
Journal of Software Engineering and Applications, 2014, 7, 555-561
Published Online June 2014 in SciRes. http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2014.77051

How to cite this paper: Ward, M. and Zedan, H. (2014) A Logical Treatment of Non-Termination and Program Behaviour.
Journal of Software Engineering and Applications, 7, 555-561. http://dx.doi.org/10.4236/jsea.2014.77051

A Logical Treatment of Non-Termination
and Program Behaviour
Martin Ward1*, Hussein Zedan2
1Software Technology Research Lab, De Montfort University, Leicester, UK
2Applied Science University, Al Eker, Bahrain
Email: *martin@gkc.org.uk, hussein.zedan@googlemail.com

Received 13 February 2014; revised 10 March 2014; accepted 18 March 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Can the semantics of a program be represented as a single formula? We show that one formula is
insufficient to handle assertions, refinement or slicing, while two formulae are sufficient: ()S ,

defining non-termination, and ()S , defining behaviour. Any two formulae A and B will de-
fine a corresponding program. Refinement is defined as implication between these formulae.

Keywords
Formal Methods, Refinement, Non-Termination, Non-Determinism, Weakest Precondition,
Temporal Logic, Wide-Spectrum Language

1. Introduction
The idea of using a single formula to represent the behaviour of a program is a very attractive one: proving that
two programs are equivalent then reduces to the task of proving that two formula are equivalent. For the latter
task, mathematicians have developed many powerful techniques over the last few thousand years of the history
of mathematics.

In this paper, we show that a single formula is insufficient to represent the semantics of a program in the de-
sired way, but there are two formulae which are sufficient.

2. The WSL Language
The WSL transformation theory is based in infinitary logic: an extension of first order logic which allows infi-

*Corresponding author.

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2014.77051
http://dx.doi.org/10.4236/jsea.2014.77051
http://www.scirp.org/
mailto:martin@gkc.org.uk
mailto:hussein.zedan@googlemail.com
http://creativecommons.org/licenses/by/4.0/

M. Ward, H. Zedan

556

nitely long formulae. The statements in the WSL kernel language are as follows: { }P is an assertion which
terminates immediately if P is true and aborts if P is false, []P is a guard which ensures that P is true
without changing the value of any variable, ()add x adds the variables in x to the state space, if they are not
already present, and assigns arbitrary values to the variables. ()remove x removes the variables in x from
the state space, 1 2;S S is sequential composition, ()1 2S S is nondeterministic choice, and ().Xµ Sx

y is a
recursive subroutine which also adds the variables in x to the state space and removes the variables in y
from the state space.

The semantics of a WSL program is defined as a function which maps each initial state to the set of possible
final states. A state is either the special state ⊥ , which represents non-termination, or a proper state which is a
function from a set of variables (the state space) to the set of values. The semantics of a program is always de-
fined in the context of a particular initial state space and final state space.

For any list of variables x , we define x to be the set of variables in x , and ′x and ′′x to be the cor-
responding sequences of primed and doubly primed variables. The formula ′′≠x x is true precisely when the
value of any variable in x differs from the value of the corresponding variable in ′′x .

The interpretation function ()denInt ,M VS maps each statement S and initial state space V to the corres-
ponding state transformation (under a model M for the logic in question). For a state space V , and set of
values  , let ()D V be the set of states on V and  (including ⊥), and for any formula P let

()int ,M VP be the set of states which satisfies the formula. See [1] for details.
For initial state ⊥ we define ()() ()denInt ,M V D W⊥ =S  for every statement :V W→S , i.e. if the pro-

gram is started in the non-terminating state then it cannot be guaranteed to terminate. (Starting the program in a
non-terminating state simply means that some previous program in the sequence has failed to terminate, so this
program can never actually start. This restriction simply means that a later statement in a sequence cannot
somehow “recover” from non-termination of an earlier statement in the sequence the program).

The semantics for the recursive program is simply the intersection of the semantics for each finite truncation.
The result is the least defined statement which is a refinement of all the truncations.

If the initial state space is empty, then there are two possible initial states: ⊥ and the single proper state ∅ .
For ⊥ the set of final states must be ()D W , by definition. So the state transformation is entirely determined
by its value on the initial state ∅ . If the final state space is also empty, then there are exactly three distinct state
transformations, corresponding to the three possible sets of states.1 The three state transformations are 1f , 2f
and 3f where:

() { } () { } () { }1 2 3 ,f f f∅ = ∅ = ∅ ∅ = ⊥ ∅

These correspond to the three fundamental statements []DF=null false , { }DF=skip true and
{ }DF=abort false :

[]() { }() { }()den den den
1 2 3Int , Int , Int ,M M Mf f f∅ = ∅ = ∅ =false true false

Note that there are three different semantic function which use no variables, but only two semantically-dif-
ferent formulae with no free variables (namely true and false). Under any interpretation of the logic, any
formula with no free variables must be interpreted as either universally true or universally false. There is no way
to map three different semantics onto two formulae: so this proves that a single formula is insufficient to re-
present the semantics of a program.

3. The Abort and Behaviour Predicates
Since it is not possible to represent the semantics of a program using one formula, we will now consider how we
can represent the denotational semantics of a program using two formulae from infinitary first order logic. The
formulae are defining in terms of the weakest precondition.

For any program S and postcondition (condition on the final state space) R , the weakest precondition
()WP ,S R is the weakest condition on the initial state space such that if the initial state satisfies ()WP ,S R

then S is guaranteed to terminate in a state which satisfies R .
In [1], we show that ()WP ,S R can be defined as a formula in infinitary logic and that refinement can be

1Recall that if ⊥ is in the set of final states, then every other state has to be included: so { }⊥ is not a valid final set of states.

M. Ward, H. Zedan

557

characterised by the weakest precondition as follows: for any to programs 1S and 2S with the same initial
and final state spaces, 2S is a refinement of 1S , written 1 2≤S S , if and only if for all postconditions R :

() ()1 2WP , WP ,⇒S R S R

In the same paper, we also prove that it is not necessary to determine the weakest preconditions for all post-
conditions: two very simple postconditions are sufficient. These are the conditions true and ′′≠x x where
x is a list of all the variables in W and ′′x is a list of new variables, not appearing in either program, which

are the doubly-primed versions of the variables in W . Then 1 2≤S S if and only if:

() () () ()1 2 1 2WP , WP , and WP , WP ,′′ ′′⇒ ≠ ⇒ ≠S true S true S Sx x x x

For any statement S , the formula ()WP ,S true describes precisely those initial states on which S is
guaranteed to terminate. For each of these states, the formula ()WP , ′′¬ ≠S x x describes the behaviour of S
in the sense that, if s is an initial state for which S terminates, and s′′ is an extension of s which adds the
variables ′′x to the state with a given set of values, then s′′ satisfies ()WP , ′′¬ ≠S x x precisely when the
values assigned to ′′x form a possible final state for S when they are assigned to the corresponding un-
primed variables.

To be more precise, we will prove the following theorem:
Theorem 3.1. If f is the interpretation of S , then for every initial state s and final state ()t f s∈ , the

corresponding extended initial state ts is in ()WP , ′′¬ ≠S x x , and conversely, every state in
()WP , ′′¬ ≠S x x is of the form ts for some initial state s and ()t f s∈ .

Proof: Suppose f is the interpretation of S as a state transformation from V to W , and let s be any
initial state. Let t be any proper state in ()f s (i.e. any element of ()f s apart from ⊥). Let f ′′ be the
extension of f which adds W ′′ to the initial and final state spaces and preserves the values of these variables.
Then f ′′ is the interpretation of S as a state transformation from V W ′′

 to W W ′′
 and for every varia-

ble x W′′ ′′∈ , the initial and final values of x′′ on f ′′ are identical. Let ts be the state s extended to state
space V W ′′

 which gives the variables in W ′′ the same values that the corresponding unprimed variables
have in t . So, for every x W′′ ′′∈ , () ()ts x t x′′ = , and () ()ts x s x= for x W ′′∉ . Let tt be the correspond-
ing extension to t . Then, by the definition of f ′′ , ()t tt f s′′∈ .

Claim: ts is in the interpretation of ()WP , ′′¬ ≠S x x . To prove the claim, assume for contradiction that ts
is in ()WP , ′′≠S x x . Then S is guaranteed to terminate in a state which satisfies ′′≠x x , in other words,
every state in ()tf s′′ satisfies ′′≠x x . But state tt is in ()tf s′′ and within tt , for each x W′′ ′′∈ ,
() () () ()t t tt x s x t x t x′′ ′′= = = . So tt does not satisfy ′′≠x x , which is a contradiction.
Conversely, any state which satisfies ()WP , ′′¬ ≠S x x is of the form ts for some s and t , since S

cannot change the value of any variable in W ′′ . So, let ts be any initial state which satisfies ()WP , ′′¬ ≠S x x ,
where s is the restriction of ts to V and t′′ is the restriction of ts to W ′′ and where t is the state on
W which corresponds to t′′ . We claim that ()t f s∈ . Assume for contradiction that ()t f s∉ , then S is
guaranteed to terminate on s (since otherwise ()f s contains every state) and t is not a possible final state
for s . So every final state in ()f s differs from t . As before, let tt be the extension of t over W ′′ such
that () ()tt x t x′′ = for all x W∈ . Then () ()t tt x t x′′ = for all x W∈ , and by definition of f ′′ , every final
state in ()tf s′′ differs from tt . So, f ′′ terminates on ts and every final state in ()tf s′′ satisfies ′′≠x x .
So ()WP ,ts ′′∈ ≠S x x which is a contradiction.

As an example, for the program (): 1 : 2x x= = =S  If the final state space is { },x y , then:
() ()WP , 1 2x x y y′′ ′′ ′′¬ ≠ ⇔ = ∨ = ∧ =S x x .

In [1] we also prove the Representation Theorem:
Theorem 3.2. For any statement :V W→S , let V W= y . Then:

() () ()() ()WP , ; : . WP , WP , ;′ ′≈ ¬ = ¬ ≠ ∧S S false S S true removex x x x y

The representation theorem seems to imply that a third formula, namely ()WP ,S false , is needed to fully
characterise the behaviour of a program. However, this formula can be derived from the behaviour formula:

Theorem 3.3. For any statement S , () ()WP , .WP ,′′ ′′⇔ ∀ ≠S false Sx x x .
We define two formulae: ()S which captures the termination properties of S (the abort states) and
()S which captures the behaviour of S :

M. Ward, H. Zedan

558

() () () ()DF DFWP , and WP , ′= ¬ = ¬ ≠S S true S S  x x

()S is true on precisely those initial states for which S can abort (not terminate), while ()S is true on
initial states for which the values of ′′x are the values of x in one of the possible final states. Note that an
initial state for which S could abort will include all possible values in the set of final states, so we would ex-
pect that () ()⇒S S  for all statements S .

If S is guaranteed to terminate and satisfy 1R and if 1 2⇒R R , then S is also guaranteed to terminate
and satisfy 2R . So the weakest precondition is monotonic in the postcondition, and, since ′′≠ ⇒ truex x , we
have () ()⇒S S  , and therefore:

() () () () () ()and⇔ ∧ ⇐ ∨S S S S S S     

With these definitions we can prove that  and  fully characterise the refinement property:
Theorem 3.4. For any statements 1S and 2S , with the same initial and final state spaces, 2S is a refine-

ment of 1S , written 1 2≤S S , if and only if:

() () () ()1 2 1 2and⇐ ⇐S S S S   

Note that the implications are in the opposite direction to the weakest precondition implications since  and
 are both the negation of a weakest precondition.

With these definitions we can rewrite Theorem 3.2 as:

() (){ } ()[](). ; ; : . x x′′ ′ ′ ′′≈ ∃ ¬ =  S S S S  x x x

or, equivalently:

() (){ } (). ; ; : .′′ ′′≈ ∃ ¬ =  S S S S  x x x

The three statements may be interpreted informally as stating:
1. If there is no defined behaviour (terminating or otherwise) then the statement is null;
2. Otherwise, if ()S is true, then the statement aborts;
3. Otherwise, new values ′′x are assigned to the variables x such that ()S is satisfied.
For null-free programs, ()WP , ⇔S false false , this is Dijkstra’s “Law of the Excluded Miracle” [2], and so

for these programs the initial guard is always equivalent to skip , and ().′′∃ Sx is true.
Theorem 3.5. Let A and B be any two formula, such that (1) A B⇒ and (2) No variable in ′′x ap-

pears free in A . Let

[] { }. ; ; : .B A B′′ ′′= ∃ ¬ =S x x x

Then () A=S and () B=S .
We have proved that:
1) Given any statement S , we can define the corresponding ()S and ()S by using weakest precondi-

tions;
2) Given any two formulae, A and B , where A B⇒ and no variable in ′′x appears in B , we can de-

fine a statement S such that ()A ⇔ S and ()B ⇔ S .
These results prove that the two formulae ()S and ()S completely capture the semantic behaviour of

statement S .
Given any two formulae A and B we can define A′ as the formula ()A B′′∀ ∧x . Then A B′ ⇒ is true

and none of the variables in ′′x are free in A′ . So A′ and B satisfy the requirements for Theorem 3.5.
Note that if A and B already satisfy the requirements, then A A′ ⇔ .

These comments motivate the definition of a function  which maps any two formulae A and B to a
WSL statement:

() [] (){ }DF, . ; . ; : .A B B A B B′′ ′′ ′′= ¬∀ ∧ = x x x x

By Theorem 3.5, ()() (), .A B A B′′= ∀ ∧  x and ()(),A B B=  .
In the case where A B⇒ and none of the variables in ′′x appears free in A , we have: ()(),A B A= 

and ()(),A B A=  .

M. Ward, H. Zedan

559

Four fundamental programs are abort , ()add x , skip and null for which the corresponding formulae
are given in Table 1. From this table we see that:

()≤ ≤ ≤abort add skip nullx

when x is non-empty, then all three refinements are strict refinements. Note that abort and ()add x have
the same behaviour but different termination conditions, while ()add x and skip have the same termination
conditions but different behaviour. (When x is empty ()add is equivalent to skip and the formula

′′≠x x is equivalent to true .)

Examples
Some example programs to illustrate the formulae:

{ } ()1 0 ; : 1 : 2y x x= > = =S 

{ }2 0 ; : 1y x= ≥ =S

3 0 : 1 0 : 3y x y x= ≥ → = ≤ → =S if fi

[]4 0 ; : 1y x= ≥ =S

Here, 2S is both more defined (terminating on more initial states) and more deterministic than 1S , and so
2S is a refinement of 1S . A refinement of a program can define any behaviour for initial states on which the

original program aborts, so 3S is also a refinement of 1S . Finally, 4S is more deterministic than 3S in that
it restricts the set of possible final states (for initial states with 0y < the set of final states is empty).

These facts are reflected in the formulae in Table 2.
Clearly, () ()2 1⇒S S  and () ()2 1⇒S S  which shows that 1 2≤S S . Also () ()3 1⇒S S  and
() ()3 1⇒S S  which shows that 1 3≤S S . However, it is not the case that 2 3≤S S since when 0y = in-

itially, 2S must assign x the value 1, while 3S can non-deterministically choose to assign x the value 1
or 3. Conversely, 3S is not refined by 2S because 3S is defined on initial states for which 2S is not de-
fined: namely, those initial states in which 0y < .

Finally, 4S is a (strict) refinement of all the other programs, and none of the other programs is a refinement
of 4S because 4S is null on initial states with 0y < .

Given that  and  capture the semantics of a program, it should be possible to compute the formulae for
a compound statement from the formulae for the components. For the primitive statements in the first level of
WSL, the formulae are given in Table 3.

Table 1.  and  for some fundamental programs.

  

abort true true

()add x false true

skip false ′′ =x x

null false false

Table 2.  and  for the example programs.

  

1S 0y ≤ ()0 1 2y x x y y′′ ′′ ′′≤ ∨ = ∨ = ∨ =

2S 0y < 0 1y x′′< ∨ =

3S false ()0 1 0 3y x y x y y′′ ′′ ′′≥ ∧ = ∨ ≤ ∧ = ∧ =

4S false 0 1y x y y′′ ′′≥ ∧ = ∧ =

M. Ward, H. Zedan

560

Table 3.  and  for the atomic statements.

  

{ }P P ′′¬ ∨ =P x x

[]P false ′′∧ =P x x

:x e= false x e′′ =

: .′= Qx x .′¬∃ Qx [].′ ′′ ′¬∃ ∨Q Qx x x

4. Computing  and  for Compound Statements
Given the two formulae ()S and ()S , which are in effect, the weakest preconditions on S for two par-
ticular postconditions, we can determine the weakest precondition for any given postcondition. This means that
we can compute  and  for any compound statement, given the corresponding formulae for the compo-
nent statements.

For nondeterministic choice:

() ()
() ()
() ()

() ()

1 2 1 2

1 2

1 2

1 2

WP ,

WP , WP ,

WP , WP ,

⇔¬

⇔ ¬ ∧

⇔ ¬ ∨¬

⇔ ∨

S S S S true

S true S true

S true S true

S S

 

 

and similarly:

() () ()1 2 1 2⇔ ∨S S S S  

For deterministic choice:

()
()() ()()()

()() ()()
()() ()()

1 2

1 2

1 2

1 2

WP , WP ,

WP , WP ,

⇔¬ ⇒ ∧ ¬ ⇒

⇔ ∧¬ ∨ ¬ ∧¬

⇔ ∧ ∨ ¬ ∧

if B then S else S fi

B S true B S true

B S true B S true

B S B S



 

and similarly:

()
()() ()()

1 2

1 2⇔ ∧ ∨ ¬ ∧

if B then S else S fi

B S B S



 

For sequential composition:

() ()()
()()

() () () ()[]()()
() () () ()[]()

1 2 1 2

1 2

1 1 1 2

1 1 1 2

; WP , WP ,

WP ,

. .

. .

⇔¬

⇔ ¬ ¬

′′ ′′ ′′⇔ ¬ ¬∃ ∨¬ ∧∀ ⇒ ¬

′′ ′′ ′′⇔ ∃ ∧ ∨ ∃ ∧

S S S S true

S S

S S S S

S S S S





   

   

x x x x

x x x x

In other words, for 1 2;S S to abort on an initial state, 1S must not be null and either 1S aborts or 1S ter-
minates in a state in which 2S aborts.

To compute ()1 2;S S we need to compute ()()1 2WP , WP , ′′≠S S x x , but this contains a postcondition
which includes variables in ′′x . We can solve this problem by computing the formula

()()1 2WP , WP , ′≠S S x x and then renaming ′x to ′′x in the result. Note that the postcondition
()2WP , ′≠S x x is simply ()[]2 ′ ′′¬ S x x .

M. Ward, H. Zedan

561

() ()()[]
()[]()[]

() () () ()[][]()()[]
() () () ()[][]()()[]
() () ()[] ()[]()()

1 2 1 2

1 2

1 1 1 2

1 1 1 2

1 1 1 2

; WP , WP ,

WP ,

. .

. .

. .

′ ′′ ′⇔ ¬ ≠

′ ′′ ′′ ′⇔ ¬ ¬

′′ ′′ ′ ′′ ′′ ′′ ′⇔ ¬ ¬∃ ∨¬ ∧∀ ⇒ ¬

′′ ′′ ′ ′′ ′′ ′′ ′⇔ ∃ ∧ ∨ ∃ ∧

′′ ′ ′ ′′ ′⇔ ∃ ∧ ∨ ∃ ∧

S S S S

S S

S S S S

S S S S

S S S S





   

   

   

x x x x

x x x x

x x x x x x x x

x x x x x x x x

x x x x x x

In other words, for ′′x to be a possible final state for 1 2;S S on initial state x , either 1S aborts or there
exists some intermediate state ′x which is a possible final state for 1S and for which 2S gives ′′x as a
possible final state when started in this initial state.

Recursion ().Xµ Sx
y is defined in terms of the set of all finite truncations. Define:

() () ()
0

DF. ; ;Xµ =S abort add removex
y x y

() ()1

DF. . forall
n n

X X X nµ µ ω
+  = <  

S S Sx x
y y

Then for any postcondition R :

()() ()()DFWP . , . ,
n

n
X X

ω
µ µ

<
= ∨S R S Rx x

y y

So:

()() ()() ()() ()(). . and . .
n n

n n
X X X X

ω ω
µ µ µ µ

< <
≡ ≡∧ ∧S S S S   x x x x

y y y y

5. Temporal Logic
Temporal logic [3] is a class of logical theories for reasoning about propositions qualified in terms of time and
can therefore be used to reason about finite and infinite sequences of states. These sequences can define an op-
erational semantics for programs which maps each initial state to the set of possible histories: where a history is
a possible sequence of states in the execution of a program. Since a formula can describe an infinite sequence of
states: and therefore a non-terminating program, there would appear to be no need for the special state ⊥ to
indicate non-termination, and therefore it would appear possible to represent the operational semantics of a pro-
gram using a single formula in temporal logic.

This turns out not to be the case: a single formula is not sufficient, but two formulae (the temporal equivalent
of the abort and behaviour predicates defined here) are sufficient. Lack of space precludes a full discussion of
these questions in this paper.

References
[1] Ward, M. (2004) Pigs from Sausages? Reengineering from Assembler to C via Fermat Transformations. Science of

Computer Programming, Special Issue on Program Transformation, 52, 213-255.
http://www.gkc.org.uk/martin/papers/migration-t.pdf

[2] Dijkstra, E.W. (1976) A Discipline of Programming. Prentice-Hall, Englewood Cliffs.
[3] Moszkowski, B. (1994) Some Very Compositional Temporal Properties. In: Olderog, E.-R., Ed., Programming Con-

cepts, Methods and Calculi, IFIP Transactions, North-Holland Publishing Co., Amsterdam, 307-326.

http://www.gkc.org.uk/martin/papers/migration-t.pdf

	A Logical Treatment of Non-Termination and Program Behaviour
	Abstract
	Keywords
	1. Introduction
	2. The WSL Language
	3. The Abort and Behaviour Predicates
	Examples

	4. Computing (and (for Compound Statements
	5. Temporal Logic
	References

