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Abstract 
In this paper, we introduce the notion of fuzzy multiautomata and we investigate the hyperstruc-
tures induced by the linear second-order differential operators which can be used for construction 
of fuzzy multiautomata serving as a theoretical background for modeling of processes. 
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1. Introduction 
Hyperstructure theory was born in 1934 when Marty defined hypergroups as a generalization of groups. This 
theory has been studied in the following decades and nowadays by many mathematicians. The hypergroup 
theory both extends some well-known group results and introduces new topics, thus leading to a wide variety of 
applications, as well as to a broadening of the investigation fields. There are applications of algebraic hyper-
structures to the following subjects: geometry, hypergraphs, binary relations, lattices, fuzzy sets and rough sets, 
automata, cryptography, combinatorics, codes, artificial intelligence, and probabilistic. A comprehensive review 
of the theory of hyperstructures appears in [1]-[3]. 

Further, since the beginning of the first decade of this century relationships between ordinary linear differen-
tial operators and the hypergroup theory have been studied [4]-[8]. 

Zadeh [9] introduced the theory of fuzzy sets and, soon after, Wee [10] introduced the concept of fuzzy auto-
mata. Automata have a long history both in theory and application and are the prime examples of general com-
putational systems over discrete spaces. Fuzzy automata not only provide a systematic approach for handling 
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uncertainty in such systems, but also can be used in continuous spaces [11]. In this paper, we introduce -mul- 
tiautomaton, without output function, where the transition function or next state function satisfies so called 
Fuzzy Generalized Mixed Condition (FGMC).These  -multiautomata are systems that can be used for the 
transmission of information of certain type. Then we construct  -multiautomata of commutative hypergroups 
and join spaces created from second order linear differential operators. 

2. Preliminaries 
Let J be an open interval of real numbers, and ( )( ),.C J  be the group of all continuous functions from J to in-
terval ( ]0,1 . In what follows we denote ( ) ( ) ( ) ( ), ; ,L p q y y p x y q x y p q C J′′ ′= + + ∈  that named differential  
operators of second order. And define ( ) ( ) ( ){ }2 , ; ,LA J L p q p q C J= ∈ . Recall some basic notions of the hy-  

pergroup theory. A hypergroupoid is a pair ( ), ,H •  where H φ≠  and ( )*• : H H H× →   is a binary hy- 
peroperation on H. (Here ( )* H  denotes the system of all nonempty subsets of (H)). If ( ) ( )• • • •a b c a b c=  
holds for all , ,a b c H∈  then ( ),H •  is called a semihypergroup. If moreover, the reproduction axiom 
( • •a H H H a= = , for any element a H∈ ) is satisfied, then the pair ( ),H •  is called a hypergroup. Join 
spaces are playing an important role in theories of various mathematical structures and their applications. The 
concept of a join space has been introduced by Prenowitz [12] and used by him and afterwards together with 
James Jantoisciak to reconstruct several branches of geometry. In order to define a join space, we need the fol-
lowing notation: If , ,a b x  are elements of a hypergroupoid ( ),H ∗  then we denote { }a b x H a x b= ∈ ∈ ∗  
and A B  we intend the set ,a A b B a b∈ ∈

. 
Definition 2.1 [12] [13] A commutative hypergroup ( ),H ∗  is called a join space (or commutative transposi-

tion hypergroup) if the following condition holds for all elements , , ,a b c d  of H : 

a c a d b c
b d

≠ ∅⇒ ∗ ∗ ≠ ∅ 
 

By a quasi-ordered (semi)group we mean a triple ( ),., ,G ≤  where ( ),.G  is a (semi) group and binary rela-
tion ≤  is a quasi ordering (i.e. is reflexive and transitive) on the set G such that, for any triple , ,x y z G∈  
with the property x y≤  also x z y z⋅ ≤ ⋅  and z x z y⋅ ≤ ⋅  hold. 

The following lemma is called Ends-Lemma that is proved on [14] [15]. 
Lemma 2.2 Let ( ), ,G ⋅ ≤  be a quasi-ordered semigroup. Define a hyperoperation 

( ) [ ) { }: by ;G G p G a b a b x G a b x∗
≤

∗ × → ∗ = ⋅ = ∈ ⋅ ≤  

For all pairs of elements ,a b G∈ . Then ( ),G ∗  is a semihypergroup which is commutative if the semigroup 
( ),G ⋅  is commutative. If moreover, ( ),G ⋅  is a group, then ( ),G ∗  is a transposition hypergroup. Therefore, if 
( ),G ⋅  is a commutative group, then ( ),G ∗  is a join space. 

Proposition 2.3 For any pair of differential operators ( ) ( ) ( )1 1 2 2 2, , ,L p q L p q LA J∈  define a binary opera-
tion as below: 

( ) ( ) ( )1 1 2 2 1 2 1 2, , ,L p q L p q L p p q q⋅ = ⋅ ⋅  

and define a quasi-ordered relation as following: 

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 1 2 1 2, , if , , for all .L p q L p q p x p x q x q x x J≤ = ≤ ∈  

Then ( )( )2 ,.,LA J ≤  is a commutative ordered group with the unit element ( )1,1 .L                    □ 
Now we apply the simple construction of a hypergroup from Lemma 2.2 into this considered concrete case of 

differential operators: 
For arbitrary pair of operators ( ) ( ) ( )1 1 2 2 2, , ,L p q L p q LA J∈  we put: 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ){ }

1 1 2 2 2 1 1 2 2

1 2 1 2

, , , , , ,

, ;

L p q L p q L p q LA J L p q L p q L p q

L p p q q C Jϕ ϕ ϕ

∗ =

⋅ ≤⋅

∈ ⋅ ≤

= ∈
 

Then we obtain the following Corollary from Lemma 2. 2 immediately: 
Corollary 2.4 For each ( ) ( ) ( )1 1 2 2 2, , ,L p q L p q LA J∈ , if 
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( ) ( ) ( ) ( ){ }1 1 2 2 1 2 1 2, , , ,L p q L p q L p p q q C Jϕ ϕ ϕ⋅ ≤⋅∗ = ∈  

Then ( )( )2 ,LA J ∗  is a commutative hypergroup and a join space. 
Definition 2.5 [16] Let X  be a non-empty set, ( ),H ∗  be a (semi) hypergroup and : X H Xδ × →  be a 

mapping such that, for all x X∈ , and ,s t H∈ : 

( )( ) ( ) ( ) ( ){ }, , , , where ,  , ;  x t s x t s x t s x u u t sδ δ δ δ δ∈ ∗ ∗ = ∈ ∗        (2.1) 

Then ( ), ,X H δ  is called a discrete transformation (semi)hypergroup or an action of the (semi)hypergroup H 
on the set X. The mapping δ  is usually said to be simply an action. 

Remark 2.6 The condition (2.1) used above is called Generalized Mixed Associativity Condition, shortly 
GMAC. 

Definition 2.7 [6] [7] (Quasi)multiautomaton without output is a triad ( ), ,M H S δ= , where ( ),H ∗  is a 
(semi)hypergroup, S is a non-empty set, and : H S Sδ × →  is a transition map satisfying GMAC condition. 
The set S is called the state set of the (quasi)multiautomaton M, the structure ( ),H ∗  is called a input (semi)- 
hypergroup of the (quasi)multiautomaton M and δ  is called a transition function. Elements of the set S are 
called states and the elements of the set H are called input symbols. 

3. -Multi Automata 
Definition 3.1 A fuzzy transformation (semi)hypergroup (or a fuzzy action) of (semi)hypergroup H on S is a 
triple ( ), , ,S H µ  where S  is a non-empty set, ( ),H ∗  is a (semi)hypergroup, and µ  is a fuzzy subset of 
S H S× ×  such that, for all ,u v H∈  and ,p q S∈ : 

( ) ( ){ } ( ) ( ) ( ){ }, , , , , , where , , , ,q u r r v p r S q u v p q u v p q x p x u vµ µ µ µ µ∨ ∧ ∈ ∈ ∗ ∗ = ∈ ∗     (3.2) 

Remark 3.2 The condition (3.2) used above is called Fuzzy Generalized Mixed Condition, shortly FGMC. 
Definition 3.3  -(quasi) multiautomaton without outputs is a triad ( ), ,H S µ= , where ( ),H ∗  is a 

(semi)hyper-group, S  is a non-empty set and [ ]: 0,1S H Sµ × × →  is a fuzzy transition map satisfying 
FGMC condition. 

Set S is called the state set and the hyperstructure ( ),H ∗  is called the input (semi)hypergroup of the  - 
(quasi)multiautomaton   and µ  is called fuzzy transition function. Elements of the set S  are called states 
and the elements of the set H  are called input symbols. 

Definition 3.4  -(quasi)multiautomaton ( ), ,H S µ=  is said to be abelian (or commutative) if 

( ) ( ) for all, , , , , , , ,s x y t s y x t s x y t S H H Sµ µ∗ = ∗ ∈ × × ×  

Example 3.5 Suppose that { }, ,H a b=  { }1 2 3, , .S q q q=  Let hyperoperation ∗  on H and fuzzy transition 
function [ ]: 0,1S H Sδ × × →  are defined as follows: 

 
* a B 

a {a} {a,b} 

b {a,b} {b} 

 

( )1 1
1, ,
3

q a qδ =  ( )2 2
1, ,
3

q a qδ =  ( )1 2
1, ,
3

q a qδ =  ( )2 3
1, ,
3

q a qδ =  

( )1 2
2, ,
3

q b qδ =  ( )2 2
2, ,
3

q b qδ =  ( )2 1
1, ,
3

q a qδ =  ( )1 3
1, ,
3

q a qδ =  

And for all other ordered triples ( ), ,q h p  we define ( ), , 0q h pδ = . Then ( ), ,h S δ  is a commutative  - 
multiautomaton (Figure 1). 

4. -Multi Automata on Join Spaces Induced by Differential Operators 

Proposition 4.1: Let ( )( ) ( )( )1 2 1, , ,C J LA J µ=   where, for all ( ), :f g C J∈  
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Figure 1. The  -multiautomaton of Example 3.5.    

 

[ ) ( ) ( ) ( ) ( ){ },f g f g h C J f x g x h x x J
≤

= ⋅ = ∈ ⋅ ≤ ∀ ∈  

And define: 

( ) ( ) ( ) [ ]1 2 2: 0,1LA J C J LA Jµ × × →  

( ) ( )( ) ( )1 1 1 2 2 1 2, , , ,L p q f L p q q f qµ = ∨ ⋅ ⋅  

( ) ( ) ( ) ( )( )1 2 1, ,
where :

x y z J
q f q q x f y r z

∀ ∈
∨ = ⋅⋅ ⋅⋅ V  

Then 1  is a commutative  -multiautomaton. 
Proof: By Lemma 2.2 the hypergroupoid ( )( ),C J   is a join space. Now, we prove this structure is satis-

fying FGMC property. Let 

( ) ( )( ) ( ) ( )( ) ( ) ( ){ }1 1 1 1 2 2 2, , , , , , , , ,L p q u L t r L t r v L p q L t r LA Jµ µ∨ ∧ ∈ = 𝒾𝒾 

and 

( ) ( )( )1 1 1 2 2, , , ,L p q u v L p qµ =  , for all ( ),u v C J∈  and ( ) ( ) ( )1 1 2 2 2, , ,L p q L p q LA J∈ . 

Then 

𝒾𝒾
( )

( )( ) ( )( )( ) ( )( ) ( )( )1 2 1 2r C J
q u r r v q q u v q

∈
= ∨ ⋅ ⋅ ∧ ∨ ⋅ ⋅⋅ = ∨ ∧ ∨ ⋅V  

( ) ( ) ( ) ( ){ }1 2q t q t x u x v x= ∨ ≥⋅ ⋅⋅  

Clearly 𝒾𝒾∈  (since we can take ( ) ( )
( )2

u x
t x

q x
=  or ( ) ( )1

( )v xt x
q x

=  for each x J∈ ). Then FGMC property  

holds. Hence 1  is a  -multiautomaton. In addition, since f g g f=  , for all ( ),f g C J∈  then 1   
is commutative.                                                                            □ 

Proposition 4.2: Let ( )( ) ( )( )2 2 2, , ,C J LA J µ=   where hyperoperation   was defined in proposition 
4.1. 

And define:  

( ) ( ) ( ) [ ]2 2 2: 0,1LA J C J LA Jµ × × →  

( ) ( )( ) ( )2 1 1 2 2 1 2, , , ,L p q f L p q q f qµ = ∨ ∧ ∧  

( ) ( ) ( ) ( )( )1 2 1 2, ,
where

x y z J
q f q q x f y q z

∀ ∈
∨ ∧ ∧ = ∧ ∧V  

Then 2  is a commutative  -multiautomaton. 
Proof: By Lemma 2.2 the hypergroupoid ( )( ),C J   is a join space. Now, we prove this structure is satis-

fying FGMC property. Let 

( ) ( )( ) ( ) ( )( ) ( ) ( ){ }2 1 1 2 2 2 2, , , , , , , , ,L p q u L t r L t r v L p q L t r LA Jµ µ∨ ∧ ∈ = 𝒿𝒿 
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and 

( ) ( )( )2 1 1 2 2, , , ,L p q u v L p qµ =   

for all, ( ),u v C J∈  and ( ) ( ) ( )1 1 2 2 2, , ,L p q L p q LA J∈ . 
Then 

𝒿𝒿
( )

( )( ) ( )( )( ) ( )1 2 1 2r C J
q u r r v q q u v q

∈
= ∨ ∧ ∧ ∧ ∨ ∧ ∧ = ∨ ∧ ∧ ∧V  

( ) ( ) ( ) ( ){ }1 2 ,q t q u x v x t x x J= ∨ ∧ ∧ ⋅ ≤ ∈  

Since ( ) ( ) ( )( ) ,u x v x u x v x⋅ ≤ ∧  for all x J∈  then 𝒿𝒿∈ . Hence FGMC property holds. Therefore 2  is 
a  -multiautomaton. In addition, It is clear that 2  is commutative. 

Proposition 4.3: Let ( )( ) ( )( )3 2 3, , ,LA J C J µ= ∗  where, for all ( ) ( ) ( )1 1 2 2 2, , ,L p q L p q LA J∈ : 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1 2 2 1 2 1 2, , . , ,L p q L p q L p p q x q x x C Jϕ ϕ ϕ∗ = ⋅ ≤ ∈  

And define: 

( ) ( ) ( ) [ ]3 2: 0,1C J LA J C Jµ × × →  

( )( ) ( )3 , , ,f L p q g f q gµ = ∨ ∧ ∧  

( ) ( ) ( ) ( )( )
, ,

where
x y z J

f q g f x q y g z
∀ ∈

∨ ∧ ∧ = ∧ ∧V  

Then 3  is a commutative  -multiautomaton. 
Proof: According to Corollary 2.4 ( )( )2 ,LA J ∗  is a join space. Now we check the FGMC property for this 

structure. Let 

( )( ) ( )( ) ( ){ }3 1 1 3 2 2, , , , , ,f L p q r r L p q g r C Jµ µ∨ ∧ ∈ =   

And 

( ) ( )( )3 1 1 2 2, , , ,f L p q L p q gµ ∗ =  , for all ( ),f g C J∈  and ( ) ( ) ( )1 1 2 2 2, , ,L p q L p q LA J∈ . 

Then 

( )
( )( ) ( )( )( ) ( )1 2 1 2r C J

f q r r q g f q q g
∈

= ∨ ∧ ∧ ∧ ∨ ∧ ∧ = ∨ ∧ ∧ ∧ V  

( )( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }
3 1 2 1 2

1 2

, , , ,

,

f L p p g q x q x x x J

f g q x q x x x J

µ ϕ ϕ

ϕ ϕ

⋅= ⋅ ≤ ∈

= ∨ ∧ ∧ ⋅ ≤ ∈


 

Since ( ) ( ) ( ) ( )1 2 1 2 ,q x q x q x q x∧ ≥ ⋅  for all x J∈  then ∈  . Hence 3  is a  -multiautomaton. It is 
clear that 3  is commutative.                                                                □ 

Proposition 4.4: Let ( )( ) ( )( )4 2 4, , ,LA J C J µ∗= , where hyperoperation * was defined in proposition 3.4. 
And define: 

( ) ( ) [ ]4 2: ( ) 0,1C J LA J C Jµ × × →  

( )( ) ( )4 , , ,f L p q g f q gµ = ⋅ ⋅∨  

( ) ( ) ( ) ( )( )
, ,

where :
x y z J

f q g f x q y g z
∀ ∈

∨ ⋅ ⋅ = ⋅ ⋅V  

Then 4  is a commutative  -multiautomaton. 
Proof: According to Corollary 2.4 ( )( )2 ,LA J ∗  is a join space. Now, we prove this structure is satisfying 

FGMC property. Let 
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( )( ) ( )( ) ( ){ }4 1 1 4 2 2, , , , , ,f L p q r r L p q g r C Jµ µ∨ ∧ ∈ =𝓂𝓂 

( ) ( )( )4 1 1 2 2, , , ,f L p q L p q gµ ∗ =  

for all ( ),f g C J∈  and ( ) ( ) ( )1 1 2 2 2, , ,L p q L p q LA J∈ . 
Then 

𝓂𝓂
( )

( )( ) ( )( )( ) ( )( ) ( )( )1 2 1 2r C J
f q r r q g f q q g

∈
= ∨ ⋅ ⋅ ∧ ∨ ⋅ ⋅ = ∨ ⋅ ∧ ∨ ⋅V  

( ) ( ) ( ) ( ){ }1 2f t g q x q x t x= ∨ ⋅ ⋅ ⋅ ≤  

Since 
( )
( ) ( ) ( )1

1 2

q x
q x q x

g x
≥ ⋅  and 

( )
( ) ( ) ( )2

1 2

q x
q x q x

f x
≥ ⋅ , for all x J∈  then 𝓂𝓂∈ . Hence 4  is a  - 

multiautomaton. It is clear that 4  is commutative. 

5. Conclusion 
In this research, we introduced  -multistructures which can be used for construction of  -multiautomata 
serving as a theoretical background for modeling of processes. Then we obtain some  -multiautomata of li-
near second-order differential operators. In future work, we can introduce  -multiautomaton with output and 
concrete interpretations of these structures can be studied. 
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