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Abstract 
 
Using the Green function, the boundary integral formula and natural boundary integral equation for thermal 
elastic problems are obtained. Then based on bending solutions to circular plates subjected to the non-axi- 
symmetrical load, by utilizing the Fourier series and convolution formulae, the bending solutions under non- 
axisymmetrical thermal conditions have been obtained. The calculating process is simple. Examples show 
the discussed methods are effective. 
 
Keywords: Thermal Bending Problems, Circular Plate, Boundary Integral Formula, Natural Boundary  

Integral Equation 

1. Introduction 
 
Due to the complexity of the thermoelasticity problems, 
analytic solutions can be obtained only for axisymme-
trical problems and simply problems [1-6]. For general 
non-axisymmetrical loads and general non-axisymmet- 
rical boundary conditions, the numerical computation is 
the main method [7,8,9]. For bending problems of solid 
circular plates, Fu Bao-lian adopted the reciprocal theo-
rem and took the solution of the clamped circular plate as 
the basic solution to discuss some bending solutions un-
der axis-symmetrical loads [10]. Wang An-wen intro-
duced the point source function to discuss the non- 
symmetrical bending problems under the concentrated 
force [11,12]. Yu De-hao discussed bending problems of 
plates with the natural boundary element method [13,14]. 

Using the above methods, Li Shun-cai discussed the 
bending problems of solid circular plates under the 
boundary loads [15-17]. On the basis of the same method, 
using Fourier series and several convolution for- 

mulae, the boundary integral formula and natural bound-  
ary integral equation for the thermal bending of circular 
plates are obtained. The calculating process is simple. 
Examples show that the discussed methods are effective. 
 
2. Boundary Integral Formula and Natural  

Boundary Integral Equation 
 
The differential equation of elastic plate bending prob-
lems is 

   2 ,
,    

q r
u f r

D


             (1) 

where,   is the Laplacian operator, u is the deflection 
of the plate, q is the surface density of external loads, D 
is the bending rigidity of the plate,   is the plate in a 
circle domain. For convenient, suppose the circle is a 
unit circle. 

Using the Green formula of the bending problems for 
thin plates, we get 

 2 2 d d d
u v

u v v u p u v v u v u s vf p
n n n n  

                                        (2) 

Let  ,v G p p , which is the Green function of the 
biharmonic equation in  , and then the Poisson integral 

equation of the bending problem of the plate can be 
found 
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         

   

0, , d

, d ,   ,

nu p G p p u p G p p u p s
n

G p p f p p p





            

   




(3) 

where  ,p x y ,  ,p x y   , n

u
u

n 





, d d dyp x   ,  

  is the Laplacian operator related to p . The Green 
function in the unit circular domain can be obtained from 
the basic solution of the biharmonic equation 

 
   

 
  2 22 2 2 2

2 2

1 12 cos 2 cos
, ln

16π 16π1 2 cos

r rr r rr r r rr
G p p

r r rr

   
 

               
    

              (4) 

where, P  and P  represent the polar coordinate 
 ,r   and  ,r    respectively. Thus 

 
 

22

1 2

1

4π 1 2 cosr

r
G

r r  


  

    
 

   
 

22

22
1

1 1 cos

2π 1 2 cosr

r r
G

n r r

 

 

      
     

 

Hence, the Poisson integral formula of the bending 
circular plates can be obtained as 

 
   

 
 

 
       

2 22 2

02 22

1 1 cos 1
, , ; , , d d

4π 1 2 cos2π 1 2 cos
n

r r r
u r u u G r r f r r r

r rr r


      

 

  
          

  
  

 
where, * is the convolution with regard to  ,  0u  , 

 nu   denote the deflection and slope at the edge re-
spectively. For the supported edge, 0 0u  , the above 
equation will be educed to 

     
 

 
 

22

2

1
, , ; , , d d

4π 1 2 cos
n

r
u r G r r f r r r u

r r
     




        

   
                  (5) 

Suppose M is the differential boundary operator in the 
polar coordinate system, the bending moment Mu 

 
2

2
1 rM

Mu u u
Dr

 


 
       

       (6) 

where,   is Poisson ratio. Let the boundary operator 
acts on Equation (5), and use the limit formula of gene-
ralized function 

 

 
 

21 0

2

21 0 2 2

cos 1 1
lim π

21 2 cos

cos 2 cos 1
lim

1 2 cos 4sin
2

r

r

r

r r

r r r

r r

  


 


 

 


 

 
 


 

 

The natural boundary integral equation of the bending 
problems can be obtained as 

   

     
2

, ; , , d d

1
1

2π sin
2

n n

Mu MG r r f r r r

u u

   

  




      

   
 
 
 


  (7) 

here 

 
 

  

22

2

1
, ; ,

4π 1 2 cos

r
MG r r

r r
 

 


  

    
 

 
3. Thermoelasticity Equation and Boundary 

Conditions 
 
The steady-state thermoelasticity equation is 

   
*

2 ,
,   

q r
u f r

D


    

where q* is the surface distribution density of the ther-
moelasticity equivalent load over the plate. Suppose h is 
the thickness of the plate, E is elastic modulus, α is the 
thermal expansion coefficient and D is the bending rigid-
ity of the plate. In general, suppose the thermal distribu-
tion is linear along the plate thickness, the equivalent 
load 

1

1 Tq M


   


 

   
   
11

, ,
1 Tf r M T r

D h

 
 




     

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where 

   
2 2

2

2

, d ,
12

h

T h

z Eh
M E T r z T r

h

  


   

T(r, θ) is the thermal distribution function on the surface 
of the plate. 

The equivalent boundary conditions of the clamped 
bending plate are 0u


 , 0nu


 . The equivalent 

boundary conditions of the simply bending plate are 

 
  1, 1

  on  
1

T
TM

Mu
D h

  



    


 

If in the plate there are no internal heat sources, then 
 , 0T r   , q* = 0, for the simply plate,  0 0u   , 

Equations (5) and (6) will be reduced to 

 
 

   
22

2

1
,

4π 1 2 cos
n

r
u r u

r r
 




  

 
   (8) 

        
2

1, 1 1
1

2π sin
2

n n

T
u u

h

  
  




    
 
 
 

 

(9) 
 
4. Heat Sources on the Plate 
 
Firstly consider internal heat sources in the plate. The so- 
lution process is discussed through some examples.  

Example 1 For comparison, suppose the thermal dis-
tribution function on the surface of the plate is axisym-
metrical,  , 1T r r    

   
 1

, ,
1

TM
f r

D hr

 





  


 

For the clamped plate, from (5) 

     

   

2π 1

0 0

2π 1

0 0

, , ; , , d d

1
, ; , d d

u r G r r f r r r

G r r r
h

    

 
  

      


   

 

 
 

This solution is according to the axisymmetrical solu-
tion 

    3 21 1 2 1
,

2 3 3 9
u r r r

h

 


       
  

          

For the simply plate, firstly from the Equation (7) to 
get un which is a constant in axisymmetrical problems. 
Using the convolution formula [18,19] 

   
2

1
cos cos

4π sin
2

k k k 


  
 
 
 

 

if k = 0, we have 

 
2

1
0

2π sin
2

nu 


 
 
 
 

 

From (7), we get 

        
1, 1 1

1
3 n

T
u

h h

    
 

 
     

So that 

  5

3nu
h

    

Substituting it into (8) and using the convolution for-
mula 

 
2

2

1
cos cos
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k r k
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 

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We get 
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1
,
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n

r
u r u
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G r r f r r r

r
r r

h h

 


   

  


  

 

      

         
  

   

The solution is according to the axisymmetrical solu-
tion. 

Example 2 Suppose the center of the thermal distribu-  

tion function  ,T r   is in the point 
1

,0
2

 
 
 

. This is a  

non-axisymmetrical problem.  

 
2

2 1 1
, 2 cos

2 2
T r r r      

 
 

and 

   
   

 
2

11
, ,

1

1 2

4 4cos 1

Tf r M T r
D h

h r

 
 



 




     




 

 

 

For the clamped plate, from (5) 

     
2π 1

0 0

, , ; , , d du r G r r f r r r              

Suppose μ = 0.3, D = 1, α/h = 1, by the numerical 
calculation, the deflections of the plate are shown as 
Figure 1. 
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The center deflection of the plate is 0.046 and the 
maximum deflection is 0.048. 

For the simply plate, firstly using Equation (7) to get 
un , suppose 

 
0 1

cos ' sinn m m
m m

u b m b m  
 

 

    

Then suppose μ = 0.3, D = 1, α/h = 1, the left expres- 
sion of (7) is expanded to Fourier series 

   
  

  
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0 10 0
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   
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   

        
    

 
Substituting it into (8) which is an integral with a 

strongly singular Poisson kernel, and using the convolu-
tion formula, we get 

1 1
' '

1 2 1 2k k k kb a b a
k k 
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 

   

 

 
The deflections of the plate are shown as Figure 2. 

The center deflection of the plate is 0.669 and the 
maximum deflection is 0.67. 
 
5. No Heat Sources on the Plate 
 
When there are no heat sources on the plate, T(r,θ) satis- 
fies harmonic equation,  , 0T r   , thus, q* = 0. For 
the clamped plate, there is no bending deflections on the 
plate. For the simply plate, (5) and (7) will be reduced to 
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Example 3 On the boundary of a simply plate, T(1,θ) 
= sin2θ, in the plate T(r, θ) = r2 sin2θ. 

Suppose 
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m
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



   

Then using the convolution formula 
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
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Substituting it into (8) and using the convolution formula 
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,
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From above equation, we get 
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2

2
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1
1
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T
r

M
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
 

 

Suppose μ = 0.3, D = 1, α/h = 1, the bending deflec-
tions and the bending resultants are as Figure 3 and 
Figure 4: 
 
6. Conclusions 
 

Based on the Green function method, the boundary inte- 
gral formula and natural boundary integral equation with  
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Figure 1. Deflections of the clamped circular plate. 
 

  

Figure 2. Deflections of the simply plate. 
 
the strongly singular kernel are educed for the thermal 
bending problem of the plate supported at the boundary. 
he convolution formulae are utilized to get the solutions 
of deflection and slope directly for simple problems. As 
to complex problems, the Fourier series will be used to 
get the solutions with nice convergence velocity and com- 
putational accuracy. The calculating process is simple. 
accuracy. The calculating process is simple. The prob-
lems of other complicated loads can be solved with the 
similar method or by the superposition with the solutions 
of the above examples. 

 

Figure 3. Deflections of circular plate. 
 

 

Figure 4. Mr of circular plate. 
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