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Abstract 
In this paper, homotopy analysis method (HAM) and Padé approximant will be considered for 
finding analytical solution of three-dimensional viscous flow near an infinite rotating disk which is 
a well-known classical problem in fluid mechanics. The solution is compared to the numerical 
(fourth-order Runge-Kutta) solution and the convergence of the obtained series solution is care-
fully analyzed. The results illustrate that HAM-Padé is an appropriate method in solving the sys-
tems of nonlinear equations. 
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1. Introduction 
Von Karman swirling viscous flow [1] is a well-known classical problem in fluid mechanics. The original prob-
lem raised by Von Karman is about the viscous flow induced by an infinite rotating disk where the fluid, far 
from the disk, is at rest. Then the problem is generalized in considering the case where the fluid itself is rotating 
as a solid body far from the disk with suction or injection at the disk surface [2]. This generates a parameter, i.e. 
the ratio of the angular velocity of the fluid at infinity to the angular velocity of the disk. Another generalization 
is to consider the viscous flow between two infinite coaxial rotating disks with suction or injection at both disks 
and this reveals another parameter, i.e. the Reynolds number determined by the distance of the two disks. 

Nonlinear phenomena play a crucial role in applied mathematics and physics. It is known that most of engi-
neering problems are nonlinear and solving them analytically is very difficult. Various powerful mathematical 
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methods such as inverse scattering method [3], tanh method [4], sine-cosine method [5], homogeneous balance 
method [6], Exp-function method [7] and variational methods [8]-[12] have been proposed for obtaining exact 
and approximate analytic solutions. Recently, two analytical techniques have drawn specific attention, namely 
homotopy analysis method (HAM) and homotopy perturbation method (HPM). The essential idea in these me-
thods is introducing a homotopy parameter, like p , which takes the value from 0 to 1. For 0p = , the system 
of equations takes a simplified form, which readily admits a particularly simple solution. When p  is gradually 
being increased to 1, the system goes through a sequence of “deformations”, the solution of each of which is 
“close” to that at the previous stage of “deformation”. Eventually at 1p =  the system takes the original form of 
equation and the final stage of “deformation” gives the desired solution. In 1992, Liao [13] [14] has been the 
leading exponent of homotopy analysis method (HAM). In HAM, Liao keeps sufficient room for experimenting 
the convergence of approximations by introducing auxiliary parameter and also, an auxiliary non-zero function. 
Another way of viewing homotopy approach is to think of p  as a perturbation parameter. In 1998, He [15] has 
transformed this idea into homotopy perturbation method (HPM). The approximate solution given by HAM is 
the same as the approximate solution given by HPM, when auxiliary parameter and auxiliary non-zero function 
are taken −1 and 1, respectively [16]-[19]. So, the approximate analytical solution obtained by HAM contains 
the solution obtained by HPM. However, the implementation of these methods shows that HAM is more effec-
tive than HPM. The convergence of HAM solution series depends on four factors, i.e. initial guess, auxiliary li-
near operator, auxiliary non-zero function and auxiliary parameter .  However, as a special case of homotopy 
analysis method by having 1= − , the convergence of HPM solution series only depends on two factors: the 
auxiliary linear operator and the initial guess. Therefore, having the initial guess and the auxiliary linear operator, 
HPM cannot provide other ways to ensure that the solution is convergent. Note that the HAM has already been 
applied to the analytical solution of several other problems [20]-[22].  

Ismail and Rabboh [23] presented a restrictive Padé approximation for the generalized Fisher and Burger-Fi- 
sher equations. The Padé approximants that often show superior performance over series approximations pro-
vide a successful tool and promising scheme for identical applications. 

The purpose of this paper is to extend homotopy analysis method and Padé approximant to solve three-di- 
mensional Navier-Stokes equations for the viscous flow near an infinite rotating disk. 

2. Flow Analysis and Mathematical Formulation 
The Navier-Stokes equations for cylindrical coordinate are as follows: 

( ) ( )1 1 0wru v
r r r zθ
∂ ∂ ∂
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∂ ∂ ∂
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where u , v  and w  are velocities in the r , θ  and z  directions; respectively. ρ , p  and µ  are density, 
pressure and viscosity. Consider the steady flow which results if the infinite plane 0z =  rotates at constant 
angular velocity ω  about the axis 0r =  beneath a Newtonian viscous fluid which otherwise be at rest. The 
viscous drag of the rotating surface would set up a swirling flow toward the disk. All three velocity components 
u , v  and w  would be involved in a genuine three-dimensional motion, but because of radial symmetry they 
will be independent of θ  as would the pressure p , so it is required to solve the equation for these four va-
riables as functions of r  and z  from the continuity equation and the momentum equations in the r , θ  and 
z  directions we obtain 

( )1 0
ru w

r r z
∂ ∂

+ =
∂ ∂

                                          (5) 
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                          (8) 

The boundary conditions are no-slip at the disk wall and inviscid flow far from the disk (except an axial in-
flow): 

0, at 0u w p v r zω= = = = =                                  (9) 

0 atu v z= = →∞                                      (10) 

Note that we refrain from imposing any conditions on w  as z →∞ , because we expect (by hindsight, to be 
sure) that the disk will have a centrifugal pumping action which must be balanced by a uniform axial inflow

0w<  far from the disk. Also the condition 0p =  (a convenient constant) at the wall is by hindsight. It has 
been deduced that , ,u r v r w  and p  are all functions of z . Since the only two parameters in the problem  
are v  and ω , it is easy to see that the proper dimensionless variable must be , .t z ω ν ν µ ρ= =  Regard-  
ing Karman (1921), we propose the new dimensionless variables f , g , h  and k  as  

( ) ( ) ( ) ( ), , ,u r f t v r g t w h t p k tω ω ν ω ρν ω= = = =                    (11) 

These variables are substituted into Equations (5)-(8) and the following set of nonlinear ordinary coupled dif-
ferential equations is obtained: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 0, 0 0f t f t g t f t h t f f′′ ′− + − = = ∞ =                    (12) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 0, 0 1, 0g t f t g t g t h t g g′′ ′− − = = ∞ =                    (13) 

( ) ( ) ( )2 0, 0 0h t f t h′ + = =                             (14) 

( ) ( ) ( ) ( ) ( )2 2 0, 0 0k t f t h t f t k′ ′− + = =                      (15) 

3. Basic Concepts of HAM 
Consider the following differential equation 

( ) 0 ,N u τ =                                        (16) 

where N  is a nonlinear operator, τ  denotes an independent variable, ( )u τ  is an unknown function which is 
the solution for the equation. The function is defined as  

( ) ( )0
0

; ,
p

p uϕ τ τ
→

=                                      (17) 

and 
( ) ( )

1
Lim ; .
p

p uϕ τ τ
→

=                                      (18) 

where, [ ]0,1p∈  and ( )0u τ  are the initial guesses which satisfy the initial or boundary condition. 
By means of generalizing the traditional homotopy method, Liao [13] forms the so-called zero-order defor-

mation equation as follows 

( ) ( ) ( ) ( ) ( )01 ; ; ,p L p u p H N pϕ τ τ τ ϕ τ− − =                          (19) 

where   is the auxiliary parameter which increases the convergence of result , ( ) 0H τ ≠  is an auxiliary func-
tion and L  is an auxiliary linear operator, p  increases from 0 to 1, the solution ( ); pφ τ  changes between 
the initial guess ( )0 ;u pτ  and solution ( )u τ . Expanding ( ); pφ τ  in Taylor series with respect to p , we ob-
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tain 

( ) ( ) ( )0
1

; ,m
m

m
p u u pϕ τ τ τ

∞

=

= +∑                                      (20) 

where 

( ) ( );1 ,
!

m

m m
p o

p
u
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φ τ

τ
=

∂
=

∂
                                     (21) 

if the auxiliary linear operator, the initial guess, the auxiliary parameter   and the auxiliary function are so 
properly chosen, the series (20) converges at 1p = , so we have 

( ) ( ) ( )0
1

,m
m

u u uτ τ τ
∞

=

= +∑                                     (22) 

which must be one of the solutions of the original nonlinear equation, as proved by Liao [13]. It is clear that if 
the auxiliary parameter is 1= − , and auxiliary function is determined to be ( ) 1H τ = , Equation (19) would 
be 

( ) ( ) ( ) ( )01 ; ; 0.p L p u pN pϕ τ τ ϕ τ− − + =                               (23) 

This statement is commonly used in HPM procedure. Indeed, in HPM, the nonlinear differential equation is 
solved by separating every Taylor expansion term. Now, the vector of mu  is defined as  

{ }1 2 3, , , , ,m n= u u u u u                                    (24) 

according to the definition Equation (21), the governing equation and the corresponding initial condition of 
( )mu τ  can be deduced from zero-order deformation Equation (19). Differentiating Equation (19), m times with 

respect to the embedding parameter p  and setting 0p =  and finally dividing by !m , we will have the so- 
called mth order deformation equation in the following from 

( ) ( ) ( )1 1 ,m m m m mL u x u H Rτ τ− −− =    u                         (25) 

where 

( )
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m p
ϕ τ−

− −

=

∂   =
− ∂

u                           (26) 

and 

0 1,
1 1.m

m
x

m
≤

=  >
                                      (27) 

Therefore by applying inverse linear operator to both sides of the linear equation, Equation (25), we can easily 
solve the equation and compute the generation constant by applying the initial or boundary conditions. 

4. HAM-Padé Solution 
In this section the HAM is used to find approximate solutions of the Equations (12)-(15). We choose the initial 
approximation as 

( ) ( ) ( ) ( )0, 0, 0, 0,o o o of t g t h t k t= = = =                           (28) 

and the linear operator for Equations (12) to (15) 
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1

1 2

;
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L t p
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φ
∂

=   ∂
                                   (29) 
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;
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φ

φ
∂
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( ) ( )3
3

;
; ,

t p
L t p
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φ

φ
∂
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                               (31) 

( ) ( )4
4

;
; .

t p
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∂

=   ∂
                               (32) 

We convert Equations (12) through (15) to nonlinear form: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2
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φ φ

φ φ φ φ φ φ
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3 1 3 1

;
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t p
N t p t p t p

t
φ

φ φ φ
∂

= +   ∂
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( ) ( ) ( ) ( ) ( ) ( ) ( )4 1
4 1 3 4 1 3

; ;
; , ; , ; 2 ; ; 2 .

t p t p
N t p t p t p t p t p

t t
φ φ

φ φ φ φ φ
∂ ∂
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Assuming ( ) 1,H τ =  we use the above definitions to form the zero-order deformation equations 

( ) ( ) ( ) ( ) ( ) ( )1 0 1 1 2 31 ; ; , ; , ;p L t p f t p N t p t p t pϕ ϕ ϕ ϕ− − =                      (37) 

( ) ( ) ( ) ( ) ( ) ( )2 0 2 1 2 31 ; ; , ; , ;p L t p g t p N t p t p t pϕ ϕ ϕ ϕ− − =                       (38) 

( ) ( ) ( ) ( ) ( )3 0 3 1 31 ; ; , ;p L t p h t p N t p t pϕ ϕ ϕ− − =                       (39) 

( ) ( ) ( ) ( ) ( ) ( )4 0 4 1 3 41 ; ; , ; , ;p L t p k t p N t p t p t pϕ ϕ ϕ ϕ− − =                       (40) 

Obviously, when 0p =  and 1p = , 

( ) ( ) ( ) ( )1 0 1;0 , ;1 ,t f t t f tφ φ= =                            (41) 

( ) ( ) ( ) ( )2 0 2;0 , ;1 ,t g t t g tφ φ= =                            (42) 

( ) ( ) ( ) ( )3 0 3;0 , ;1 ,t h t t h tφ φ= =                            (43) 

( ) ( ) ( ) ( )4 0 4;0 , ;1 .t k t t k tφ φ= =                            (44) 

Differentiating the zero-order deformation Equations (37)-(40) m times respecting p  and finally dividing by 
!m , we have the mth-order deformation equations as follows 

( ) ( ) ( )1 ,1 1 1 1, ,m m m m m m mL f t x f t R− − − −− =    f g h                      (45) 

( ) ( ) ( )1 ,2 1 1 1, ,m m m m m m mL g t x g t R− − − −− =    f g h                      (46) 

( ) ( ) ( )1 ,3 1 1,m m m m m mL h t x h t R− − −− =    f h                      (47) 

( ) ( ) ( )1 ,4 1 1 1, ,m m m m m m mL k t x k t R− − − −− =    f h k                      (48) 

where 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 1

1
,1 1 1 1 1 1 12

0
, , ,

m
m n

m m m m n m n n m n m n
n

f t f t
R f t f t g t g t h t

tt

−
−

− − − − − − − − −
=

∂ ∂ 
= + − + − ∂∂  

∑f g h    (49) 

( ) ( ) ( ) ( ) ( ) ( )
2 1

1
,2 1 1 1 1 12

0
, , 2 ,

m
m n

m m m m n m n m n
n

g t g t
R f t g t h t

tt

−
−

− − − − − − −
=

∂ ∂ 
= + − − ∂∂  

∑f g h        (50) 
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( ) ( ) ( )1
,3 1 1 1, 2 ,m

m m m m

h t
R f t

t
−

− − −

∂
= +

∂
f h                          (51) 

( ) ( ) ( ) ( ) ( )1
1 1

,4 1 1 1 1
0

, , 2 2 .
m

m m
m m m m n m n

n

k t f t
R f t h t

t t

−
− −

− − − − −
=

∂ ∂
= + − +  ∂ ∂∑f h k              (52) 

Using 10 terms in evaluating the approximate solution, and applying the padé approximation, we obtain 

( ) ( )
( )

2 3 4
[4,4]

2 3 4

0.51023 0.201277 0.0290848 0.00131806

1 0.585467 0.228364 0.047584 0.00768258 ,

f t t t t t

t t t t

= − + −

+ + + +
             (53) 

( ) ( )
( )

2 3 4
[4,4]

2 3 4

1 0.902069 0.00627076 0.103561 0.016795

1 1.51799 0.941231 0.306085 0.0566636 ,

g t t t t t

t t t t

= + + − +

+ + + +
             (54) 

( ) ( )
( )

2 3 4
[4,4]

2 3 4

0.51023 0.0169673 0.00727578

1 0.620046 0.218152 0.0425575 0.00483554 ,

h t t t t

t t t t

= − + −

+ + + +
             (55) 

( ) ( )
( )

2 3 4
[4,4]

2 3 4

1.02046 0.628178 0.222682 0.0285684

1 1.59553 1.37939 0.67214 0.181054 .

k t t t t t

t t t t

= − − − −

+ + + +
             (56) 

Noting that, the different from all other analytical techniques such as the perturbation method, Adomian de-
composition method, expansion method, and etc., the solutions given by the HAM contain auxiliary parameters
  which could be used to control and adjust the convergence region and rate of the HAM series. 

5. Convergence of HAM 
It has been proven that, as long as a series solution given by the homotopy analysis method is converging, it is 
certainly one of the exact solutions. The solution series contains the auxiliary parameters   and which provides 
us with a simple way to adjust and control the convergence of the solution series. In general, by means of the 
so-called  -curve, i.e., a curve of versus  . As pointed by Liao [13], the valid region of   is a horizontal line 
segment. To see the range of admissible values of these parameters, the curves of   are plotted in Figure 1 for 

( ) ( ) ( )0 , 0 , 0tt ttt ttf g h  and ( )0ttk  given by 10th-order approximation. For better presentation, these valid re-
gions are listed in Table 1. A wide valid zone is evident in these figures ensuring convergence of the series. To 
choose optimal value of auxiliary parameter, the averaged residual errors [24] are defined as 

( )
2

,
0 0

1 ,
m

if m f
i i

E F i x
λ

λ = =

  = ∆  
  

∑ ∑Ν                          (57) 

( )
2

,
0 0

1 ,
m

g m g i
i i

E G i x
λ

λ = =

  = ∆  
  

∑ ∑Ν                          (58) 

 
Table 1. The admissible values of   for each -curve .                                

Number of Figure Admissible Values of   Optimal   

1(a) 1.4 0.6− ≤ ≤ −  0.999−  

1(b) 1.4 0.6− ≤ ≤ −  0.910−  

1(c) 1.5 0.5− ≤ ≤ −  1.002−  

1(d) 1.2 0.8− ≤ ≤ −  1.060−  
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(a)                                                       (b) 

   
(c)                                                       (d) 

Figure 1. -curve  of (a) (0)ttf ; (b) (0)tttg ; (c) (0)tth  and (d) (0)ttk  given by 10th order approximate solution.  
 

( )
2

,
0 0

1 ,
m

ih m h
i i

E H i x
λ

λ = =

  = ∆  
  

∑ ∑Ν                          (59) 

( )
2

,
0 0

1 ,
m

ik m k
i i

E K i x
λ

λ = =

  = ∆  
  

∑ ∑Ν                          (60) 

where ∆x = 10/λ and λ = 20. For a given order of approximation m, the optimal values of   is given by the mi- 
nimum of Em, corresponding to nonlinear algebraic equations 

, , , ,d d d d
0 or 0 or 0 or 0.

d d d d
f m g m h m k mE E E E

= = = =
   

                   (61) 

It is noticed that the optimal value of   is replaced into the equations. Table 1 shows optimal values ob-
tained for the auxiliary parameters  . To see the accuracy of the solutions, the residual errors for the system are 
defined as 

( ) ( ) ( ) ( ) ( )2 2
n n n n nfRE F t F t G t F t H t′′ ′= − + −                        (62) 

( ) ( ) ( ) ( ) ( )2g n n n n nRE G t F t G t G t H t′′ ′= − −                       (63) 

( ) ( )2H nRE H t F t′= +                                 (64) 
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( ) ( ) ( ) ( )2 2n nn nkRE K t F t H t F t′ ′= − +                         (65) 

where Fn(t), Gn(t), Hn(t) and Kn(t) are the HAM solutions for f (t), g(t), h(t) and k(t). 

6. Results and Discussion 
HAM-Padé, in this paper was used to find approximate solutions for nonlinear equations obtained by the steady, 
laminar, axially symmetric viscous flow near an infinite rotating disk. The accuracy of the method is appropriate 
and obtained results are close to the numerical solution. It is proper mentioning that the numerical results have 
been obtained using the fourth-order Runge-Kutta method along shooting method for satisfying boundary condi-
tions at infinity. Figures 2-4 show the velocities in the r , θ  and z  directions respectively. Figure 5 demon-
strates distribution of pressure in the z  direction. In Table 1 1= −  is not a good approximation in every 
case. The results show that the HPM-Padé isonly valid for small values of independent variable. 

 

 
Figure 2. The velocity in r  direction for water with 0.01r = , 

1000 rad/sω = , 6 21.519 10 (m /s)ν −= × , 31000 (kg/m )ρ = .       
 

 
Figure 3. The velocity in θ  direction for water with 0.01r = , 

1000 rad/sω = , 6 21.519 10 (m /s)ν −= × , 31000 (kg/m )ρ = .        
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Figure 4. The velocity in z  direction for water with 0.01r = , 

1000 rad/sω = , 6 21.519 10 (m /s)ν −= × , 31000 (kg/m )ρ = .      
 

 
Figure 5. The pressure distribution in the z  direction for water 
with 0.01r = , 1000 rad/sω = , 6 21.519 10 (m /s)ν −= × ,       

31000 (kg/m )ρ = .                                         

7. Conclusions 
In this paper, homotopy analysis method (HAM) and Padé approximant were considered for finding analytical 
solution of three-dimensional viscous flow near an infinite rotating disk which is a well-known classical prob-
lem in fluid mechanics. A comparison of HAM-Padé and HPM-Padé is made. Unlike perturbation method, the 
HAM does not depend on any small physical parameters. Thus, it is valid for both weak and strong nonlinear 
problems. Besides, the HAM provides us with a convenient way of controlling the convergence of approxima-
tion series, by means of auxiliary parameter, which is a fundamental qualitative difference in analysis between 
the HAM and other methods. Also the figures show that the HAM-Padé is a powerful mathematical tool for sol- 
ving the system of non-linear partial differential equations having wide applications in engineering.  
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Finally, the recent appearance of nonlinear differential equations as models in some fields of applied mathe-
matics makes it necessary to investigate innovative methods of solution for such equations. 
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