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Abstract 
Can the semantics of a program be represented as a single formula? We show that one formula is 
insufficient to handle assertions, refinement or slicing, while two formulae are sufficient: ( )S , 

defining non-termination, and ( )S , defining behaviour. Any two formulae A  and B  will de- 
fine a corresponding program. Refinement is defined as implication between these formulae. 
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1. Introduction 
The idea of using a single formula to represent the behaviour of a program is a very attractive one: proving that 
two programs are equivalent then reduces to the task of proving that two formula are equivalent. For the latter 
task, mathematicians have developed many powerful techniques over the last few thousand years of the history 
of mathematics. 

In this paper, we show that a single formula is insufficient to represent the semantics of a program in the de- 
sired way, but there are two formulae which are sufficient. 

2. The WSL Language 
The WSL transformation theory is based in infinitary logic: an extension of first order logic which allows infi- 
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nitely long formulae. The statements in the WSL kernel language are as follows: { }P  is an assertion which 
terminates immediately if P  is true and aborts if P  is false, [ ]P  is a guard which ensures that P  is true 
without changing the value of any variable, ( )add x  adds the variables in x  to the state space, if they are not 
already present, and assigns arbitrary values to the variables. ( )remove x  removes the variables in x  from 
the state space, 1 2;S S  is sequential composition, ( )1 2S S  is nondeterministic choice, and ( ).Xµ Sx

y  is a 
recursive subroutine which also adds the variables in x  to the state space and removes the variables in y  
from the state space. 

The semantics of a WSL program is defined as a function which maps each initial state to the set of possible 
final states. A state is either the special state ⊥ , which represents non-termination, or a proper state which is a 
function from a set of variables (the state space) to the set of values. The semantics of a program is always de- 
fined in the context of a particular initial state space and final state space. 

For any list of variables x , we define x  to be the set of variables in x , and ′x  and ′′x  to be the cor- 
responding sequences of primed and doubly primed variables. The formula ′′≠x x  is true precisely when the 
value of any variable in x  differs from the value of the corresponding variable in ′′x . 

The interpretation function ( )denInt ,M VS  maps each statement S  and initial state space V  to the corres- 
ponding state transformation (under a model M  for the logic in question). For a state space V , and set of 
values  , let ( )D V  be the set of states on V  and   (including ⊥ ), and for any formula P  let 

( )int ,M VP  be the set of states which satisfies the formula. See [1] for details. 
For initial state ⊥  we define ( )( ) ( )denInt ,M V D W⊥ =S   for every statement :V W→S , i.e. if the pro-

gram is started in the non-terminating state then it cannot be guaranteed to terminate. (Starting the program in a 
non-terminating state simply means that some previous program in the sequence has failed to terminate, so this 
program can never actually start. This restriction simply means that a later statement in a sequence cannot 
somehow “recover” from non-termination of an earlier statement in the sequence the program). 

The semantics for the recursive program is simply the intersection of the semantics for each finite truncation. 
The result is the least defined statement which is a refinement of all the truncations. 

If the initial state space is empty, then there are two possible initial states: ⊥  and the single proper state ∅ . 
For ⊥  the set of final states must be ( )D W , by definition. So the state transformation is entirely determined 
by its value on the initial state ∅ . If the final state space is also empty, then there are exactly three distinct state 
transformations, corresponding to the three possible sets of states.1 The three state transformations are 1f , 2f  
and 3f  where:  

( ) { } ( ) { } ( ) { }1 2 3 ,f f f∅ = ∅ = ∅ ∅ = ⊥ ∅  

These correspond to the three fundamental statements [ ]DF=null false , { }DF=skip true  and  
{ }DF=abort false :  

[ ]( ) { }( ) { }( )den den den
1 2 3Int , Int , Int ,M M Mf f f∅ = ∅ = ∅ =false true false  

Note that there are three different semantic function which use no variables, but only two semantically-dif- 
ferent formulae with no free variables (namely true  and false ). Under any interpretation of the logic, any 
formula with no free variables must be interpreted as either universally true or universally false. There is no way 
to map three different semantics onto two formulae: so this proves that a single formula is insufficient to re- 
present the semantics of a program. 

3. The Abort and Behaviour Predicates 
Since it is not possible to represent the semantics of a program using one formula, we will now consider how we 
can represent the denotational semantics of a program using two formulae from infinitary first order logic. The 
formulae are defining in terms of the weakest precondition. 

For any program S  and postcondition (condition on the final state space) R , the weakest precondition 
( )WP ,S R  is the weakest condition on the initial state space such that if the initial state satisfies ( )WP ,S R  

then S  is guaranteed to terminate in a state which satisfies R . 
In [1], we show that ( )WP ,S R  can be defined as a formula in infinitary logic and that refinement can be 

 

1Recall that if ⊥  is in the set of final states, then every other state has to be included: so { }⊥  is not a valid final set of states. 
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characterised by the weakest precondition as follows: for any to programs 1S  and 2S  with the same initial 
and final state spaces, 2S  is a refinement of 1S , written 1 2≤S S , if and only if for all postconditions R :  

( ) ( )1 2WP , WP ,⇒S R S R  

In the same paper, we also prove that it is not necessary to determine the weakest preconditions for all post-
conditions: two very simple postconditions are sufficient. These are the conditions true  and ′′≠x x  where 
x  is a list of all the variables in W  and ′′x  is a list of new variables, not appearing in either program, which 

are the doubly-primed versions of the variables in W . Then 1 2≤S S  if and only if:  

( ) ( ) ( ) ( )1 2 1 2WP , WP , and WP , WP ,′′ ′′⇒ ≠ ⇒ ≠S true S true S Sx x x x  

For any statement S , the formula ( )WP ,S true  describes precisely those initial states on which S  is 
guaranteed to terminate. For each of these states, the formula ( )WP , ′′¬ ≠S x x  describes the behaviour of S  
in the sense that, if s  is an initial state for which S  terminates, and s′′  is an extension of s  which adds the 
variables ′′x  to the state with a given set of values, then s′′  satisfies ( )WP , ′′¬ ≠S x x  precisely when the 
values assigned to ′′x  form a possible final state for S  when they are assigned to the corresponding un- 
primed variables. 

To be more precise, we will prove the following theorem: 
Theorem 3.1. If f  is the interpretation of S , then for every initial state s  and final state ( )t f s∈ , the 

corresponding extended initial state ts  is in ( )WP , ′′¬ ≠S x x , and conversely, every state in 
( )WP , ′′¬ ≠S x x  is of the form ts  for some initial state s  and ( )t f s∈ .  

Proof: Suppose f  is the interpretation of S  as a state transformation from V  to W , and let s  be any 
initial state. Let t  be any proper state in ( )f s  (i.e. any element of ( )f s  apart from ⊥ ). Let f ′′  be the 
extension of f  which adds W ′′  to the initial and final state spaces and preserves the values of these variables. 
Then f ′′  is the interpretation of S  as a state transformation from V W ′′

  to W W ′′
  and for every varia- 

ble x W′′ ′′∈ , the initial and final values of x′′  on f ′′  are identical. Let ts  be the state s  extended to state 
space V W ′′

  which gives the variables in W ′′  the same values that the corresponding unprimed variables 
have in t . So, for every x W′′ ′′∈ , ( ) ( )ts x t x′′ = , and ( ) ( )ts x s x=  for x W ′′∉ . Let tt  be the correspond- 
ing extension to t . Then, by the definition of f ′′ , ( )t tt f s′′∈ . 

Claim: ts  is in the interpretation of ( )WP , ′′¬ ≠S x x . To prove the claim, assume for contradiction that ts  
is in ( )WP , ′′≠S x x . Then S  is guaranteed to terminate in a state which satisfies ′′≠x x , in other words, 
every state in ( )tf s′′  satisfies ′′≠x x . But state tt  is in ( )tf s′′  and within tt , for each x W′′ ′′∈ , 
( ) ( ) ( ) ( )t t tt x s x t x t x′′ ′′= = = . So tt  does not satisfy ′′≠x x , which is a contradiction. 
Conversely, any state which satisfies ( )WP , ′′¬ ≠S x x  is of the form ts  for some s  and t , since S  

cannot change the value of any variable in W ′′ . So, let ts  be any initial state which satisfies ( )WP , ′′¬ ≠S x x , 
where s  is the restriction of ts  to V  and t′′  is the restriction of ts  to W ′′  and where t  is the state on 
W  which corresponds to t′′ . We claim that ( )t f s∈ . Assume for contradiction that ( )t f s∉ , then S  is 
guaranteed to terminate on s  (since otherwise ( )f s  contains every state) and t  is not a possible final state 
for s . So every final state in ( )f s  differs from t . As before, let tt  be the extension of t  over W ′′  such 
that ( ) ( )tt x t x′′ =  for all x W∈ . Then ( ) ( )t tt x t x′′ =  for all x W∈ , and by definition of f ′′ , every final 
state in ( )tf s′′  differs from tt . So, f ′′  terminates on ts  and every final state in ( )tf s′′  satisfies ′′≠x x . 
So ( )WP ,ts ′′∈ ≠S x x  which is a contradiction. 

As an example, for the program ( ): 1 : 2x x= = =S   If the final state space is { },x y , then:  
( ) ( )WP , 1 2x x y y′′ ′′ ′′¬ ≠ ⇔ = ∨ = ∧ =S x x . 

In [1] we also prove the Representation Theorem:  
Theorem 3.2. For any statement :V W→S , let V W= y . Then:  

( ) ( ) ( )( ) ( )WP , ; : . WP , WP , ;′ ′≈ ¬ = ¬ ≠ ∧S S false S S true removex x x x y  

The representation theorem seems to imply that a third formula, namely ( )WP ,S false , is needed to fully 
characterise the behaviour of a program. However, this formula can be derived from the behaviour formula:  

Theorem 3.3. For any statement S , ( ) ( )WP , .WP ,′′ ′′⇔ ∀ ≠S false Sx x x .  
We define two formulae: ( )S  which captures the termination properties of S  (the abort states) and 
( )S  which captures the behaviour of S :  
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( ) ( ) ( ) ( )DF DFWP , and WP , ′= ¬ = ¬ ≠S S true S S  x x  

( )S  is true on precisely those initial states for which S  can abort (not terminate), while ( )S  is true on 
initial states for which the values of ′′x  are the values of x  in one of the possible final states. Note that an 
initial state for which S  could abort will include all possible values in the set of final states, so we would ex- 
pect that ( ) ( )⇒S S   for all statements S . 

If S  is guaranteed to terminate and satisfy 1R  and if 1 2⇒R R , then S  is also guaranteed to terminate 
and satisfy 2R . So the weakest precondition is monotonic in the postcondition, and, since ′′≠ ⇒ truex x , we 
have ( ) ( )⇒S S  , and therefore:  

( ) ( ) ( ) ( ) ( ) ( )and⇔ ∧ ⇐ ∨S S S S S S       

With these definitions we can prove that   and   fully characterise the refinement property:  
Theorem 3.4. For any statements 1S  and 2S , with the same initial and final state spaces, 2S  is a refine- 

ment of 1S , written 1 2≤S S , if and only if:  

( ) ( ) ( ) ( )1 2 1 2and⇐ ⇐S S S S     

Note that the implications are in the opposite direction to the weakest precondition implications since   and 
  are both the negation of a weakest precondition. 

With these definitions we can rewrite Theorem 3.2 as:  

( ) ( ){ } ( )[ ]( ). ; ; : . x x′′ ′ ′ ′′≈ ∃ ¬ =  S S S S  x x x  

or, equivalently: 

( ) ( ){ } ( ). ; ; : .′′ ′′≈ ∃ ¬ =  S S S S  x x x  

The three statements may be interpreted informally as stating:  
1. If there is no defined behaviour (terminating or otherwise) then the statement is null;  
2. Otherwise, if ( )S  is true, then the statement aborts;  
3. Otherwise, new values ′′x  are assigned to the variables x  such that ( )S  is satisfied.  
For null-free programs, ( )WP , ⇔S false false , this is Dijkstra’s “Law of the Excluded Miracle” [2], and so 

for these programs the initial guard is always equivalent to skip , and ( ).′′∃ Sx  is true. 
Theorem 3.5. Let A  and B  be any two formula, such that (1) A B⇒  and (2) No variable in ′′x  ap- 

pears free in A . Let  

[ ] { }. ; ; : .B A B′′ ′′= ∃ ¬ =S x x x  

Then ( ) A=S  and ( ) B=S .  
We have proved that: 
1) Given any statement S , we can define the corresponding ( )S  and ( )S  by using weakest precondi- 

tions;  
2) Given any two formulae, A  and B , where A B⇒  and no variable in ′′x  appears in B , we can de- 

fine a statement S  such that ( )A ⇔ S  and ( )B ⇔ S . 
These results prove that the two formulae ( )S  and ( )S  completely capture the semantic behaviour of 

statement S . 
Given any two formulae A  and B  we can define A′  as the formula ( )A B′′∀ ∧x . Then A B′ ⇒  is true 

and none of the variables in ′′x  are free in A′ . So A′  and B  satisfy the requirements for Theorem 3.5. 
Note that if A  and B  already satisfy the requirements, then A A′ ⇔ . 

These comments motivate the definition of a function   which maps any two formulae A  and B  to a 
WSL statement: 

( ) [ ] ( ){ }DF, . ; . ; : .A B B A B B′′ ′′ ′′= ¬∀ ∧ = x x x x  

By Theorem 3.5, ( )( ) ( ), .A B A B′′= ∀ ∧  x  and ( )( ),A B B=  . 
In the case where A B⇒  and none of the variables in ′′x  appears free in A , we have: ( )( ),A B A=   

and ( )( ),A B A=  . 
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Four fundamental programs are abort , ( )add x , skip  and null  for which the corresponding formulae 
are given in Table 1. From this table we see that:  

( )≤ ≤ ≤abort add skip nullx  

when x  is non-empty, then all three refinements are strict refinements. Note that abort  and ( )add x  have 
the same behaviour but different termination conditions, while ( )add x  and skip  have the same termination 
conditions but different behaviour. (When x  is empty ( )add  is equivalent to skip  and the formula 

′′≠x x  is equivalent to true .) 

Examples 
Some example programs to illustrate the formulae:  

{ } ( )1 0 ; : 1 : 2y x x= > = =S   

{ }2 0 ; : 1y x= ≥ =S  

3 0 : 1 0 : 3y x y x= ≥ → = ≤ → =S if fi  

[ ]4 0 ; : 1y x= ≥ =S  

Here, 2S  is both more defined (terminating on more initial states) and more deterministic than 1S , and so 
2S  is a refinement of 1S . A refinement of a program can define any behaviour for initial states on which the 

original program aborts, so 3S  is also a refinement of 1S . Finally, 4S  is more deterministic than 3S  in that 
it restricts the set of possible final states (for initial states with 0y <  the set of final states is empty). 

These facts are reflected in the formulae in Table 2. 
Clearly, ( ) ( )2 1⇒S S   and ( ) ( )2 1⇒S S   which shows that 1 2≤S S . Also ( ) ( )3 1⇒S S   and 
( ) ( )3 1⇒S S   which shows that 1 3≤S S . However, it is not the case that 2 3≤S S  since when 0y =  in- 

itially, 2S  must assign x  the value 1, while 3S  can non-deterministically choose to assign x  the value 1 
or 3. Conversely, 3S  is not refined by 2S  because 3S  is defined on initial states for which 2S  is not de-
fined: namely, those initial states in which 0y < . 

Finally, 4S  is a (strict) refinement of all the other programs, and none of the other programs is a refinement 
of 4S  because 4S  is null on initial states with 0y < . 

Given that   and   capture the semantics of a program, it should be possible to compute the formulae for 
a compound statement from the formulae for the components. For the primitive statements in the first level of 
WSL, the formulae are given in Table 3. 
 

Table 1.   and   for some fundamental programs.                                 

     

abort  true  true  

( )add x  false  true  

skip  false  ′′ =x x  

null  false  false  

 
Table 2.   and   for the example programs.                                      

     

1S  0y ≤  ( )0 1 2y x x y y′′ ′′ ′′≤ ∨ = ∨ = ∨ =  

2S  0y <  0 1y x′′< ∨ =  

3S  false  ( )0 1 0 3y x y x y y′′ ′′ ′′≥ ∧ = ∨ ≤ ∧ = ∧ =  

4S  false  0 1y x y y′′ ′′≥ ∧ = ∧ =  
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Table 3.   and   for the atomic statements.                                      

     

{ }P  P  ′′¬ ∨ =P x x  

[ ]P  false  ′′∧ =P x x  

:x e=  false  x e′′ =  

: .′= Qx x  .′¬∃ Qx  [ ].′ ′′ ′¬∃ ∨Q Qx x x  

4. Computing  and  for Compound Statements 
Given the two formulae ( )S  and ( )S , which are in effect, the weakest preconditions on S  for two par- 
ticular postconditions, we can determine the weakest precondition for any given postcondition. This means that 
we can compute   and   for any compound statement, given the corresponding formulae for the compo- 
nent statements. 

For nondeterministic choice:  

( ) ( )
( ) ( )
( ) ( )

( ) ( )

1 2 1 2

1 2

1 2

1 2

WP ,

WP , WP ,

WP , WP ,

⇔¬

⇔ ¬ ∧

⇔ ¬ ∨¬

⇔ ∨

S S S S true

S true S true

S true S true

S S

 

 

 

and similarly: 

( ) ( ) ( )1 2 1 2⇔ ∨S S S S    

For deterministic choice:  

( )
( )( ) ( )( )( )

( )( ) ( )( )
( )( ) ( )( )

1 2

1 2

1 2

1 2

WP , WP ,

WP , WP ,

⇔¬ ⇒ ∧ ¬ ⇒

⇔ ∧¬ ∨ ¬ ∧¬

⇔ ∧ ∨ ¬ ∧

if B then S else S fi

B S true B S true

B S true B S true

B S B S



 

 

and similarly: 

( )
( )( ) ( )( )

1 2

1 2⇔ ∧ ∨ ¬ ∧

if B then S else S fi

B S B S



 
 

For sequential composition:  

( ) ( )( )
( )( )

( ) ( ) ( ) ( )[ ]( )( )
( ) ( ) ( ) ( )[ ]( )

1 2 1 2

1 2

1 1 1 2

1 1 1 2

; WP , WP ,

WP ,

. .

. .

⇔¬

⇔ ¬ ¬

′′ ′′ ′′⇔ ¬ ¬∃ ∨¬ ∧∀ ⇒ ¬

′′ ′′ ′′⇔ ∃ ∧ ∨ ∃ ∧

S S S S true

S S

S S S S

S S S S





   

   

x x x x

x x x x

 

In other words, for 1 2;S S  to abort on an initial state, 1S  must not be null and either 1S  aborts or 1S  ter- 
minates in a state in which 2S  aborts. 

To compute ( )1 2;S S  we need to compute ( )( )1 2WP , WP , ′′≠S S x x , but this contains a postcondition 
which includes variables in ′′x . We can solve this problem by computing the formula 

( )( )1 2WP , WP , ′≠S S x x  and then renaming ′x  to ′′x  in the result. Note that the postcondition 
( )2WP , ′≠S x x  is simply ( )[ ]2 ′ ′′¬ S x x .  
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( ) ( )( )[ ]
( )[ ]( )[ ]

( ) ( ) ( ) ( )[ ][ ]( )( )[ ]
( ) ( ) ( ) ( )[ ][ ]( )( )[ ]
( ) ( ) ( )[ ] ( )[ ]( )( )

1 2 1 2

1 2

1 1 1 2

1 1 1 2

1 1 1 2

; WP , WP ,

WP ,

. .

. .

. .

′ ′′ ′⇔ ¬ ≠

′ ′′ ′′ ′⇔ ¬ ¬

′′ ′′ ′ ′′ ′′ ′′ ′⇔ ¬ ¬∃ ∨¬ ∧∀ ⇒ ¬

′′ ′′ ′ ′′ ′′ ′′ ′⇔ ∃ ∧ ∨ ∃ ∧

′′ ′ ′ ′′ ′⇔ ∃ ∧ ∨ ∃ ∧

S S S S

S S

S S S S

S S S S

S S S S





   

   

   

x x x x

x x x x

x x x x x x x x

x x x x x x x x

x x x x x x

 

In other words, for ′′x  to be a possible final state for 1 2;S S  on initial state x , either 1S  aborts or there 
exists some intermediate state ′x  which is a possible final state for 1S  and for which 2S  gives ′′x  as a 
possible final state when started in this initial state. 

Recursion ( ).Xµ Sx
y  is defined in terms of the set of all finite truncations. Define:  

( ) ( ) ( )
0

DF. ; ;Xµ =S abort add removex
y x y  

( ) ( )1

DF. . forall
n n

X X X nµ µ ω
+  = <  

S S Sx x
y y  

Then for any postcondition R :  

( )( ) ( )( )DFWP . , . ,
n

n
X X

ω
µ µ

<
= ∨S R S Rx x

y y  

So:  

( )( ) ( )( ) ( )( ) ( )( ). . and . .
n n

n n
X X X X

ω ω
µ µ µ µ

< <
≡ ≡∧ ∧S S S S   x x x x

y y y y  

5. Temporal Logic 
Temporal logic [3] is a class of logical theories for reasoning about propositions qualified in terms of time and 
can therefore be used to reason about finite and infinite sequences of states. These sequences can define an op- 
erational semantics for programs which maps each initial state to the set of possible histories: where a history is 
a possible sequence of states in the execution of a program. Since a formula can describe an infinite sequence of 
states: and therefore a non-terminating program, there would appear to be no need for the special state ⊥  to 
indicate non-termination, and therefore it would appear possible to represent the operational semantics of a pro- 
gram using a single formula in temporal logic. 

This turns out not to be the case: a single formula is not sufficient, but two formulae (the temporal equivalent 
of the abort and behaviour predicates defined here) are sufficient. Lack of space precludes a full discussion of 
these questions in this paper. 
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