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Abstract 
Stable isotope mixing models are used to estimate proportional contributions of sources to a mix- 
ture, such as in the analysis of animal diets, plant nutrient use, geochemistry, pollution, and foren- 
sics. We describe an algorithm implemented as SISUS software for providing a user-specified 
number of probabilistic exact solutions derived quickly from the extended mixing model. Our 
method outperforms IsoSource [1], a deterministic algorithm for providing approximate solutions 
to represent the solution polytope. Our method is an approximate Bayesian large sample proce- 
dure. SISUS software is freely available at StatAcumen.com/sisus and as an R package at 
cran.r-project.org/web/packages/sisus. 
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1. Introduction 
The goal of stable isotope mixing models or “sourcing” is to estimate the proportional contributions of sources 
to a mixture. Stable isotope sourcing models are increasingly used to study animal diets and foodwebs, water 
sources in soils, plants, or water bodies, geological sources for soils or marine sediments, decomposition and 
soil organic matter dynamics, tracing animal migration patterns, evaluating management scenarios, and forensics 
[1]-[5]. Because animal ecology offers a rich complexity as a result of the preferential assimilation of elements 
from given sources into different tissues, we focus our attention here. The model, however can be applied 
widely. Stable isotope analyses of a consumer tissues (the mixture) and their potential prey and diet items (the 
sources) are a powerful and well-studied means of quantifying relative contributions of isotopically distinct die- 
tary components providing many benefits in comparison with traditional methods for quantifying diet, such as 
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the analysis of stomach and fecal contents [4]. 
We introduce an algorithm and software, SISUS, for providing feasible source proportions of biomass con- 

sumed by a mixture using mass-balance mixing models. Our probabilistic method (SISUS) is preferred to the 
deterministic method (IsoSource [1]) because it quickly and randomly samples a user-specified number of exact 
solutions from the solution polytope. In Section 2, we describe the model, illustrate the geometrical relationship 
between isotopic ratio space and the solution polytope, and describe the competing methods to sample the solu- 
tion polytope. Section 3 describes the SISUS software. Section 4 provides results of a simulation study and an 
example. In Section 5, we discuss interpretation of results. 

2. Material and Methods 
2.1. Mixing Models 
The isotope ratio, ( )sample standard1000 1R Rδ = − ‰ , is a normalized ratio of the number of rarer to common iso- 
topes in a sample, sampleR , relative to an international standard, standardR , given in parts per thousand (per mil, ‰) 
[6]. Carbon and nitrogen are among the most commonly used elements for diet sourcing. 

The basic mixing model (BMM) is the simplest mass-balance mixing model. It assumes that the mean isotope 
ratio of the mixture equals the diet-weighted average of the mean discrimination-corrected isotope ratio compo- 
sition of the sources [2] [7] [8]. Assuming that I  isotopes are measured and the consumer's diet consists of S  
sources, the defining equations can be written as 

1 1
, for 1,..., , and 1 .

S S

i is i i
s s

i Iβ δ π π
= =

′= = =∑ ∑                           (1) 

Coefficient iβ  is the mean isotope ratio for isotope i  in the mixture. Each is is isδ δ′ = + ∆  is the isotope ra- 
tio for isotope i  from source s , isδ , corrected by the addition of the discrimination, is∆ . Discrimination is 
the difference of the isotope ratio in the diet source from the isotope ratio in the mixture's tissues as elements are 
ingested, excreted, or catabolized (e.g., trophic fractionation, [9] [10]). Mean diet ( )1

T
2, ,..., Sπ π π=π  is a vec-

tor restricted to the simplex, that is, each iπ  is nonnegative and the sum of the source proportions is 1. In prac-
tice iβ  and isδ ′  are estimated from data, an issue that we address in Section 5. 

The extended mixing model (EMM) increases realism by recognizing that both consumer and sources exhibit 
variation, and that elemental concentration and assimilation efficiencies of consumers for different food types 
can vary considerably [3]. The EMM has the same linear form as the BMM, thus the discussion applies to this 
more general model. Here we restrict our attention to the BMM. 

2.2. Alaskan Bear Example 
The summaries in Figure 1 reconstruct data from ([11]: Table 1). The goal is to determine the biomass contri- 
bution of salmon, terrestrial meat, and fruit to the diet of an average brown bear (Ursus arctos) from the Kenai 
Peninsula, Alaska, at a particular time of year [12]. Mean carbon and nitrogen isotope ratios are available from a 
sample of brown bear consumers, from samples of the three diet sources, as well as for the discrimination (i.e., 
difference between the consumer and each diet item) established from captive experiments. Figure 1 plots the 
discrimination-corrected isotope measurements for carbon/nitrogen pairs, ( )1 2,s sδ δ′ ′ , for the three sources and 
mean carbon/nitrogen isotope ratio responses ( )1 2,β β  for brown bears. The isotope ratio data plot also in- 
cludes the “convex hull” obtained by connecting the outermost sources with line segments. The data presented 
in Figure 1 can be described by the following matrix (2): 

1

2

3

DietBear Salmon FruitMeat
20.3 19.3 23.3 0.59Carbon 16.6

.
10.9 15.5 3.2 0.10Nitrogen 7.9

1 1 1 0.31Simplex 1

π
π
π

− − − =−     
=      =    

     =     

                    (2) 

The first row represents the equation for carbon, the second row is for nitrogen, and the third row is for the 
probability vector simplex constraint. The first column is for salmon, the second column is for meat, and the 
third column is for fruit. One or more solutions to (2) exist(s) if and only if the mean isotope ratio for the mix-  
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Figure 1. Convex hull plot of the Alaskan brown bear example. This plot represents the 
isotope ratio data space of discrimination-corrected carbon and nitrogen isotope ratios.      

 
ture brown bear is not outside the convex hull, as shown in this example. Typically, the closer the isotope ratio 
values of the mixture are to a source’s discrimination-corrected isotope ratio values, the more similar the mix- 
ture is isotopically to that source, and the larger the contribution of that source can be to the mixture. Using both 
carbon and nitrogen, the solution for ( )1 2 3, ,π π π  in (2) is unique. The BMM estimates that brown bear tissues 
were derived (sourced) from 0.59 salmon, 0.10 meat, and 0.31 fruit. Both frequentist and Bayesian methods are 
available for estimation for unique solution situations [13] [14]. 

Relationship between Data Space and Source Proportion Solution Spaces 
In most studies the number of diet sources exceeds the number of isotopes plus one, 1S I> + , leading to an in- 
finite number of solutions to the BMM. The goal is to represent the solution space, or alternatively, to provide a 
set of “typical” solutions to the BMM. If 1,S I≤ +  as in the brown bear example, there is at most one feasible 
solution. 

The data consists of I  discrimination-corrected isotope ratio means on each of S  sources, thus, the iso-
tope ratio data space is I -dimensional while the source proportion solutions, ( )1 2, ,..., ,Sπ π π  are S -dimen- 
sional. Each of the linear equations in (1) defines an ( )1S − -dimensional hyperplane in the proportion solution 
space. Assuming 1S I≥ + , the intersection of the simplex and these hyperplanes is an ( )1S I− − -dimensional 
convex polytope. This convex polytope defines the set of solutions to the BMM. 

In the brown bear data the ( )2I = -dimensional isotope ratio data space in Figure 1 maps to the ( )3S = -di- 
mensional proportion solution space in Figure 2(a). The solution space axes represent biomass contributions of 
each source, 1π , 2π , and 3π . The simplex equation is represented by the equilateral triangular plane in Fig-
ure 2(a). The gray plane heading back and up is given by the carbon equation, and the blue plane heading 
downwards is given by the nitrogen equation. The solution polytope is the intersection of the three planes, the  
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point labeled “solution” at (0.59, 0.10, 0.31). If we considered carbon only, then the solution polytope would be 
the intersection of the carbon and simplex planes, that is, all points on the line segment joining c1 to c2. 

2.3. Algorithms for Feasible Solutions 
2.3.1. Approximate Solutions Using IsoSource 
IsoSource is a popular deterministic algorithm used in stable isotope sourcing to represent the solution polytope 
from underconstrained linear mixing models where 1S I> +  [1] [15]. IsoSource evaluates a user-specified un- 
iformly-spaced lattice of points on the simplex, labeling a point a solution if it satisfies the BMM within a user- 
specified tolerance. These are points on or close to the solution polytope, consistent with all possible solutions 
being equally likely a priori. This is a brute force strategy because no information is used regarding the location 
of the solution polytope within the simplex. For a fixed tolerance, decreasing the increment of the grid space 
hyperexponentially increases the number of points evaluated, increasing both the number of solutions returned  
 

 
Figure 2. BMM Alaskan brown bear example. (a) 
Solution space using both carbon and nitrogen. (b) 
Using carbon only, IsoSource evaluates points on the 
lattice over the simplex, returning 114 approximate 
solutions of the 1326 evaluated points. (c) Using car- 
bon only, SISUS samples 114 exact solutions un- 
iformly over the solution polytope.                 
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and the time for the algorithm to execute. For a fixed increment, decreasing the tolerance increases the accuracy 
of the solutions by excluding points far from the solution polytope. Because the number of approximate solu- 
tions depends on the size of the solution polytope, the increment grid spacing, and the solution tolerance, it may 
be challenging to choose settings to balance the desire for many solutions, accurate solutions, and acceptable 
execution time. 

Figure 2(b) illustrates the IsoSource sampling strategy, applied to the carbon-only brown bear example with a 
grid increment of 0.02 and tolerance of 0.10 where 114 of the 1326 points evaluated are approximate solutions. 
The points evaluated are uniform over the simplex, but the approximate solutions provided are only roughly 
uniform near the solution polytope. 

2.3.2. Exact Probabilistic Solutions via SISUS 
SISUS implements a two-step algorithm to sample exact solutions uniformly from the solution polytope. The first 
step is to determine the vertices and boundaries of the solution polytope. The method is complex to describe [16], 
but is already implemented [17]. The second step is the probabilistic sampling from the solution polytope, using 
the random directions symmetric mixing algorithm [18] [19]. There are three steps in this algorithm: (0) Choose a 
starting point inside the solution polytope, ( )0 ∈π , and set counter 0r ← . (1) Generate a random direction 
d  uniformly distributed over a direction set inside the solution polytope SD ⊆ ℜ , find the line set 

( ){ },rL ld l= + ∈ℜ π , and generate a random point ( )1r+π  uniformly distributed over L . Descriptively, we 
draw a line segment through the current point ( )rπ  to two edges of the polytope along the chosen direction, then 
generate the next point ( )1r+π  uniformly at random from that line segment. In this way we move around the po- 
lytope collecting a representative sample. (2) When we reach the desired number of samples, r R= , the compu- 
tation stops. Otherwise, the counter is incremented 1r r← +  and the procedure is repeated from to step (1). The 
sample is generated rapidly and converges to a uniform distribution over the solution polytope [20]. 

Figure 2(c) shows 114R =  exact probabilistic solutions from SISUS for the carbon-only brown bear exam-
ple, which are qualitatively similar to the deterministic approximate solutions of IsoSource. 

3. Software 
SISUS uses the random directions symmetric mixing algorithm in R package polyapost, function constrppprob 
[21]-[23]. The number of sources S  and isotopes I  may both be large, provided 1S I≥ + . Sample sizes of 

1000R =  and 10000 appear reasonable for exploration and publication, respectively. Standard Markov chain 
Monte Carlo diagnostics are used to monitor convergence of the algorithm (sec. 11.11, [24]), though convergence 
issues are extremely rare and are typically due to random sampling rather than algorithmic issues. 

SISUS software is freely available at StatAcumen.com/sisus and as an R package at cran.r-project.org/web/ 
packages/sisus. Data and parameter settings are input into a single OpenOffice.org-compatible MicroSoft Excel 
2003 workbook. This workbook is then either uploaded to the website for processing or processed by a local in- 
stallation of the SISUS package in free statistical software R on Windows, Mac OSX, or Linux platforms. Speci- 
fied samples, summary tables, and plots in a variety of requested image formats are returned. 

4. Results 
4.1. Execution Time, Solution Predictability, and Solution Accuracy 
There are three reasons why the probabilistic approach (SISUS) is preferred over the deterministic approach 
(IsoSource). These are (a) the relatively short execution time, (b) the predictability of the number of solutions, 
and (c) the solution accuracy. In Figure 2 we already touched on points (b) and (c). We use a fabricated exam- 
ple to further illustrate the differences in these approaches. We analyze subsets of the problem 

1

2

10

0 1 1 0 2 2 0 5 6 3 1
0 2 1 1 2 0 3 4 2 5 6
0 3 1 1 2 3 4 0 5 2 7

.
0 4 2 1 1 2 3 4 6 0 5
0 5 1 3 4 5 0 2 2 6 1
1 1 1 1 1 1 1 1 1 1 1

π
π

π

− − −   
   − − − −       − − − −     =   − − − −       − − − −     
      



                   (3) 
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The full problem has 10S =  sources and 5I =  isotope ratios, as that is the extent of the problem size that 
IsoSource is programmed to solve. For each example, Table 1 specifies a given value for S  and I , and 
the problem is defined by choosing the first S  columns and first I  rows plus the simplex constraint of 
(3). Table 1 reports the execution times for SISUS and IsoSource running on a PC (Dell Optiplex GX260 
with Intel Pentium 4 2.40 GHz CPU with 512 MB RAM) without any additional significant processes run- 
ning. 

For SISUS we obtain R  exact solutions for each problem size by finding 100R solutions and keeping 
every 100th to increase the independence of the samples and to improve solution polytope coverage. 

From Table 1 it is clear that execution time for SISUS increases with S  up to a few minutes while Iso- 
Source increases to hours. For SISUS the time to obtain a specified number of exact solutions grows nearly 
linearly with the number of sources S  and quadratically with R . For IsoSource an increment and toler-
ance are specified which determines a hyperexponentially growing number of iterations with S  given by 
the Binomial coefficient (Equation (3), and (1)) 
 

Table 1. Comparison of execution time and number of solutions for SISUS and IsoSource. 
Column labels are number of sources S , number of isotopes I , number of SISUS solutions 
R , and time in seconds. IsoSource parameters are increment inc , tolerance tol , number of 
iterations it , number of solutions, and time in seconds, and two sets of cases are described in 
the text.                                                                       

Size SISUS IsoSource  

S  I  sol (R) time (s) inc  tol  it  Sol time (s) Text example 

5 1 10,000 13 0.02 0.01 3.2 × 105 4023 1 (a) 

5 1 20,000 44 0.01 0.01 4.6 × 106 89,726 4 (a) 

5 2 10,000 13 0.02 0.01 3.2 × 106 45 1 (a) 

5 2 20,000 45 0.01 0.01 4.6 × 106 1535 4 (a) 

5 3 10,000 12 0.02 0.01 3.2 × 105 0 1 (a) 

5 3 30,000 99 0.01 0.01 4.6 × 106 18 4 (a) 

7 2 30,000 150 0.01 0.01 1.7 × 109 265,021 (27 m) 1631  
8 2 10000 22 0.05 0.01 8.9 × 105 424 1  
8 2 20,000 79 0.02 0.01 2.6 × 108 24,162 344  
8 2 30,000 158 0.01 0.01 2.6 × 1010 5,747,298 (8.2 h)  
8 5 10,000 20 0.05 0.01 8.9 × 105 0 1  
8 5 20,000 77 0.02 0.01 2.6 × 108 0 344  
8 5   0.02 0.10 2.6 × 108 3167 344  
8 5 30,000 177 0.01 0.01 2.6 × 1010 19 (8.2 h) 29,488  

10 2 10,000 26 0.1 0.01 9.2 × 104 103 1  
10 2 20,000 90 0.05 0.01 1.0 × 107 3455 18  

10 2 30,000 (4 m) 228 0.02 0.01 1.3 × 1010 850,563 (5 h) 17,990  

10 5 10,000 25 0.1 0.01 9.2 × 104 0 1 (b) 

10 5 20,000 90 0.05 0.01 1.0 × 107 0 18 (b) 

10 5 30,000 203 0.02 0.01 1.3 × 1010 1 (4.8 h) 17,373 (b) 

10 5   0.01 0.01 4.3 × 1012 ? (est 68 days) (b) 
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+
                                   (4) 

Approximate solutions are then returned which are within the tolerance of exact solutions. Time scales 
roughly linearly with the number of iterations (about 1M/s). For small problems ( )5S = , IsoSource takes 
only a few seconds. But as the problem size increases, the time increases to hours. Two cases to note: a) For 

5S = , as I  increases ( )1,2,3I =  and the solution polytope decreases in dimension ( )3,2,1d =  the so- 
lutions become more difficult to find for IsoSource resulting in fewer or no approximate solutions. b) The 
largest example, 10S = , 5I = , 0.02inc = , finds only 1 approximate solution after almost 5 hours of 
computation, and larger increments fail to find any solutions. Setting the increment to 1 will increase the 
running time to roughly 68 days. In each of these cases, SISUS provides 10,000 exact solutions in less than 
30 seconds. 

4.2. Mink Example 
We use published mink (Neovison vison) data [25] to further illustrate capabilities of SISUS. The BMM is given 
by 

1

2

7

Diet
Mink Fish DucksMussels Crabs Shrimps Rodents Amphipods
15.11 14.23 21.38Carbon 18.51 15.28 16.90 24.61 18.69

13.81 14.68 14.92Nitrogen 10.74 12.20 12.96 10.07 15.00
1 1 1Simplex 1 1 1 1 1

π
π

π


− − −− − − − −    =   
   
      








 
 
 



  (5) 

where the rows are for carbon, nitrogen, and the simplex. The left vector is the mixture mink and the columns of 
the matrix are for the 7S =  sources of fish, mussels, crabs, shrimps, rodents, amphipods, and ducks. The con- 
vex hull of the discrimination-corrected sources includes the mink, thus there are feasible solutions. The solution 
polytope is a 1 7 2 1 4S I− − = − − = -dimensional object in 7S = -dimensional proportion space. 

Figure 3 provides graphical summaries of the solution polytope returned by SISUS, based on 10,000 solu- 
tions. Time to compute the solutions is similar to that reported in Table 1 for 7S =  sources and 2I =  iso- 
topes. Marginal histograms of the 10,000 solutions for each source are given along the main diagonal. Two-di- 
mensional histograms for each pair of sources are given above the main diagonal of the plot while corresponding 
pairwise density plots are provided below the main diagonal. The one- and two-dimensional histograms show 
that the marginal and pairwise solutions are highly constrained within the unit interval and unit square, respec- 
tively. 

5. Probabilistic Interpretation and Discussion 
IsoSource [1], with nearly 1000 citations, is extensively used for inferences based on mixing models. The natu- 
ral interpretation of the IsoSource solutions is as samples from the Bayesian posterior distribution of the vector 
π  of mixture proportions. As the components in the BMM defined in (1) are estimated from data but treated as 
fixed by IsoSource, it can be shown that random samples from the solution polytope are an approximate sample 
from the posterior distribution of π , assuming that the samples for estimating the isotope ratios and discrimina-
tions are large, and that the prior distribution for π  is uniform over the simplex. As SISUS generates random 
samples from the solution polytope rather than approximate solutions, we consider SISUS a better inferential 
tool. Thus in the mink analysis, the plots in Figure 3 summarize the univariate and bivariate large sample poste-
rior distributions for the contribution of sources to mink diet. The samples may be used, for example, to estimate 
the posterior probability that Amphipods contribute to at least 10% of the mink diet, or to computing the (poste-
rior) means for each proportion, which is a point estimate of the contribution of a source to the diet. Table 2 lists 
the posterior means and standard deviations for each source in the mink example. The SISUS large sample 
analysis suggests that fish comprises approximately 0.67 of mink diet, with each of the remaining six sources 
contributing to roughly equally. 

The mink data set is small, with sample sizes ranging from 5 to 25 with an average of 11.3, so it is important 
to gauge the utility of this SISUS analysis relative to a complete, but more complex, Bayesian analysis. Several  
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Figure 3. Mink BMM example marginal histograms along diagonal, scatter plot of paired source con- 
tributions on the upper diagonal, and corresponding two-dimensional density histograms on the lower 
diagonal.                                                                             

 
researchers have developed Bayesian models for inference using the BMM [26]-[28]. These models are some- 
what restrictive as they assume that the source isotope ratios or discrimination are estimated without error, or 
that the multivariate isotope ratio data have independent components. For a realistic assessment of SISUS, we 
considered a Bayesian model for the mink data that assumes independent multivariate normal distributions for 
correlated isotope ratio responses from the mink mixture, the seven sources, and for estimating discrimination 
from two diet experiments [14]. In a second Bayesian analysis, we considered the effect of tripling the sample 
sizes but keeping all other sample summaries the same. Diffuse but proper prior distributions were used 
throughout. 

Table 2 gives estimated posterior means and standard deviations for the seven components of mink diet. One 
analysis uses both isotopes. The other two analyses consider carbon and nitrogen separately. Considering the 
analysis based on the original data, the posterior means based on SISUS tends to identify the major and minor 
sources of mink diet, but the estimates of the dominant sources are somewhat inaccurate. The SISUS summaries 
also tend to underestimate uncertainty in the marginal posterior distributions, which is expected. The SISUS 
means and standard deviations for analyses based on a single isotope are much more accurate, as are the summa- 
ries for analyses in which the sample size was tripled. 

We find that in general SISUS produces a simple approximate assessment of the mean proportion in the  



E. B. Erhardt et al. 
 

 
297 

Table 2. Selected numerical summaries for the mink example based on SISUS, 
fully Bayesian analyses, and Bayesian analyses with triple the sample size. 
Values represent feasible source contributions of biomass to mink.            

 SISUS Bayesian Bayes Triple 

Isotopes Sources Mean SD Mean SD Mean SD 

C and N Fish 0.67 0.04 0.42 0.2 0.63 0.09 

 Mussels 0.04 0.03 0.08 0.07 0.04 0.04 

 Crabs 0.07 0.05 0.15 0.12 0.09 0.06 

 Shrimps 0.07 0.05 0.12 0.11 0.07 0.06 

 Rodents 0.03 0.02 0.04 0.04 0.04 0.03 

 Amphipods 0.07 0.04 0.1 0.08 0.06 0.05 

 Ducks 0.06 0.04 0.09 0.08 0.06 0.04 

C only Fish 0.51 0.16 0.36 0.19 0.47 0.18 

 Mussels 0.05 0.04 0.08 0.07 0.06 0.05 

 Crabs 0.24 0.2 0.25 0.18 0.25 0.2 

 Shrimps 0.08 0.07 0.13 0.12 0.09 0.08 

 Rodents 0.02 0.02 0.04 0.03 0.03 0.02 

 Amphipods 0.05 0.04 0.08 0.07 0.05 0.05 

 Ducks 0.04 0.03 0.08 0.07 0.05 0.04 

N only Fish 0.23 0.18 0.21 0.16 0.22 0.17 

 Mussels 0.05 0.04 0.07 0.07 0.06 0.05 

 Crabs 0.07 0.06 0.09 0.08 0.08 0.07 

 Shrimps 0.08 0.07 0.11 0.09 0.09 0.08 

 Rodents 0.08 0.07 0.1 0.09 0.09 0.08 

 Amphipods 0.17 0.14 0.18 0.14 0.17 0.15 

 Ducks 0.32 0.14 0.24 0.14 0.29 0.15 

 
BMM and EMM but tends to underestimate uncertainty. In our opinion, SISUS is especially useful for second- 
ary analyses of published data and in settings where individual level data needed for a complete Bayesian analy- 
sis may not be available. 
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