospin symmetry [23] [24] has been originally observed almost about 40 years ago as a me- 
chanism to explain different aspects of the nuclear structure with relativistic spin-1/2 particles. Ginocchio has 
shown that the pseudospin symmetry arises from the near equality of the magnitude of the attractive scalar po- 
tential S(r) and the repulsive vector potential V(r), i.e., S(r) ≈‒V(r) in nuclei. The pseudospin symmetry refers to 
a quasi-degeneracy of the single-particle doublets and can be characterized with the quantum numbers (n, l, j = l 
+ 1/2) and (n ‒ 1, l + 2, j = l + 3/2), where n, l and j are the radial, orbital and total angular momentum quantum 
numbers for a single particle, respectively. The spin symmetry and the pseudospin symmetry occur for ( ) constr∆ =  
and ( ) constrΣ =  in Dirac equation [25]-[27]. The screened Coulomb potential is used in various areas of phy- 
sics to model singular but short-range interactions [28] [29]. In high energy physics, for example, it is used to 
model the interaction of hadrons in short range gauge theories where coupling is mediated by the exchange of a 
massive scalar meson [28] [30]. In atomic and molecular physics, it represents a screened Coulomb potential 
due to the cloud of electronic charges around the nucleus. It has also been used to describe the interaction be- 
tween charged particles in plasma, solid and colloidal suspensions [31]. 

In this work, we have obtained the energy equation of relativistic spin-1/2 particles with the consideration of 
spin symmetry and pseudospin symmetry case. Solution of Dirac equation with standard Yukawa potential is 
presented by using the Nikiforov-Uvarov (NU) method and the eigen functions related to these cases of Dirac 
equation are obtained. Standard Yukawa-potential is given by 

( ) 0
e r

cv r v
r

α−

= ,                                     (1) 

where α  and 0v  are range of nuclear force and strength of potential, respectively [28]. 

2. Dirac Basic Equation for Spin-1/2 Particles 
In the relativistic description, the Dirac equation for a single-nucleon with the mass of M moving in an attractive 
scalar potential S(r) and a repulsive potential V(r) in natural units 1c= =  can be written as [32]: 

( )( ) ( ), ,r rn k n kP M s r E V rα β ψ ψ ⋅ + + = −    ,                     (2) 

where E is the relativistic energy, P is the momentum operator, and ,α β  are the 4 × 4 Dirac matrices as fol- 
lows: 

0 0
, ,

0 0
i

i

I
p i

I
σ

α β
σ
   

= − ∇ = =   −  
,                           (3) 

I is the unit matrix and iσ  represents Pauli matrices. For a particle in a central field, the total angular momen- 
tum J and ( )ˆ 1k Lβ α= − ⋅ +  commute with the Dirac Hamiltonian, where L is the orbital angular momentum. 
For a given total angular momentum j, the eigenvalues of k̂  are ( )1 2k j= ± + , where the negative sign is re- 
lated to aligned spin and the positive sign represents the unaligned spin. The wave functions can be classified 
according to their angular momentum j and spin-orbit quantum number k as follows: 

( )
( ) ( )
( ) ( )

,
,

,

,1, ,
,

r

r

r

l
n k jm

n k l
n k jm

F r Y
r

r iG r Y

θ φ
ψ θ φ

θ φ

 
 =
  



,                           (4) 

where ( ),rn kF r  and ( ),rn kG r  are the upper and lower components, ( ),l
jmY θ φ  and ( ),l

jmY θ φ  are the spher- 
ical harmonic functions. rn  is the radial quantum number and m is the projection of the angular momentum on 
the z-axis. The orbital angular momentum quantum numbers l  and l  are related to the spin and pseudospin 
quantum numbers. Substituting Equation (4) into Equation (2), we obtain a couple of equations for the radial 
part of the Dirac equation as follows: 

( ) ( ) ( ) ( ), , ,
d
d r r rn k n k n k

k F r M E V r S r G r
r r

   + = + − +    
,                (5) 
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( ) ( ) ( ) ( ), , ,
d
d r r rn k n k n k

k G r M E V r S r F r
r r

   − = − + +    
.                (6) 

By eliminating ( ),rn kG r  in Equation (5) and ( ),rn kF r  in Equation (6), we obtain the following two second- 
order differential equations for the upper and lower components: 

( ) ( )( ) ( )( ) ( ) ( )
2

, , ,2 2
,

d d
1d d d 0

d r r r
r

n k n k n k
n k

k
k k r r rM E r M E r F r

M E rr r

 ∆  +  +   − − + − ∆ − + Σ + =
− − ∆ 

 
 

,         (7) 

( ) ( )( ) ( )( ) ( ) ( )
2

, , ,2 2
,

d d
1d d d 0

d r r r
r

n k n k n k
n k

k
k k r r rM E r M E r G r

M E rr r

 Σ  −  +   − − + − ∆ − + Σ − =
− + Σ 

 
 

.        (8) 

where ( ) ( ) ( )r V r S r∆ = −  and ( ) ( ) ( )r V r S rΣ = +  are the difference and the sum of the potentials V(r) and 
S(r), respectively [26] [27]. We consider the bound state solution that demands the radial components satisfying 

( ) ( ), ,0 0 0
r rn k n kF G= =  and ( ) ( ), , 0

r rn k n kF G∞ = ∞ = . 

3. Spin Symmetry Solution 
This symmetry arises from the near equality in magnitudes of an attractive scalar, S(r), and repulsive vector, 
V(r), relativistic mean field, ( ) ( )S r V r≈  in which the nucleon moves [29]. In this case ( ) constsr C∆ = = , 
and Equation (7) reduces to 

( ) ( ) ( )( ) ( )
2

, , ,2 2

1d 0
d r r rn k s n k n k

k k
M E C M E r F r

r r
+ 

− − + − − + Σ = 
 

,               (9) 

where k l=  for 0k <  and ( )1k l= − +  for 0k > . The energy eigenvalues depend on rn  and k . By in- 
serting the standard Yukawa potential instead of ( )rΣ  in Equation (9) we get 

( ) ( ) ( )
2

0
, , ,2 2

1d e 0
d r r r

r
n k s n k n k

k k v
M E C M E F r

rr r
α−+  − − + − − + =  

  
.            (10) 

This equation is a combination of the exponential and inverse square potentials, which cannot be solved ana- 
lytically by using the standard methods such as SUSY or NU. Therefore, we must find an approximation to Yu- 
kawa potential term to solve the equation analytically. Considering the Taylor expansion, we adopt the approx- 
imation bellow [33]: 

( ) ( )0 0e 1rv v
r r

r r
α α−Σ = = −                             .(11)  

Rewriting Equation (10) with above term yields 

( ) ( ) ( ) ( )
2

0
, , ,2 2

1d 1 0
d r r rn k s n k n k

k k v
M E C M E r F r

rr r
α

+  − − + − − + − =  
  

,          (12) 

( ) ( )( ) ( ) ( )
2

2 2 0
, , , 0 ,2 2

1d 0
d r r r rn k s n k n k s n k

k k v
M E C M E M E C v F r

rr r
α

+  − − − − − + + − − =  
  

.     (13) 

If we introduce the notations 

( ) ( )2 2
, , , ,,

r r r rn k s n k n k n k sM E C M E M E C Aε− − − = + − = ,              (14) 

and 

( ) 2
, 0 , , 1

r rn k n kA v E k k Lε α− = + = .                          (15) 
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We obtain 

( )
,

2 2
0

,2 2

d 0
d n k rr n k

vL E A F r
rr r

  − − + =  
  
 .                         (16) 

To solve this equation, we consider  

( ) ( ), ,r rn k n kF r rS r= ,                                (17) 

So we can rewrite Equation (16) as 

( ) ( ) ( ) ( )
2

, , 2 2
, 0 ,2 2

d d2 1 0
dd

r r
r r

n k n k
n k n k

S r S r
E r Av r L S r

r rr r
+ + − − − = .              (18) 

It is known that the solution of the second order differential equations plays an essential role in studying many 
important problems of theoretical physics. At this point, the NU method can be used to solve these types of equa- 
tions. 

4. Basic Concepts of NU Method 
The NU method has been used to solve Schrodinger, Dirac, Klein-Gordon wave equations for certain kinds of 
potentials [34]. In this method the differential equations can be written in the following form: 

( ) ( )
( ) ( ) ( )

( )
( )2 0n n n

s s
s s s

s s
τ σ

ψ ψ ψ
σ σ

′′ ′+ + =
 

,                         (19) 

where ( )sσ  and ( )sσ  are polynomials that can be at most second degree, and ( )sτ  is a first-degree poly- 
nomial. To find a particular solution for Equation (19) by separation of variables, we have the following trans- 
formation: 

( ) ( ) ( )s s y sψ ϕ= .                                   (20) 

It reduces Equation (19) to a hyper-geometric type function: 

( ) ( ) ( ) ( ) ( ) 0s y s s y s y sσ τ λ′′ ′+ + = .                            (21) 

The function φ(s) is defined as a logarithmic derivative 

( )
( )

( )
( )

s s
s s

φ π
φ σ
′

= ,                                      (22) 

y(s) is the hypergeometric type function whose polynomial solutions are given by Rodrigues relation: 

( ) ( ) ( )( )d
d

n
nn

n n
n

B
y s s s

s
σ ρ

ρ
= ,                                (23) 

Bn is the normalizing constant and the weight function ρ must satisfy the following condition: 

( )σρ τρ′ = .                                       (24) 

The function π and the parameter λ required for this method are defined as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

,
2 2

s s s s
s s k s k s

σ τ σ τ
π σ σ λ π

′ ′− − 
′= ± − + = + 

 

 

 ,           (25) 

π(s) is a polynomial with the parameter s and the determination of k is the essential point in the calculation of 
π(s). In order to find the value of k, the expression under the square root must be square of a polynomial, so we 
have a new eigenvalue equation: 

( ) ( ) ( ) ( )
1

0,1,2,
2n

n n
n s s nλ λ τ σ

−
′ ′′= = − − = 

,                  (26) 
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where 

( ) ( ) ( )2s s sτ τ π= + ,                               (27) 

and it will have a negative derivative. By comparing (25) and (26), we obtain the energy eigenvalues [34]. 
If we apply the NU method, by comparing (18) and (19), the following expressions are obtained: 

2 2 2 2
, 02, , ,

rn kr r E r Av r Lτ σ σ σ= = = = − − −

  .                    (28) 

Substituting the above expression into (25), we have: 

( ) ( )
,

2 2
0

1 1
2 4nr k

r E r Av r k r Lπ = − ± ± + + + .                       (29) 

The constant parameter k  can be determined from the condition that the expression under the square root 
must be the square of a polynomial of first degree. So, it has a double zero. Therefore, possible forms of π(r) are 
as follows: 

( )
1

1 222
,

1 1
2 4rn kr E r Lπ

 
  = − ± ± +   

 

.                          (30) 

Since we have the polynomial ( ) ( ) ( )2s s sτ τ π= +  and it has a negative derivative, the suitable form is es- 
tablished. Therefore, 

( )
1

1 1222 2
, ,

11 2 , 2
4r rn k n kr E r L Eτ τ

 
   ′= − + + = −   

 

.                     (31) 

According to (22) and (24) these values can be obtained: 

( )

1
22 1

2
,

1 1
2 4

e n kr

L
E r

r Nrφ

 
  − ± +    ±  =                               (32) 

1 1
22 2

,

1
24 e n kr

L E r
rρ

 − +  ± = .                                 (33) 

Substituting (33) into (23), yn can be found: 

( )
1 11 1
2 22 22 2

, ,

1 12 22 24 4de e
d

n k n kr r
nL n LE r E r

n n ny s B r r
s

   + − +   ± ±   

 
 =  
  

.                    (34) 

By using ( ) ( ) ( )s s y sψ ϕ= , the solution of (16) can be written as the wave function of the Dirac equation as 
follow: 

( ) ( )
2 12

2 ,

12 1 11 4
4 22

,! 2 e n kr
r

L
L E k

n k nr Nn E r L rψ

 +     ± + −  ± 
 

=   
 





   .                  (35) 

Considering the notations of (14), (15) and Equation (26) the eigenvalues of energy can be obtained: 

( ) ( ) ( ) ( )2
2 02

, 0 0 0 21
22

1 4
2

12 2 1
4

rn k s s s s

Av
E C v C v M C M M C v

L n

α α α

  
  
  
   = − ± − − − + + − +  

       ± + ±     
    



.  (36) 
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This equation can be used to determine the difference in energy between energy levels of spin-1/2 particles 
with spin symmetry. 

5. Pseudospin Symmetry Solution 
Now we return to Equation (8) under pseudospin symmetry, i.e. ( ) constpr CΣ = = . with the consideration of 
Equation (11), Equation (8) reduces to: 

( ) ( ) ( ) ( )
2

0
, , ,2 2

1d 1 0
d r r rn k p n k n k

k k v
M E c M E r G r

rr r
α

+  − − − + + + − =  
  

.          (37) 

If we introduce the notations: 

( ) ( ),

2 2
, , ,,

r r n k rrn k p n k p n k p pM E C M E M E C Aε− + + = − + = ,            (38) 

and 
( )

, ,

2
0 , 1

n k n kr rp p pA v E k k Lε α+ = + = .                    (39) 

We will obtain: 

( )
, ,

22
0

2 2

d 0
d n k n kr r

p
p p p

L v
E A G r

rr r

  − − − =     
 .                    (40) 

In order to solve the above equation, as we did in Equation (17), we consider: 

( ) ( )
, ,n k n kr rp pG r rS r= .                                  (41) 

So we can rewrite Equation (41) as: 
( ) ( ) ( ) ( ), ,

, ,

2
2 2

02 2

d d2 1 0
dd

n k n kr r
n k n kr r

p p
p p p p

S r S r
E r A v r L S r

r rr r
+ + − + − = .           (42) 

Applying the NU method and comparing (42) and (19), the following expressions are obtained: 

,

2 2 2 2
02, , ,

n krp p pr r E r A v r Lτ σ σ σ= = = = − + −

  .                 (43) 

Using (25), π(r) can be found as follow: 

( ) ( ),

2 2
0

1 1
2 4n krp p pr E r k A V r Lπ = − ± + − + + .                     (44) 

The constant parameter k  can be determined from the condition that the expression under square root must 
be the square of a polynomial of first degree. So, it has a double zero, therefore possible forms of π(r) are: 

( )
,

1
1 2221 1

2 4n kr ppr E r Lπ
 

  = − ± ± +   
 

 .                        (45) 

Since the polynomial ( ) ( ) ( )2s s sτ τ π= +  has a negative derivative, we have: 

( )
, ,

1
1 1222 211 2 , 2

4n k n kr rpp pr E r L Eτ τ
 

   ′= − + + = −   
 

  .                 (46) 

According to (22) and (24) these values can be obtained: 

( )

1
2 12

2
,

1 1
2 4

e
p

pn kr

L
E r

r Nrφ

 
  − ± +    ±  =

 ,                              (47) 

1 1
22 2

,

1
2

4 e
p pn kr

L E r
rρ

 − + ± 
 =



.                               (48) 

https://www.google.com/search?biw=1366&bih=639&q=difference+in+energy+between+two+energy+levels&revid=825886224&sa=X&ei=x88KU-uIMoHirAfr4YGIDw&ved=0CIQBENUCKAI
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Substituting (48) into (23), yn can be written as: 

( )
1 11 1
2 22 22 2

, ,

1 12 22 24 4de
d

p pn k n kr r
nL n LE r E r

n n ny s B r r e
s

   + − +    ±   

 
 =  
  



.                (49) 

Using ( ) ( ) ( )s s y sψ ϕ= , the solution of (37) can be written as the wave function of Dirac equation under the 
pseudospin symmetry as follow: 

( ) ( )
2 1

2 2
,

,

12 1 11 4
4 22! 2 e pn kr

n kr

L
L E k

p nr Nn E r L rψ

 +     ± + −  ±
 

 
=   

 





 .                  (50) 

Finally, considering the notations (38), (39) and Equation (26), the eigenvalues of energy can be obtained: 
 

( )
,

2
02 2

0 21
22

1 4
2

12 1 2
4

n kr

p
p p p p p

p

A v
E C C M C M A v

n L

α

  
  
  
   = ± + + + −  

       ± ± +     
    





.            (51) 

This energy equation yields the energy levels of spin-1/2 particles with pseudospin symmetry. 

6. Conclusion 
In this study, the energy equations of relativistic spin-1/2 particles are calculated with the consideration of spin 
symmetry and pseudospin symmetry case. The analytical NU method is applied to obtain the energy spectrum 
and eigen functions related to these cases of Dirac equation with standard Yukawa interaction. 

References 
[1] Alhaidari, A.D., Bahlouli, H. and Al-Hasan, A. (2006) Physics Letters A, 349, 87-97.  

http://dx.doi.org/10.1016/j.physleta.2005.09.008 
[2] Schulze-Halberg, A. (2006) Chinese Physics Letters, 23, 1365. http://dx.doi.org/10.1088/0256-307X/23/6/003 
[3] Su, R.K. and Ma, Z.Q. (1986) Journal of Physics A: Mathematical and General, 19, 1739. 

http://dx.doi.org/10.1088/0305-4470/19/9/045 
[4] Ginocchio, J.N. (2004) Physical Review C, 69, Article ID: 034318. http://dx.doi.org/10.1103/PhysRevC.69.034318 
[5] Jia, C.S., Guo, P. and Peng, X.L. (2006) Journal of Physics A: Mathematical and General, 39, 7737. 

http://dx.doi.org/10.1088/0305-4470/39/24/010 
[6] Zou, X., Yi, L.Z. and Jia, C.S. (2005) Physics Letters A, 346, 54-64. http://dx.doi.org/10.1016/j.physleta.2005.07.075 
[7] Guo, J.Y. and Sheng, Z.Q. (2005) Physics Letters A, 338, 90-96. http://dx.doi.org/10.1016/j.physleta.2005.02.026 
[8] Hu, S.Z. and Su, R.K. (1991) Acta Physics Sinica, 40, 1201. (in Chinese) 
[9] Chen, G., Chen, Z.D. and Lou, Z.M. (2004) Chinese Physics, 13, 279. http://dx.doi.org/10.1088/1009-1963/13/3/002 
[10] Qiang, W.C. (2004) Chinese Physics, 13, 575. http://dx.doi.org/10.1088/1009-1963/13/5/002 
[11] Zhang, X.A., Chen, K. and Duan, Z.L. (2005) Chinese Physics, 14, 42. http://dx.doi.org/10.1088/1009-1963/14/1/009 
[12] Lu, F.L., Chen, C.Y. and Sun, D.S. (2005) Chinese Physics, 14, 463. http://dx.doi.org/10.1088/1009-1963/14/3/005 
[13] Chen, C.Y. (2005) Physics Letters A, 339, 283-287. http://dx.doi.org/10.1016/j.physleta.2005.03.031 
[14] de Souza Dutra, A. and Hott, M. (2006) Physics Letters A, 356, 215-219.  

http://dx.doi.org/10.1016/j.physleta.2006.03.042 
[15] Yi, L.Z., Diao, Y.F., Liu, J.Y. and Jia, C.S. (2004) Physics Letters A, 333, 212-217.  

http://dx.doi.org/10.1016/j.physleta.2004.10.054 

http://dx.doi.org/10.1016/j.physleta.2005.09.008
http://dx.doi.org/10.1088/0256-307X/23/6/003
http://dx.doi.org/10.1088/0305-4470/19/9/045
http://dx.doi.org/10.1103/PhysRevC.69.034318
http://dx.doi.org/10.1088/0305-4470/39/24/010
http://dx.doi.org/10.1016/j.physleta.2005.07.075
http://dx.doi.org/10.1016/j.physleta.2005.02.026
http://dx.doi.org/10.1088/1009-1963/13/3/002
http://dx.doi.org/10.1088/1009-1963/13/5/002
http://dx.doi.org/10.1088/1009-1963/14/1/009
http://dx.doi.org/10.1088/1009-1963/14/3/005
http://dx.doi.org/10.1016/j.physleta.2005.03.031
http://dx.doi.org/10.1016/j.physleta.2006.03.042
http://dx.doi.org/10.1016/j.physleta.2004.10.054


M. R. Shojaei et al. 
 

 
780 

[16] Zhao, X.Q., Jia, C.S. and Yang, Q.B. (2005) Physics Letters A, 337, 189-196.  
http://dx.doi.org/10.1016/j.physleta.2005.01.062 

[17] Zhang, X.C., Liu, Q.W., Jia, C.S. and Wang, L.Z. (2005) Physics Letters A, 340, 59-65.  
http://dx.doi.org/10.1016/j.physleta.2005.04.011 

[18] Shojaei, M.R. and Rajabi, A.A. (2008) Modern Physics Letters A, 23, 3411.  
http://dx.doi.org/10.1142/S0217732308027291 

[19] Shojaei, M.R., Rajabi, A.A. and Momen, Y. (2011) AIP Conference Proceedings, 1400, 135.  
[20] Feizi, H., Rajabi, A.A. and Shojaei, M.R. (2011) Acta Physica Polonica B, 42, 2143.  

http://dx.doi.org/10.5506/APhysPolB.42.2143 
[21] Nikiforov, A.F. and Uvarov, V.B. (1988) Special Function of Mathematical Physics. Birkhäuser, Boston.  

http://dx.doi.org/10.1007/978-1-4757-1595-8 
[22] Ginocchio, J.N. (2004) Physical Review C, 69, Article ID: 034318. http://dx.doi.org/10.1103/PhysRevC.69.034318 
[23] Arima, A., Harvey, M. and Shimizu, K. (1969) Physics Letters B, 30, 517-522.  

http://dx.doi.org/10.1016/0370-2693(69)90443-2 
[24] Hecht, K.T. and Adler, A. (1969) Nuclear Physics A, 137, 129-143. http://dx.doi.org/10.1016/0375-9474(69)90077-3 
[25] Ginocchio, J.N. (2005) Physics Reports, 414, 165-261. http://dx.doi.org/10.1016/j.physrep.2005.04.003 
[26] Guo, J.Y. (2012) Physical Review C, 85, Article ID: 021302(R). http://dx.doi.org/10.1103/PhysRevC.85.021302 
[27] Chen, S.W. and Guo, J.Y. (2012) Physical Review C, 85, Article ID: 054312.  

http://dx.doi.org/10.1103/PhysRevC.85.054312 
[28] Yukawa, H. and Sakata, S. (1935) Proceedings of the Physico-Mathematical Society of Japan, 17, 48. 
[29] Feizi, H., Shojaei, M.R. and Rajabi, A.A. (2012) The European Physical Journal Plus, 127, 41.  

http://dx.doi.org/10.1140/epjp/i2012-12041-y 
[30] Wilczek, F. (2007) Nature, 445, 156-157. http://dx.doi.org/10.1038/445156a 
[31] Messina, R. and Lowen, H. (2003) Physical Review Letters, 91, Article ID: 146101.  

http://dx.doi.org/10.1103/PhysRevLett.91.146101 
[32] Greiner, W. (2000) Relativistic Quantum Mechanics: Wave Equations. Springer, Berlin.  

http://dx.doi.org/10.1007/978-3-662-04275-5 
[33] Shenk, A. (2000) Calculus and Analytic Geometry. Scott Foresman & Co., Glenview.  
[34] Farrokh, M., Shojaei, M.R. and Rajabi, A.A. (2013) Klein-Gordon Equation with Hulth’en Potential and Position-De- 

pendent Mass. The Europeanphysical Journal Plus, 128, 14. 

http://dx.doi.org/10.1016/j.physleta.2005.01.062
http://dx.doi.org/10.1016/j.physleta.2005.04.011
http://dx.doi.org/10.1142/S0217732308027291
http://dx.doi.org/10.5506/APhysPolB.42.2143
http://dx.doi.org/10.1007/978-1-4757-1595-8
http://dx.doi.org/10.1103/PhysRevC.69.034318
http://dx.doi.org/10.1016/0370-2693(69)90443-2
http://dx.doi.org/10.1016/0375-9474(69)90077-3
http://dx.doi.org/10.1016/j.physrep.2005.04.003
http://dx.doi.org/10.1103/PhysRevC.85.021302
http://dx.doi.org/10.1103/PhysRevC.85.054312
http://dx.doi.org/10.1140/epjp/i2012-12041-y
http://dx.doi.org/10.1038/445156a
http://dx.doi.org/10.1103/PhysRevLett.91.146101
http://dx.doi.org/10.1007/978-3-662-04275-5


Scientific Research Publishing (SCIRP) is one of the largest Open Access journal publishers. It is 
currently publishing more than 200 open access, online, peer-reviewed journals covering a wide 
range of academic disciplines. SCIRP serves the worldwide academic communities and contributes 
to the progress and application of science with its publication. 
 
Other selected journals from SCIRP are listed as below. Submit your manuscript to us via either 
submit@scirp.org or Online Submission Portal. 

 

    

    

    

    

mailto:submit@scirp.org
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper

	Energy Levels of Spin-1/2 Particles with Yukawa Interaction
	Abstract
	Keywords
	1. Introduction
	2. Dirac Basic Equation for Spin-1/2 Particles
	3. Spin Symmetry Solution
	4. Basic Concepts of NU Method
	5. Pseudospin Symmetry Solution
	6. Conclusion
	References

