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Abstract 
In this paper two kernel density estimators are introduced and investigated. In order to reduce 
bias, we intuitively subtract an estimated bias term from ordinary kernel density estimator. The 
second proposed density estimator is a geometric extrapolation of the first bias reduced estimator. 
Theoretical properties such as bias, variance and mean squared error are investigated for both 
estimators. To observe their finite sample performance, a Monte Carlo simulation study based on 
small to moderately large samples is presented. 
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1. Introduction 
Many efforts have been devoted to investigating the optimal performance of kernel density estimator since it has 
been the most widely used nonparametric method in the last decades. Suppose we use ( )nf x  to denote the 
kernel estimator of the true density function ( )f x . Normally we use mean squared error (MSE) and its two 
components, namely bias and variance, to quantify the accuracy of an estimator. Note that the MSE of ( )nf x  
is decomposed into two parts: 

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

2 2 2

2

MSE

Bias Var .
n n n n n

n n

f x E f x f x Ef x f x E f x Ef x

f x f x

= − = − + −

= +
 

There have been numerous literatures that discuss approaches to improving the performance of kernel esti-
mators, while reducing the bias has been the most commonly considered one. Article [1] obtained the best  
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asymptotic convergence rate 
2

2 1
r

rO n
−

+
 
  
 

 of MSE for orthogonal kernel estimators. Article [2] introduced geo-  

metric extrapolation of nonnegative kernels, while [3] discussed the number of vanishing moments of kernel or-
der using Fourier transformation. Variable kernel estimation in [4] successfully reduced the bias by employing 
larger smoothing parameters in low density regions, while [5] introduced the idea of inadmissible kernels which 
also results in reduced bias. On the other hand, [6] proposed an estimator using some probabilistic arguments 
which achieves the goal of bias reduction. Article [7] suggested a locally parametric density estimator, a semi-
parametric technique, which effectively reduces the order of bias. Article [8] proposed algorithms relevant to 
quadratic polynomial and β  cumulative distribution function (c.d.f.) which accommodates possible poles at 
boundaries and in consequence reduces the bias at boundaries. Article [9] introduced a bias reduction method 
using estimated c.d.f. via smoothed kernel transformations. Article [10] introduced a two-stage multiplicative 
bias corrected estimator. Article [11] developed a skewing method to reduce the bias while the variance is only 
increased by a moderate constant factor. In addition, some recent works discussed approaches of obtaining 
smaller bias of the estimator via several other methods. Article [12] worked out a bias reduced kernel relative to 
the classical kernel estimator via Lipschitz condition. Article [13] introduced an adjusted kernel density estima-
tor in which the kernel is adapted to the data but not fixed. This method naturally leads to an adaptive-choice of 
the smoothing parameters which can reduce the bias. 

Although the variance reduction method is not as approachable as the bias reduction method, there still have 
been a lot of scholars working on it. Article [14] suggested an approach to reduce the variance in local linear re-
gression employing the idea of the skewing method. Article [15] also used the skewing method on bias reduc-
tion and variance reduction at the same time which in turn reduces the MSE. 

Many of above mentioned bias reduction methods result in complex kernel density estimators. In this paper, 
we introduce a novel but intuitive and feasible bias reduced kernel density estimator. In Section 2, we present 
the bias reduced estimator and investigate its asymptotic bias, variance and MSE. A second estimator is pro-
posed and studied in Section 3 as a geometric extrapolation of the bias reduced kernel. To examine the finite 
sample performance of both estimators, a simulation study is carried out in Section 4. Finally some remarks are 
given in Section 5. 

2. A Bias Reduced Kernel Estimator 
Kernel density estimator was first introduced in [16] and [17]. Suppose 1, , nX X  is a simple random sample 
from the unknown density function f. Let K be a function on real line, i.e. the “kernel”, and let h be a positive 
value, i.e. the “bandwidth”. Then the kernel density estimator of f is defined as 

( )
1

1 .
n

i
n

i

x Xf x K
nh h=

− =  
 

∑                                (2.1) 

To make the estimator meaningful, the kernel function is usually required to satisfy conditions ( ) 0K x > , 
( )d 1K x x =∫  and ( )2 dxx K x < ∞∫ . Both [18] and [19] pointed out that if ( )d 0uK u u =∫  and f is twice con-

tinuously differentiable in a neighborhood of x, then 

( )( ) ( )( ) ( ) ( ) ( ) ( )2 2 31Bias d
2n nf E f f x f x h u K u Ox hx u′′= − = +∫                (2.2) 

and 

( )( ) ( ) ( ) ( )( )121Var d .nf f K ux x u o nh
nh

−= +∫                       (2.3) 

Then from (2.2) and (2.3) we have 

( )( ) ( )( ) ( )( )

( )( ) ( ) ( ) ( )

2

22 4 2 2

MSE Bias Var

1 1d d .
4

n n nx x x

x

f f f

f h u K u u f K u u
nh

x

= +

 ′′ + ∫ ∫

 

We can easily see that the optimized bandwidth is 
1
5h O n

− 
  
 

  and then the optimal MSE is of the order 
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4
5n

−
. 

In order to reduce the bias of ordinary kernel density estimator, we can intuitively subtract the leading bias  

term ( ) ( )2 21 d
2

f h u ux K u′′ ∫  in (2.2) from it. Since the leading term of the bias is unavailable due to the 

unknown f, we can simply use its estimation, i.e. 

( ) ( )  ( )( )Bias .n n nx x xf f f= −  

One could use any type of estimation of the bias term. We could simply replace f with the kernel estimator fn 
since it is readily available. As a result, our proposed estimator is 

( ) ( ) ( ) ( ) ( )
2

2 2

1 1

1d d .
2 2

n n
i i

n n n
i i

x X x Xh hf x f x f x u K u u K u K u u K
nh h n h= =

− −   ′′ ′′= − = −   
   

∑ ∑∫ ∫       (2.4) 

From the way of construction, this new estimator should be able to reduce the bias and thus the MSE. To see 
whether this is the case or not, we next calculate the bias and the variance of ( )nf x . We make the following 
regularity condition on f, K and h: 

1) ( )d 0uK u u =∫ . 

2) f  is fourth differentiable in a neighbourhood of x. 
3) 0h →  and nh →∞  as n →∞ . 
Theorem 2.1. Under 1), 2) and 3), 

( )( ) ( ) ( ) ( )
3

3 4Bias d
6n
hf x f x u K u u O h′′′= − +∫                       (2.5) 

and 

( )( ) ( ) ( )( ) ( ) ( ) ( )2 22 11Var d d .
2nf x f x u K u u K u u O n

nh
−′′= +∫ ∫                  (2.6) 

Consequently, 

( )( ) ( )( )16MSE nf x O h nh −= +  

and the optimal MSE is of the order 
6
7O n

− 
  
 

 with 
1
7h O h

− 
=   

 
. 

Proof. By Taylor expansion we have 

( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 3 4

2 3
2 3 4

1 d d

1 1 d
2 6

d d ,
2 6

n
x tE f K f t t K u f x hu u

h h

K u f x huf x hu f x hu f x u O h

h hf x f x u K u u f x u K u u O h

x − = = − 
 
 ′ ′′ ′′′= − + − +  

′′ ′′′= + − +

∫ ∫

∫

∫ ∫

 

( )( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 3
1

2 2

2
2 2

1 1 d

1 d d

1 d
2

d .
2

n
i

n
i

x X x tE f x E K K f t t
h hnh h

x tK f t t K u f x hu u
h h

K u f x huf x hu f x u o h

hf x f x u K u u o h

=

 −  −   ′′ ′′ ′′= =        
−  ′′ ′′= = − 

 
 ′′ ′′′ ′′′′= − + +  

′′ ′′′′= + +

∑ ∫

∫ ∫

∫

∫

                    (2.7) 
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Thus we have 

( )( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )

2
2

3 4 23 4 2 4

3
3 4

Bias

d
2

d d
6 4

d .
6

n n

n n

f x E f x f x

hE f x f x E f x u K u u

h hf x u K u u O h f x u K u u o h

h f x u K u l u O h

= −

′′= − −

′′′ ′′′′= − + − +

′′′= − +

∫

∫ ∫

∫

 

         (2.8) 

On the other hand, 

( )( ) ( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( )( ) ( )( )

2
2

2
2

4 22

Var Var d
2

2Var 2Var d
2

2Var d Var .
2

n n n

n n

n n

hf x f x f x u K u u

hx

x

f f x u K u u

hf u K u u f x

 
′′= − 

 
 

′′≤ +  
 

′′= +

∫

∫

∫



                          (2.9) 

Note that (2.7) gives 

( )( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( ) ( ) ( )

1
3 6

1

2
2

6 6

22 2
5

2
2 22

5

1 1Var Var Var

1 1d d

1 1d

1 1d

1

n
i

n
i

x X x Xf x K K
h hnh nh

x t x tK f t t K f t t
h hnh nh

K u f x hu u f x O h
nnh

hK u f x huf x O h u f x O
n nnh

n

=

 −   −    ′′ ′′ ′′= =     
     

−  −    ′′ ′′= −     
    

′′ ′′= − − +

 
′′ ′ ′′= − + − +  

 

=

∑

∫ ∫

∫

∫

( ) ( ) ( ) ( )( )12 4
5 d .f x K u u O nh

h
−

′′ +∫

        (2.10) 

Finally (2.9) and (2.10) together with (2.3) gives (2.6).                                            
Remark 2.1. From Theorem 2.1 we can see that if K is symmetric, i.e. ( ) ( )K u K u= − , then all the odd mo-

ments of K are zero and, as a result, the bias of ( )nf x  will be improved to a higher order of ( )4O h . In this  

case, the optimal MSE is further reduced to 
8
9O n

− 
  
 

 with 
1
9h O n

− 
=   

 
. 

Remark 2.2. From the definition of nf  in (2.4), this estimator could be possibly negative on some points x. 
In order to make it meaningful in practice, i.e. make it a positive density estimator, one can use the following 
variation of the proposed bias deducted estimator 

( )
( ) ( )( )
( ) ( )( )

0

0

ˆ ,
d

n

n

n f x
n

n f x

f x I
f x

f x I x
>

>

=
∫









 

where AI  is an indicator function that takes value one on set A and zero otherwise. Note that the first term on 
the right hand side of Equation (2.4) converges to ( )f x  in probability, while the second term is of the order  
( )O h , which goes to zero as n →∞  under 3). Thus ( )nf x  converges to ( )f x  in probability, and as a re-  

sult ( )nf x  is positive in probabililty at any point x∈Ω  with Ω  the support of f. Therefore, n̂f  has similar 
performance and properties as nf , especially when sample size is large. 
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3. A Geometric Extrapolated Kernel Estimator with Bias Reduction 
Geometric extrapolation was introduced in kernel density estimation by [2]. Consider the ordinary kernel density 
estimator with two different bandwidths h and 2h: 

( )
1

1 ,
n

i
h

i

x Xf x K
nh h=

− =  
 

∑  

( )2
1

1 .
2 2

n
i

h
i

x Xf x K
nh h=

− =  
 

∑  

Suppose the kernel function K above is symmetric so that all the odd moments of K are zero. Article [2] pro-
posed the following estimator 

( ) ( ) ( )
4 1
3 3

2

4 1
3 3

1 1

1 1 .
2 2

n h h

n n
i i

i i

f x f x f x

x x x xK K
nh h nh h

−

−

= =

=

 −   −    = ×            
∑ ∑



                  (3.1) 

Note that ( )nf x  doesn’t have integral one. In order to improve the MSE of order 
4
5O n

− 
  
 

 of the ordinary 

kernel estimator, one has to relax the constraint of integrating to one. The powers 4
3

 and 1
3

−  are selected to 

reduce the bias of the ordinary kernel estimator to ( )4O h . Consequently, the MSE of ( )nf x  is improved to 

the order of 
8
9O n

− 
  
 

, which is a faster convergence rate than the rate 
4
5O n

− 
  
 

 of the ordinary kernel estima-

tor. 
Instead of using the ordinary kernel estimator, we propose to use the bias reduced kernel estimator, presented 

in Section 2, in the construction of geometric extrapolated kernel (3.1). Denote the bias reduced kernel estimator 
with two bandwidths h and 2h as 

( ) ( ) ( )2 2

1

1 1 d ,
2

n
i

h h
i

x xf x K f x h u K u u
nh h=

−  ′′= − 
 

∑ ∫  

( ) ( ) ( )2 2
2 2

1

1 1 d .
2 2 4

n
i

h h
i

x xf x K f x h u K u u
nh h=

−  ′′= − 
 

∑ ∫  

Now the geometric extrapolated kernel estimator with bias reduction is proposed as 

( ) ( ) ( )
8 1
7 7

2 .n h hf x f x f x
−

=  

                                (3.2) 

Since the bias reduced kernel estimator has improved bias and MSE over the ordinary kernel estimator, espe-
cially when K is symmetric, we expect that with geometric extrapolation it will achieve further improvement. 

Theorem 3.1. Under 1), 2) and 3), 

( )( ) ( )( ) ( ) ( ) ( )( )2 12 4 4 52 1Bias d d
7 21nf x u K u u u K u u f x h O h nh −  ′′′′= − + +  ∫ ∫

  

and 

( )( ) ( ) ( ) ( )( )21 2
2

8 1Var Var .
7 7n h hf x f x f x O n h nh −− = − + +  


    

Consequently, 

( )( ) ( )( )18MSE nf x O h nh −= +
  
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and the optimal MSE is of the order 
8
9O n

− 
  
 

 with 
1
9h O h

− 
=   

 
. 

Proof. We calculate ( )( )Bias hf x  first. Similar argument to (2.8) gives 

( )( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

2
2

4 23 23 4 4 2

d
2

1 11d d d .
6 4! 2 2!

h n n
hE f x E f x E f x u K u u

hf x f x u K u u h f x u K u u u K u u

′′= −   

 − −
′′′ ′′′′= − + − + 

  

∫

∫ ∫ ∫





 

Let ( ) ( )h hJ x Ef x=  , then 

( ) ( ) ( ) ( )
3 43 41 ,h

b bJ x f x h h
f x f x

 
= + + + 

  
                        (3.3) 

where 

( )
( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )2 2 2

1 d , 3
!

1 d 1 d d , 4,5, .
! 2 2 !

i
i i

i i i
i ii i

f x
u K u u i

i
b

f x f x
u K u u u K u u u K u u i

i i
− −


− =

= 
 − − − ⋅ = −

∫

∫ ∫ ∫ 

 

Taking logarithm of (3.3) gives 

( )( ) ( )( ) ( ) ( )

( )( ) ( )
( ) ( )

3 43 4

1
3 43 4

1

log log log 1

1
log

!

h

ii

i

b bJ x f x h h
f x f x

b bf x h h
i f x f x

−∞

=

 
= + + + + 

  

 −
= + + + 

  
∑





               (3.4) 

Here we want to construct a geometric extrapolated kernel estimator of the form ( ) ( )1 2
2

t t
h hf x f x   that possibly 

reduces the bias. In another word, we need ( )( ) ( )( )1 2 2log logh ht J x t J x+  has term ( )( )log f x  but has 3h  

term disappear. Thus 1t  and 2t  have to satisfy 

1 2
3

1 2

1

2 0.

t t

t t

+ =


+ =
 

The solution to above equation system is 1
8
7

t =  and 2
1
7

t = − , and this gives our proposed estimator (3.2). 

Now 

( )( ) ( )( ) ( )( ) ( ) ( )4 54
2

88 1log log log
7 7 7h h

bJ x J x f x h O h
f x

− = − +  

and a series expansion for exponential function gives 

( ) ( ) ( ) ( )
8 1

4 57 7
2 4

8 .
7h hJ x J x f x b h O h

−
= − +                           (3.5) 

We rewrite 
( ) ( ) ,h hf x J x U= +  

( ) ( )2 2 ,h hf x J x V= +  

where U and V are both of order ( )( )1 2O nh − , and have expectations zero and variances and covariances of 

order ( )( )1O nh − . As a result, 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( )
( )

8 1
8 1 8 17 7
7 7 7 7

2 2
2

2 28 1
7 7

2
2 2

1
8 1 7
7 7

2
2 2

1 1

8 11 1
7 7

8 1
7 7

h h h h
h h

h h
h h h h

h h
h h

h h

U Vf x f x J x J x
J x J x

U U V VJ x O J x O
J x J x J x J x

J x J x
J x J x U V

J x J x

−
− −

−

−

   
= + +   

      
               = + + ⋅ − +                     

 
= + −  

 

 

( )( )
8
7 2 ,O U V

 
+ +  

 

 

and then 

( )( ) ( ) ( ) ( )

( ) ( )( )
( )( )

8 1
7 7

2

14 5
4

14 5
4

Bias

8 0 0
7
8 .
7

n h hf x E f x f x f x

b h O h O nh

b h O h nh

−

−

−

 
= − 

 

= − + + + +

= − + +

  



 

Since 
( )
( ) ( )3

2

1h

h

J x
O h

J x
= +  by (3.4), the variance of ( )nf x

  is 

( ) ( ) ( )
( )

( )
( ) ( )( )

( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( )

( )( )

1 8
8 1 7 7 27 7

2
2 2

23
2

21 2
2

1

8 1Var Var
7 7

8 1Var 1
7 7
8 1Var
7 7

.

h h
h h

h h

h h

h h

J x J x
f x f x U V O U V

J x J x
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 
      = − + +           

       
 = − + +  
 = − + +  

=

 

 

 

 

 
Remark 3.1. Article [2] proposed the geometric extrapolation of ordinary kernel estimator which results in  

optimal MSE of the order 
8
9O n

− 
  
 

. Though here we achieve the same order of optimal MSE, we don’t impose 

the assumption that K is symmetric while [2] does. 
Remark 3.2. When K is symmetric, we propose another estimator 

( ) ( ) ( )
16 1
15 152 .n h hf x f x f x −=  

  

This estimator reduces the bias to ( )6O h  and has improved optimal MSE of the order 
12
13O n

− 
  
 

 with 

1
13h O n

− 
=   

 
. 

4. Simulation Study 
In this section, we carry out a simulation study designed to demonstrate the finite sample performance of the 
proposed bias reduced kernel estimator (BRK) nf  given in (2.4) and the proposed geometric extrapolation of 
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bias reduced kernel estimator (GEBRK) nf
  given in (3.2). Particularly, we compare their bias and MSE with 

the ordinary kernel density estimator (OK) nf  in (2.1) and the geometric extrapolation of ordinary kernel esti-
mator (GEOK) nf

  in (3.1). 
Without loss of generality, we suppose f is the standard normal density. We randomly select 1000 indepen-

dent samples of size n = 20, 50, 100 or 200. We choose arbitrarily the points x = 0, 0.5, 1, 1.5, 2, 2.5 and 3 at 
which the kernel estimators are calculated and compared. Since the properties of kernel estimators do not de-
pend much on which particular kernel is used, we choose the standard normal as the kernel function K without 
loss of generality. For the bandwidth h, we use the optimal one for each individual kernel estimator. In another 
word, since here K is symmetric, by Remarks 2.1 and 3.2, we choose 1 5h n−=  for OK, 1 9h n−=  for both BRK 
and GEOK and 1 13h n−=  for GEBRK. The bias, variance and MSE are estimated respectively by 

( ) ( )
1000

0
1

1ˆ ˆBias ,
1000 i

i
θ θ θ

=

= −∑  

( ) ( )21000 1000

1 1

1 1ˆ ˆ ˆ ˆ ˆVar with
1000 1000i i

i i
θ θ θ θ θ

= =

= − =∑ ∑  

and 

( ) ( )
1000 2

0
1

1ˆ ˆMSE ,
1000 i

i
θ θ θ

=

= −∑  

where 0θ  is the true parameter and îθ  is the estimate value θ̂  based on the i-th sample. In our case, 0θ =  

( )f x  and θ̂  is either ( )nf x , ( )nf x , ( )nf x  or ( )nf x

  for fixed x = 0, 0.5, 1, 1.5, 2, 2.5 or 3. The simu-  
lation results are presented in Tables 1-7. 

From Tables 1-7 we can see that BRK consistently has smaller bias and MSE than OK except for x = 1. This 
is simply due to the fact that ( )1 0f ′′ =  which in turn reduces the bias of OK to ( )4O h . Apparently this is of 
the same order as the bias of BRK, however this is a special case that is only true at point x = 1 here and the  
 
Table 1. Bias, variance and MSE of different kernel density estimators evaluated at x = 0. 

Sample size Kernel estimator Bias Variance MSE 

20 

OK −0.051923 0.003405 0.006101 

BRK −0.028022 0.003849 0.004644 

GEOK −0.036122 0.003106 0.004411 

GEBRK −0.027881 0.003158 0.003935 

50 

OK −0.036192 0.002127 0.003437 

BRK −0.017092 0.002105 0.002397 

GEOK −0.025861 0.001686 0.002355 

GEBRK −0.018000 0.001620 0.001944 

100 

OK −0.028514 0.001245 0.002058 

BRK −0.012703 0.001132 0.001294 

GEOK −0.021273 0.000885 0.001338 

GEBRK −0.014114 0.000829 0.001028 

200 

OK −0.022334 0.000815 0.001314 

BRK −0.009988 0.000691 0.000791 

GEOK −0.017786 0.000531 0.000847 

GEBRK −0.011795 0.000491 0.000630 
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Table 2. Bias, variance and MSE of different kernel density estimators evaluated at x = 0.5.  

Sample size Kernel estimator Bias Variance MSE 

20 

OK −0.035504 0.003537 0.004798 

BRK −0.015563 0.004579 0.004821 

GEOK −0.021755 0.003326 0.003800 

GEBRK −0.015037 0.003978 0.004204 

50 

OK −0.022483 0.002055 0.002560 

BRK −0.007345 0.002321 0.002375 

GEOK −0.013747 0.001689 0.001878 

GEBRK −0.007874 0.001904 0.001966 

100 

OK −0.017031 0.001308 0.001598 

BRK −0.005084 0.001334 0.001360 

GEOK −0.011120 0.000978 0.001102 

GEBRK −0.006062 0.001048 0.001085 

200 

OK −0.013480 0.000816 0.000998 

BRK −0.003789 0.000793 0.000807 

GEOK −0.009041 0.000569 0.000650 

GEBRK −0.004779 0.000605 0.000628 

 
Table 3. Bias, variance and MSE of different kernel density estimators evaluated at x = 1. 

Sample size Kernel estimator Bias Variance MSE 

20 

OK −0.003146 0.003591 0.003601 

BRK 0.006564 0.005192 0.005236 

GEOK 0.007186 0.003470 0.003522 

GEBRK 0.008243 0.004727 0.004795 

50 

OK −0.000313 0.002001 0.002001 

BRK 0.006093 0.002522 0.002560 

GEOK 0.007797 0.001668 0.001729 

GEBRK 0.007741 0.002177 0.002237 

100 

OK −0.000609 0.001197 0.001197 

BRK 0.004084 0.001369 0.001385 

GEOK 0.006424 0.000926 0.000967 

GEBRK −0.058670 0.001150 0.001184 

200 

OK −0.000124 0.000661 0.000661 

BRK −0.003466 0.000698 0.000710 

GEOK 0.005702 0.000487 0.000520 

GEBRK 0.005187 0.000581 0.000608 
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Table 4. Bias, variance and MSE of different kernel density estimators evaluated at x = 1.5.  

Sample size Kernel estimator Bias Variance MSE 

20 

OK 0.019396 0.002676 0.003052 

BRK 0.017134 0.003727 0.004021 

GEOK 0.025892 0.002580 0.003250 

GEBRK 0.019406 0.003468 0.003845 

50 

OK 0.013847 0.001334 0.001525 

BRK 0.010788 0.001646 0.001763 

GEOK 0.020440 0.001163 0.001581 

GEBRK 0.013526 0.001486 0.001669 

100 

OK 0.020478 0.000747 0.000857 

BRK 0.007408 0.000848 0.000903 

GEOK 0.016685 0.000601 0.000879 

GEBRK 0.010161 0.000745 0.000848 

200 

OK 0.008525 0.000441 0.000514 

BRK 0.005869 0.000460 0.000494 

GEOK 0.014117 0.000324 0.000523 

GEBRK 0.008425 0.000389 0.000460 

 
Table 5. Bias, variance and MSE of different kernel density estimators evaluated at x = 2.  

Sample size Kernel estimator Bias Variance MSE 

20 

OK 0.020056 0.001439 0.001862 

BRK 0.012293 0.001680 0.001831 

GEOK 0.026015 0.001280 0.001957 

GEBRK 0.014823 0.001515 0.001735 

50 

OK 0.015395 0.001068 0.000912 

BRK 0.006896 0.000758 0.000806 

GEOK 0.019464 0.001280 0.001957 

GEBRK 0.008646 0.000670 0.000745 

100 

OK 0.012046 0.000390 0.000536 

BRK 0.004979 0.000412 0.000437 

GEOK 0.015909 0.000297 0.000550 

GEBRK 0.006350 0.000349 0.000390 

200 

OK 0.009334 0.000230 0.000317 

BRK 0.003604 0.000227 0.000240 

GEOK 0.013159 0.000164 0.000337 

GEBRK 0.004859 0.000189 0.000213 
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Table 6. Bias, variance and MSE of different kernel density estimators evaluated at x = 2.5. 

Sample size Kernel estimator Bias Variance MSE 

20 

OK 0.016515 0.000460 0.000732 

BRK 0.008864 0.000469 0.001831 

GEOK 0.014181 0.000533 0.000734 

GEBRK 0.010294 0.000522 0.000633 

50 

OK 0.011925 0.000206 0.000348 

BRK 0.002861 0.000215 0.000224 

GEOK 0.009428 0.000260 0.000348 

GEBRK 0.003742 0.000239 0.000253 

100 

OK 0.009607 0.000106 0.000199 

BRK 0.001155 0.000118 0.000119 

GEOK 0.007231 0.000140 0.000193 

GEBRK 0.001456 0.000134 0.000135 

200 

OK 0.007813 0.000057 0.000118 

BRK 0.000254 0.000066 0.000066 

GEOK 0.005655 0.000082 0.000115 

GEBRK 0.000566 0.000078 0.000079 

 
Table 7. Bias, variance and MSE of different kernel density estimators evaluated at x = 3.  

Sample size Kernel estimator Bias Variance MSE 

20 

OK 0.006430 0.000166 0.000207 

BRK 0.011847 0.000197 0.000338 

GEOK 0.007738 0.000132 0.000192 

GEBRK 0.009690 0.000163 0.000256 

50 

OK 0.004081 0.000076 0.000093 

BRK 0.005342 0.000067 0.000096 

GEOK 0.005354 0.000055 0.000084 

GEBRK 0.003942 0.000055 0.000070 

100 

OK 0.002957 0.000038 0.000047 

BRK 0.002107 0.000030 0.000035 

GEOK 0.004131 0.000026 0.000043 

GEBRK 0.001226 0.000024 0.000026 

200 

OK 0.002289 0.000021 0.000027 

BRK 0.000900 0.000016 0.000017 

GEOK 0.003296 0.000014 0.000025 

GEBRK 0.000157 0.000013 0.000013 
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conclusion cannot be generalized. When the two estimators with geometric extrapolation are compared, GEBRK 
generally has smaller bias and MSE than GEOK, especially when sample size is large. When BRK and GEBRK 
are compared, GEBRK tends to have smaller variance and MSE but larger bias than BRK. In terms of bias, 
BRK and GEBRK perform much better than OK and GEOK while BRK and GEBRK are very competitive. 
Geometric extrapolation reduces the variance and MSE in general, i.e. GEOK and GEBRK perform better than 
OK and BRK in terms of variance and MSE. When MSE is concerned, GEBRK performs best and then GEOK. 
These observations are somehow different at point x = 1 due to the fact that ( )1 0f ′′ =  as mentioned above. 

5. Concluding Remarks 
In this paper, we first propose a very intuitive and feasible kernel density estimator which reduces the bias and 
MSE significantly compared with the ordinary kernel density estimator. Secondly, we construct a geometric 
extrapolation of the bias reduced kernel estimator which further improves the convergence rates of both bias and 
MSE. Our simulation study shows that for finite sample size both estimators perform competitively well and 
better than the ordinary kernel estimator and its geometric extrapolation. 

For the bias reduced kernel density estimator presented in Section 2, we may find that part of the curve is un-
der zero, especially at the tails. Taking standard normal density as an example, at point x = 4 the estimator may 
give a negative value. Apparently, this is unreasonable. Though in Remark 2.2 we suggest a modified version of 
the estimator, further work is necessary to deal with this problem. 
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