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Abstract 
In the latter part of the 20th century, continued improvements in living standards, health beha-
viors, and medical care reduced mortality and produced amazing advances in life expectancy. 
These trends, followed by all industrial nations, decidedly affect the financial position of an in-
surance company, interested in the construction of updated life tables. The approach to this prob-
lem is faced in this paper by using the Lee-Carter methodology. In particular, in the present work, 
we are interested in modeling and forecasting mortality and life expectancy on a period basis 
through the use of a stochastic forecasting method which uses time-series models to make 
long-term forecasts. 
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1. Introduction 
In the twentieth century many industrialized countries have experimented downwards trends in mortality rates. 
A number of extremely important developments have contributed to this rapid mortality improvement. Among 
the others, we can highlight for example the improved healthcare provided to mothers and babies, improvements 
in motor vehicle safety, safer and more nutritious foods. Other factors are expected to contribute more to annual 
rates of mortality improvement in the future. We can highlight among the others an improvement in the educa-
tion regarding health, the development and application of new diagnostic, surgical and life sustaining techniques 
and the general change in our conception of the value of life. 

These improvements are undoubtedly favourable from our point of view, because we live longer than the past. 
Otherwise from the insurance companies’ point of view, these changes clearly affect pricing and reserve alloca-
tion for life annuities. The financial position of an insurance company is indeed affected by the downwards 
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trends in mortality. For this reason it is necessary to create updated life tables in order to produce financial esti-
mates for an insurance company. A life table shows the probabilities of a member of a particular population liv-
ing to or dying at a particular age. If the life tables do not take the trends into account, there is also the risk of 
underestimating the survival probability, thus determining inappropriate premiums by the insurance company. 
This risk is known in the actuarial literature as longevity risk. 

In this study, we construct life tables in order to examine the mortality changes in the Italian population over 
time. In particular, starting from the Italian mortality experience of the past half-century, we extrapolate forecast 
for the future mortality. To consistently predict the trends [1], we have to use reasonable mortality forecasting 
techniques. Our analysis bases on the Lee Carter model [2], a milestone in the actuarial literature of mortality 
projections. Following the methodology of Renshaw and Haberman [3], we fit the Lee-Carter model and obtain 
forecasts of the time trend parameter. The main goal of this contribution is to construct life tables on a period 
basis for the Italian population by calendar year and gender. 

The paper is organized as follows: in Section 2, we describe the mortality model; Section 3 refers to the SVD 
approximation technique; Section 4 is devoted to describe the modelling of the mortality index, used to generate 
associated life table values. Section 5 shows the findings of the empirical analysis on Italian population. Con-
cluding remarks are presented in Section 6. 

2. The Mortality Model 
Among various forecasting methodologies, in this contribution we focus on the Lee Carter (LC) model which 
makes use of the past mortality experience in order to forecast future mortality. The authors described a metho-
dology to forecast mortality which combines demographic model with statistical time series method. The model 
used for mortality bases on the central mortality rates ,x tm , for age x in year t, defined as the ratio between the 
number of deaths ,x tD , recorded during the calendar year t for people aged x and the exposure to risk ,x tE . The 
simple bilinear model was defined as: 

( ), ,ln x t x x t x tm α β κ ε= + +                                 (1) 

where on the right hand side of the equation, we find an age-specific component xα , independent of time, 
another component given by the product of a time-varying parameter tk  and an age-specific component xβ . In 
particular, the tk  parameter is a time-trend index of the general mortality level and the component xβ  indi-
cates the pattern of deviations from the age profile when the general level of mortality changes. ,x tε  is the re-
sidual term at age x and time t. 

In their original paper, in order to fit the model, Lee and Carter [2], suggested a close approximation to the 
Singular Value Decomposition (SVD) method based on a two-stage estimation procedure. In the course of time, 
different alternative criteria have been proposed to overcome this method. Wilmoth [4], for example, developed 
two alternative one-stage estimation strategies, a weighted least square (WLS) and a maximum likelihood (MLE) 
technique. Nevertheless, there are still several advantages to use the SVD which has become, together with the 
WLS and the MLE, the most used method for estimating the model’s parameters. In a study by Koissi, Shapiro 
and Högnäs [5], they compared these three methods and showed that SVD is the best alternative for the mortali-
ty index k. Moreover, another advantage of SVD is that can be easily represented by using the Biplot [6]. 

3. The SVD Approximation 
In order to find a least squares solution to the Equation (1), we use a close approximation to the SVD method, 
assuming that the errors are homoscedastic. Following [2], the components xβ  and tk  can be estimated ac-
cording to the SVD [7] with proper normality constraints: we impose the sum of xβ  coefficients equal to one 
and the sum of the tk  parameters equal to zero. Under these assumptions, we run the following steps: 
• the xα  coefficients are the average values over time t of the ( ),ln x tm  values for each x: 

1

1 1

1 ln ln h
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• tk  must equal the sum over age of ( )( ),ln x t xm α−  

• each xβ  is estimated from ( ) ( )1ln xt x x t xtm kα β ε ′− = +  (where ( )1
tk  refers to the tk  estimated above) us-
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ing the least squares estimation, i.e. choosing xβ  to minimize  
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In Section 2, we stated that the approximation to the SVD method is built on a two-stage estimation procedure. 
This happens because the first stage estimation is based on logs of death rates rather than the death rates them-
selves, thus causing possible discrepancies between predicted and actual deaths. To guarantee that the fitted 
death rates will lead to the actual numbers of deaths, when applied to given population age distribution, we 
re-estimate tk  in a second step, taking the xα  and xβ  estimates from the first step. To correct for this, we 
apply the methodology from Section 3 of [2]. We thereby find a new estimate for tk  by an iterative search,  

adjusting the estimated tk  so that the actual total observed deaths 
1

xk

xt
x x

d
=
∑  equal the total expected deaths 
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1

e x x t
xk

k
xt
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e α β+

=
∑ , for each year t (we remind the interested reader to [8] for a deeper insight in the iterative proce-  

dure). There are several advantages to make a second stage estimate of the tk : it can be useful in the life table 
presentation of the data and especially in cases where only the total, rather than age-specific, death rates are 
known in certain years. 

4. The Procedure 
4.1. Modelling the Time-Varying Parameter 
The mortality trend of a country is captured by the time-varying parameter tk  of the LC model. Once we fit the 
LC on a mortality dataset of a specific population, we obtain the tk  for the specific country. Then, we arrange 
the tk  time series in a vector in which the single units are represented by the time-varying parameter tk  in the 
different years. In this phase, the estimated time-dependent parameter tk  is modelled as a stochastic process. 
We use the standard Box and Jenkins methodology (identification-estimation-diagnosis) to generate an appro-
priate ARIMA (p, d, q) model for the mortality index tk  ([9] [10]). The ARIMA model is then used to generate 
forecasted mortality index tk . 

4.2. Projecting Life Tables 
Once we have projected the index of mortality, we can generate associated life table values. Mortality experi-
ence is usually represented in the form of a life table. There are two basic type of life tables to be represented, 
period-based tables and cohort-based tables. In this study, we focus on period life table in order to analyse 
changes in the mortality experienced by a population through time. Let’s start from the formula: 

^ ^ ^
, , expx t s x t t s txm m k kβ

° °

+ +
  = −  

  
                              (2) 

for computing forecasted mortality rates by alignment to the latest available empirical mortality rates 
^

,x tm . In  
the formula we inserted the projected t sk + , , 1, ,s y y y T= + + , with y being the first time and T the length of 
the period considered for the projections. 

A life table treats the mortality experience upon which it is based as though it represents the experience of a 
single birth cohort consisting of 100,000 births who experience, at each age x of their lives, the probability of 
death, denoted xq  [11]. Thus, we convert the life table death rates, xm , into probabilities of death, xq  [12]. 
In particular, we compute xq  from xm  and xf  according to the formula: 

0 1 2, , , , ,
1

x x
x k

x x x

w mq x x x x
f w m −≅ =
′+

                            (3) 

where xf  is the average number of years lived within the age interval [ ), 1x x +  for people dying at that age  

and 1x xf f′ = − . As in [3], we assume that 1
2xf =  for all age groups except age 0 (for x = 0 we fix 0.15xf =   
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for males and 0.16xf =  for females). For the sake of completeness, we formulate xp , the probability of sur-
viving from age x to 1x + , as: 

1x xp q= −                                       (4) 

The entry xl  in the life table shows the number of survivors of that birth cohort at each succeeding exact in-
tegral age, while xd  shows the number of deaths that would occur between succeeding exact integral ages 
among members of the cohort. Thus we working down the column of l’s and d’s in the life tables, applying the 
recurrence equations: 

( ) 0 1 21 , , , , ,x wx x x kl l q x x x x+ −= − =                            (5) 

0 1 2, , , , ,
xx x x w x x kd l l l q x x x x+ −= − = =                           (6) 

where xq  is calculated as in (3) and 0l  is arbitrary (in our case is put equal to 100,000). 
The number of person-years xL  lived between consecutive exact integral ages x and 1x +  are: 

( ) 0 1 2, , , , .x x x x x kL w l f d x x x x −′= − =                            (7) 

xT  gives the total number of person-years lived beyond each exact integral age x, by all members of the co-
hort, while the final entry in the life table, xe , called life expectancy, represents the average number of years of 
life remaining for members of the cohort still alive at exact integral age x. 

In this case, the person-years remaining for individuals of age x equal 
1k

i
i

x

x x
x x

T L
−

=

= ∑                                      (8) 

imply that life expectancy is given by 
.

i i ix x xe T l=                                     (9) 

5. Numerical Application 
This study presents period life tables by gender from 2001 up to 2025 reflecting projected mortality. The fun-
damental step in constructing a life table from population data is that of developing probabilities of death xq , 
that accurately reflect the underlying pattern of mortality experienced by the population [11]. In this contribution, 
the method used for developing the rates is based on the LC model and described in Section 3. Actual data per-
mit the computation of central death rates, which are then converted into probabilities of death. Tabulations of 
death rates by age and gender are based on information supplied by the Human Mortality Database [13] availa-
ble on the web at www.mortality.org or www.humanmortality.de). Deaths and exposure to risk for the Italian 
population are provided by five year age groups for ages 0 through 99 divided by gender. Death rates are calcu-
lated as the ratio between deaths and exposure to risk. 

Usually the procedure for projecting mortality begins with an analysis of past trends. In this study, we fit the 
LC model to the matrix of Italian death rates from year 1950 to 2000, following the SVD approximation de-
scribed in Section 3. 

An accurate analysis of the autocorrelations and partial autocorrelations, together with related diagnostics, 
drive us to the choice of the ARIMA model for the re-estimated time-varying parameter tk  [8]. On the basis of 
this model, we generate the forecasted index of mortality for the 25 years onwards and produce associated life 
table values at five-year intervals from 2001 through 2025. 

Tables 1-4 show values for the functions qx, lx, dx, Lx by age and gender for quinquennial years 2010 through 
2025. The method used to produce the values shown in these tables has been described in Section 4.1. 

By looking at Tables 1-4, we notice that for each calendar year the probabilities of death xq  are relatively 
high at birth, decline to a low point until age-group 10 - 14, and thereafter rise up to age-group 95 - 99. More-
over, all of the four period tables show higher values of xq  for male than for female. It is relevant to notice 
also the drop of the probabilities of death as the calendar year increase, thus highlighting the improvement in the 
mortality, experienced by the industrialised countries. 

Finally, in Table 5 we have compared forecasted life expectancy at birth for male and female as well as life 
expectancy at 60. As regards life expectancy at age 0, by gender and calendar year, we can notice rapid gains in  

http://www.mortality.org/
http://www.humanmortality.de/
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Table 1. Period life tables for the Italian population by calendar year 2010 and gender. 

Male Female 

x qx lx dx Lx x qx lx dx Lx 

Calendar year 2010 

1 = 0 0.00261 100 261 99.778 1 = 0 0.00236 100 236 99.802 

2 = 1 - 4 0.00038 99.73865 38 398.879 2 = 1 - 4 0.00041 99.76449 41 398.977 

3 = 5 - 9 0.00045 99.70103 45 498.393 3 = 5 - 9 0.00034 99.72378 34 498.534 

4 = 10 - 14 0.00061 99.65607 61 498.127 4 = 10 - 14 0.00045 99.6899 45 498.337 

5 = 15 - 19 0.00250 99.59489 249 497.351 5 = 15 - 19 0.00089 99.64472 88 498.003 

6 = 20 - 24 0.00410 99.34565 407 495.711 6 = 20 - 24 0.00106 99.55641 105 497.519 

7 = 25 - 29 0.00428 98.93874 424 493.635 7 = 25 - 29 0.00118 99.45129 118 496.963 

8 = 30 - 34 0.00427 98.51507 420 491.525 8 = 30 - 34 0.00152 99.33372 151 496.291 

9 = 35 - 39 0.00542 98.09485 532 489.145 9 = 35 - 39 0.00231 99.18282 229 495.343 

10 = 40 - 44 0.00700 97.56305 683 486.109 10 = 40 - 44 0.00382 98.9542 378 493.826 

11 = 45 - 49 0.01110 96.88039 1075 481.714 11 = 45 - 49 0.00598 98.57635 589 491.409 

12 = 50 - 54 0.01846 95.80514 1769 474.604 12 = 50 - 54 0.00968 97.98715 949 487.564 

13 = 55 - 59 0.03166 94.03664 2977 462.741 13 = 55 - 59 0.01489 97.03859 1445 481.580 

14 = 60 - 64 0.05119 91.05977 4661 443.647 14 = 60 - 64 0.02247 95.5936 2148 472.598 

15 = 65 - 69 0.08696 86.39887 7513 413.211 15 = 65 - 69 0.03696 93.44565 3454 458.594 

16 = 70 - 74 0.14148 78.88549 11161 366.526 16 = 70 - 74 0.06347 89.99179 5712 435.679 

17 = 75 - 79 0.22335 67.72494 15126 300.810 17 = 75 - 79 0.11617 84.27969 9791 396.922 

18 = 80 - 84 0.34416 52.5989 18103 217.738 18 = 80 - 84 0.21815 74.48917 16250 331.821 

19 = 85 - 89 0.51581 34.4964 17794 127.998 19 = 85 - 89 0.38304 58.23911 22308 235.426 

20 = 90 - 94 0.69975 16.70274 11688 54.294 20 = 90 - 94 0.59349 35.93131 21325 126.344 

21 = 95 - 99 0.89195 5.01492 5015 12.537 21 = 95 - 99 0.81990 14.60633 14606 36.516 
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Table 2. Period life tables for the Italian population by calendar year 2015 and gender. 

Male  Female 

x qx lx dx Lx x qx lx dx Lx 

Calendar year 2015 

1 = 0 0.00194 100 194 99.835 1 = 0 0.00176 100 176 99.852 

2 = 1 - 4 0.00027 99.80634 27 399.171 2 = 1 - 4 0.00029 99.82375 29 399.236 

3 = 5 - 9 0.00036 99.77924 36 498.806 3 = 5 - 9 0.00027 99.7944 27 498.904 

4 = 10 - 14 0.00052 99.74323 52 498.586 4 = 10 - 14 0.00038 99.76709 38 498.740 

5 = 15 - 19 0.00232 99.6913 231 497.879 5 = 15 - 19 0.00078 99.729 77 498.451 

6 = 20 - 24 0.00387 99.4604 385 496.340 6 = 20 - 24 0.00091 99.6516 91 498.031 

7 = 25 - 29 0.00403 99.07579 400 494.380 7 = 25 - 29 0.00102 99.56088 101 497.551 

8 = 30 - 34 0.00400 98.6762 395 492.393 8 = 30 - 34 0.00132 99.45947 132 496.969 

9 = 35 - 39 0.00500 98.28118 491 490.178 9 = 35 - 39 0.00202 99.32796 201 496.138 

10 = 40 - 44 0.00638 97.78984 624 487.390 10 = 40 - 44 0.00339 99.12717 337 494.795 

11 = 45 - 49 0.01012 97.16626 983 483.374 11 = 45 - 49 0.00538 98.79064 532 492.624 

12 = 50 - 54 0.01696 96.18335 1631 476.838 12 = 50 - 54 0.00876 98.25896 861 489.143 

13 = 55 - 59 0.02944 94.552 2783 465.801 13 = 55 - 59 0.01351 97.39829 1315 483.703 

14 = 60 - 64 0.04817 91.76857 4421 447.791 14 = 60 - 64 0.02030 96.0829 1951 475.538 

15 = 65 - 69 0.08269 87.34793 7223 418.683 15 = 65 - 69 0.03324 94.13214 3129 462.839 

16 = 70 - 74 0.13489 80.12538 10809 373.606 16 = 70 - 74 0.05698 91.00326 5185 442.053 

17 = 75 - 79 0.21309 69.31688 14771 309.658 17 = 75 - 79 0.10521 85.81784 9029 406.517 

18 = 80 - 84 0.32940 54.54629 17967 227.813 18 = 80 - 84 0.20128 76.78903 15456 345.305 

19 = 85 - 89 0.49662 36.57897 18166 137.480 19 = 85 - 89 0.36134 61.3329 22162 251.260 

20 = 90 - 94 0.67957 18.41315 12513 60.783 20 = 90 - 94 0.57188 39.17099 22401 139.852 

21 = 95 - 99 0.87242 5.900144 5900 14.750 21 = 95 - 99 0.80149 16.7699 16770 41.925 
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Table 3. Period life tables for the Italian population by calendar year 2020 and gender. 

Male  Female 

x qx lx dx Lx x qx lx dx Lx 

Calendar year 2020 

1 = 0 0.00143 100 143 99.878 1 = 0 0.00132 100 132 99.889 

2 = 1 - 4 0.00020 99.85653 20 399.387 2 = 1 - 4 0.00021 99.86811 21 399.430 

3 = 5 - 9 0.00029 99.837 29 499.113 3 = 5 - 9 0.00022 99.84695 22 499.180 

4 = 10 - 14 0.00044 99.80817 44 498.931 4 = 10 - 14 0.00032 99.82495 32 499.044 

5 = 15 - 19 0.00214 99.76409 214 498.286 5 = 15 - 19 0.00068 99.79284 68 498.795 

6 = 20 - 24 0.00365 99.55024 363 496.843 6 = 20 - 24 0.00078 99.72501 78 498.429 

7 = 25 - 29 0.00380 99.1868 377 494.992 7 = 25 - 29 0.00088 99.64675 87 498.015 

8 = 30 - 34 0.00376 98.81002 371 493.122 8 = 30 - 34 0.00115 99.5593 115 497.510 

9 = 35 - 39 0.00461 98.4388 454 491.059 9 = 35 - 39 0.00177 99.44472 176 496.783 

10 = 40 - 44 0.00581 97.98499 569 488.501 10 = 40 - 44 0.00302 99.26843 300 495.593 

11 = 45 - 49 0.00922 97.41556 898 484.833 11 = 45 - 49 0.00485 98.9688 480 493.645 

12 = 50 - 54 0.01558 96.51746 1504 478.827 12 = 50 - 54 0.00793 98.48921 781 490.495 

13 = 55 - 59 0.02737 95.01342 2601 468.565 13 = 55 - 59 0.01225 97.70867 1197 485.552 

14 = 60 - 64 0.04533 92.41262 4189 451.590 14 = 60 - 64 0.01834 96.51195 1770 478.134 

15 = 65 - 69 0.07861 88.22343 6936 423.778 15 = 65 - 69 0.02989 94.74161 2831 466.629 

16 = 70 - 74 0.12860 81.28782 10453 380.306 16 = 70 - 74 0.05113 91.91013 4700 447.801 

17 = 75 - 79 0.20325 70.83445 14397 318.180 17 = 75 - 79 0.09523 87.21037 8305 415.289 

18 = 80 - 84 0.31514 56.4375 17786 237.723 18 = 80 - 84 0.18558 78.90511 14643 357.918 

19 = 85 - 89 0.47791 38.65159 18472 147.078 19 = 85 - 89 0.34061 64.26216 21888 266.590 

20 = 90 - 94 0.65967 20.17959 13312 67.618 20 = 90 - 94 0.55074 42.37393 23337 153.527 

21 = 95 - 99 0.85299 6.867716 6868 17.169 21 = 95 - 99 0.78322 19.0367 19037 47.592 
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Table 4. Period life tables for the Italian population by calendar year 2025 and gender. 

Male  Female 

x qx lx dx Lx x qx lx dx Lx 

Calendar year 2025 

1 = 0 0.00106 100 106 99.910 1 = 0 0.00099 100 99 99.917 

2 = 1 - 4 0.00014 99.89372 14 399.547 2 = 1 - 4 0.00015 99.90132 15 399.575 

3 = 5 - 9 0.00023 99.87966 23 499.341 3 = 5 - 9 0.00018 99.88607 18 499.386 

4 = 10 - 14 0.00037 99.85657 37 499.189 4 = 10 - 14 0.00027 99.86833 27 499.274 

5 = 15 - 19 0.00198 99.81916 198 498.601 5 = 15 - 19 0.00060 99.84128 59 499.058 

6 = 20 - 24 0.00345 99.62115 343 497.247 6 = 20 - 24 0.00068 99.78185 68 498.740 

7 = 25 - 29 0.00358 99.27778 355 495.501 7 = 25 - 29 0.00076 99.71434 75 498.383 

8 = 30 - 34 0.00353 98.92258 349 493.741 8 = 30 - 34 0.00100 99.63895 100 497.945 

9 = 35 - 39 0.00425 98.5738 419 491.821 9 = 35 - 39 0.00155 99.53914 155 497.309 

10 = 40 - 44 0.00530 98.15475 520 489.474 10 = 40 - 44 0.00268 99.38439 267 496.255 

11 = 45 - 49 0.00840 97.63494 820 486.124 11 = 45 - 49 0.00436 99.11769 432 494.507 

12 = 50 - 54 0.01432 96.81461 1386 480.608 12 = 50 - 54 0.00717 98.68524 708 491.657 

13 = 55 - 59 0.02545 95.42857 2429 471.071 13 = 55 - 59 0.01111 97.97763 1088 487.168 

14 = 60 - 64 0.04266 92.99983 3967 455.082 14 = 60 - 64 0.01657 96.88941 1606 480.433 

15 = 65 - 69 0.07473 89.03293 6654 428.530 15 = 65 - 69 0.02687 95.28385 2560 470.019 

16 = 70 - 74 0.12257 82.37913 10098 386.652 16 = 70 - 74 0.04587 92.72385 4254 452.985 

17 = 75 - 79 0.19381 72.28161 14009 326.385 17 = 75 - 79 0.08616 88.47027 7622 423.295 

18 = 80 - 84 0.30140 58.27251 17563 247.455 18 = 80 - 84 0.17098 80.84777 13823 369.680 

19 = 85 - 89 0.45969 40.70937 18714 156.763 19 = 85 - 89 0.32084 67.02428 21504 281.362 

20 = 90 - 94 0.64007 21.99563 14079 74.781 20 = 90 - 94 0.53010 45.52054 24131 167.276 

21 = 95 - 99 0.83368 7.916855 7917 19.792 21 = 95 - 99 0.76509 21.39003 21390 53.475 
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Table 5. Forecasted life expectancy at birth and life expectancy at 60. 

Male Female 

Year e0 e60 Year e0 e60 

2001 76.75 20.50844 2001 82.67 24.93699 

2002 76.90 20.59296 2002 82.86 25.06818 

2003 77.05 20.67749 2003 83.05 25.19859 

2004 77.19 20.76202 2004 83.23 25.32819 

2005 77.34 20.84655 2005 83.41 25.45699 

2006 77.48 20.93109 2006 83.59 25.58497 

2007 77.63 21.01561 2007 83.77 25.71213 

2008 77.77 21.10013 2008 83.94 25.83845 

2009 77.91 21.18463 2009 84.11 25.96393 

2010 78.04 21.26912 2010 84.28 26.08856 

2011 78.18 21.35358 2011 84.45 26.21233 

2012 78.32 21.43802 2012 84.61 26.33524 

2013 78.45 21.52243 2013 84.77 26.45727 

2014 78.58 21.6068 2014 84.94 26.57842 

2015 78.72 21.69114 2015 85.09 26.69869 

2016 78.85 21.77544 2016 85.25 26.81807 

2017 78.98 21.8597 2017 85.41 26.93655 

2018 79.10 21.9439 2018 85.56 27.05413 

2019 79.23 22.02806 2019 85.71 27.1708 

2020 79.36 22.11215 2020 85.86 27.28657 

2021 79.48 22.19619 2021 86.01 27.40142 

2022 79.61 22.28016 2022 86.15 27.51535 

2023 79.73 22.36406 2023 86.29 27.62836 

2024 79.85 22.4479 2024 86.44 27.74045 

2025 79.98 22.53165 2025 86.58 27.85161 
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life expectancy at age 0 from 2001 through 2025 more for female than for male. This trend is confirmed also for 
life expectancy at 60, even if the pace of improvement is lower than for life expectancy at birth. However, this 
gender gap diminished during the last decades, is projected to decrease only slightly in the future. 

6. Concluding Remarks 
Insurance companies often request mortality projections for forecasting and facing their financial position. With 
this study we suggest that relatively simple information can be used to make accurate risk assessments for the 
companies. In order to confirm risk specific premiums and to avoid acceptance at standard risk of persons with 
different life expectancy it is necessary to predict the risk. The paper deals with the projections of mortality for 
the Italian population. The analysis we propose bases on an application of the model underpinning the LC me-
thod for forecasting life table values. In the framework of the LC model, we consider a close approximation to 
the SVD method, in order to estimate the model’s parameters. The objective of the research is in particular to 
forecast period life tables, by taking into account time-series-based forecast procedure. The results are life table 
values at five-year intervals from 2001 through 2025. Obviously, the difference in results is evident for both 
genders. Our results support the thesis that mortality predictions are necessary to estimate the costs of insurances 
and to calculate optimal premiums. 
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