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Abstract 
We see the whole universe as a collection of very simple binary physical systems. With this as- 
sumption, we put forward a detailed model of discrete spaces. Our own universe with its four di- 
mensions, shared between one time-like dimension and three space-like dimensions, as well as 
the Minkowski metrics, are emerging properties of the model. 
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1. A Model of Discrete Universe 
The natural phenomena are usually described in the framework of a four-dimensional space. This space has three 
equivalent space-like components, one time-like component and it is equipped with a Minkowski metrics. 
Space-time usually has an ontological status that it generally requires no further explanations. 

However, the numbers of dimensions (3 the number of space-like dimensions, and 1 the number of time-like 
dimensions) are numerical experimental data. If one considers that the general purpose of physics is to build 
theories that account for numerical experimental data, the construction of a theory of space-time is a necessity. 
In this essay, we put forward such a model and we explore some of its consequences. 

Any physical model rests upon a number of hypotheses and one can wonder what sort of hypotheses would 
form the basis of a relevant theory of space-time. We do not want to make any ad hoc hypothesis such as in 
string [1], twister [2] or quantum loop gravity [3] theories for example. We even want the quantum or relativistic 
theories not to be prerequisites but to be consequences of the structure of space itself and to have no ontological 
status. The model that we propose here rests on three statements that we cannot reject without jeopardizing 
physics itself. We consider these three statements and their mathematical formalizations in turn. 
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1.1. The Universe Does Exist 
The first statement is simply that the universe does exist, that is, some information can be obtained on the uni- 
verse through experimental observations. Information is the key word. As a matter of fact, since nothing else be- 
sides information is available on the nature of the universe, at least for materialist philosophers, one can assume 
that information itself constitutes the fabrics of the physical world. 

Information is measured in terms of an information unit or bit. A bit, here called a cosmic bit (CB), is the sim- 
plest physical object one can imagine. Accordingly, the first hypothesis of the model writes: 

Our universe as a whole is entirely made of a finite, countable, set of cosmic bits. The state aσ  of a cosmic 
bit a, ( )1,2, , NCBa =  , is a binary variable 1aσ = ±  analogous to an Ising (classical) spin. 

The state Ψ  of the universe is determined by a family of CBs states { }aσΨ = . 
We write Ψ  as a NCB -dimensional vector whose norm is 2T Na CB

a
σΨ Ψ = =∑ . In discrete spaces, if 

NCB  is finite as we assume it is, the states of the universe are necessarily normalized. 

1.2. The Universe Is Not Disordered 
The second statement follows from the observation that the universe is not completely disordered and, therefore, 
that all possible states of the universe cannot be realized. As a consequence we must assume that there exists a 
functional of CBs states ( )Λ Ψ , called a Lagrangian, which is, at least approximately, minimized for the physi- 
cally realizable states of the universe. The most general Lagrangian is written as an expansion over all possible 
clusters of CBs: 

( )
( )cluster , , , cluster

ab c a b c
a b c

J σ σ σ
∈

 
Λ Ψ =  

  
∑ ∑






. 

where ab cJ


 is an interaction parameter between the cosmic bits a b cσ σ σ  belonging to cluster , , ,a b c . 
Nothing determines the overall orientation of Ψ  and therefore one must have ( ) ( )Λ Ψ = Λ −Ψ . This elimi- 
nates the odd terms of ( )Λ Ψ . In other ways, all CBs must be treated on equal footing which compels the am- 
plitudes of interactions of same order to be identical. That is, for clusters implying a ω  number of CBs, 

, , ,a b c  one has, for arbitrary , , ,a b c  
( )

ab cJ J ω=


, 

with ω  an even number. For example all pairs ab are such that ( )2 0abJ J= > . It is assumed that the interac- 
tion amplitude ( )J ω  decreases very rapidly with the number ω  of CBs, in particular ( ) ( )2 4J J   and 
we shall limit the expansion of ( )Λ Ψ  to clusters of 4 CBs. The signs of interactions remain to be determined. 
Since no knowledge exists, abJ  is taken as a random binary variable: ( )2

abJ J= ± . Likewise ( )4
abcdJ J= ± . 

Some correlations, however, possibly exist between the signs of second order interactions abJ  and those of 
fourth order interactions abcdJ . In the present essay, it is assumed that the sign of abcdJ  obeys a majority rule, 
that is 

( )
( ),

sign signabcd uv
u v abcd

J J
∈

 
= −   

 
∑ . 

Finally 

( ) ( )( ) ( )( )2 41 1
2! 4!a b a b c d

ab abcd
J Jσ σ σ σ σ σΛ Ψ ≅ ± + ±∑ ∑ , 

where the sign correlations are to be taken into account. 

1.3. The Universe Is Not Frozen 
The last statement follows from the observation that the states of the universe are never completely frozen, that 
is, order is not perfect. This implies that the CBs are subject to a degree of disorder whose amplitude is deter- 
mined by a parameter b called “cosmic noise”. Space-time is then treated as an ordinary thermodynamic system 
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analogous to e.g. a magnetic material, more precisely to a special sort of spin glass. It can be studied by using 
the tools of statistical mechanics. This is not a trivial assertion because statistical mechanics rests upon two fun- 
damental hypotheses. The first one is the ergodic hypothesis, according to which temporal averages may be re- 
placed by ensemble averages. Since the concept of time is not yet defined, only ensemble averages may be given 
a physical meaning, at least for the time being. Ergodicity is then a natural hypothesis and this makes it possible 
to derive the statistical properties of space from usual statistical physics techniques. In particular, according to 
statistical physics, the probability for space to be in a state Ψ  is given by the following Gibbs expression 

( ) ( )( )1 exp b
Z

ρ Ψ = − Λ Ψ , 

where Z is the partition function 

( )( )
{ }

expZ b
Ψ

= − Λ Ψ∑  

and b the cosmic noise parameter. 
The second basic hypothesis of statistical mechanics is the existence of a reservoir that makes the noise b a 

well defined parameter. One may imagine that the total number of CBs is infinite and that NCB , the number of 
CBs belonging to our own universe, is just a finite part of this set. Then the reservoir is made of the set of CBs 
not belonging to our universe. 

To summarize, with these three statements, we put forward a thermodynamic model of space-time. This 
model is basically discrete. It introduces three, and only three, sorts of free parameters ( ) ( )2 4,J J  and b . In the 
model, everything of our familiar physics is, a priori, lost, no more space, no more time, no more fields, and no 
more particles. Everything has to be rebuilt. In the present article, we start the process with the construction of 
space and time. A first issue on this subject has already been published in a previous contribution [4] but here we 
develop the model in more detail. 

2. World Points: The Cells of the Universe 
2.1. Topological Properties 
The interplay between second order and fourth order interactions gives rise to clusters of cosmic bits called 
world (or physical) points. Let us consider a cluster W of n cosmic bits all connected to each over through nega- 
tive (ferromagnetic) binary interactions 

( )2 ,abJ J a b W= − ∀ ∈ . 

Then, according to the majority rule, one has 
( )4 , , ,abcdJ J a b c d W= ∀ ∈ . 

A world point is a cluster that minimizes its Lagrangian 

( ) ( ) ( )2 42 41 1
2 24

W J n J nΛ ≅ − +  

since there are about 2n  pairs and 4n  quartets of cosmic bits in a n cosmic bits system. That gives 
( ) ( )( )1 22 46n J J= . Since ( ) ( )4 2J J , n must be a very large number. Every cosmic bit of a world point W is a 

close neighbour of every cosmic bit of the same world point. Nothing distinguishes a cosmic bit of W from an- 
other cosmic bit of W and, therefore, the properties of the interior of W are not directly physically observable. 
However, some characteristics of the interior of W that we call generators may induce physical phenomena out- 
side the world points and are physically observable. Space and time are the example that we consider in this 
contribution. Fields or particles are other examples that are not treated in this article. There are no possibilities 
for the building of such physical structures in mathematical points simply because there is no room for the no- 
tion of an inside in a mathematical point. 

The following picture emerges: Space can be seen as a collection of world points i ( )1,..., CBi N N n= ≅ , 
comprised of n cosmic bits, whose robust states iφ  are more or less loosely connected to each other through a 
random interaction ij∆  (see Figure 1). This interaction ij∆  results from a sum of 2n  random binary interac- 
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Figure 1. The model of space we put forward in this essay. Here 18 cosmic bits (small 
circles: black for 1σ = + , white for 1σ = − ) are shared between 3 world points (large 
dotted circles) each comprised of 6n =  cosmic bits. Heavy lines are for binary nega-
tive (ferromagnetic) interactions (2)J− , dotted lines are for binary positive, anti-ferro- 
magnetic, interactions (2)J+  (only a part of these interactions are represented in the 
graph). This graph has no geometrical signification. The cosmic bits are only but ele-
ments of a set. The world points are subsets of this set.                            

 
tions ( )2J± . It is therefore a random variable whose distribution ( )ijp ∆  is Gaussian and given by 

( ) ( ) ( )( )

2

22 2

1 exp
2π 2

ij
ijP

J n J n

 ∆ ∆ = − 
 
 

. 

ij∆  may be seen as a degree of proximity, the larger ij∆  the closer i and j, but this interpretation has only 
a local topological signification and 

1
ij

−
∆  for example cannot be seen as a distance since no global topology, 

no geometry and no metrics have been defined so far. 

2.2. Statistical Properties 
The Lagrangian of a world point writes 

( ) ( ) ( )2

,
, 1, ,a b

a b
W J a b nσ σΛ = − =∑  . 

In this expression, the Lagrangian ( )WΛ  is limited to second order interactions because the fourth order in- 
teractions are completely negligible inside world points. Due to the interplay between the binary interactions 

( )2J−  and the cosmic noise b the world points may be polarized. The polarization iϕ  of a world point i com- 
prised of n cosmic bits is defined as the thermal average i sϕ =  of the order parameter s: 

1, ,

1
n

s
n α

α
σ

=

= ∑


. 

The statistical properties of a world point W are determined by using the mean field theory which consists in 
replacing the dynamic variables by their statistical averages. In general, the mean field theory is an approxima- 
tion but when the connectivity of the elements of the system is high enough the mean field is an exact theory. 
This is the case for four dimensional Ising or Heisenberg magnets. This is also the case for world points due to 
their complete connectivity. The polarization ϕ  is then the solution of a self consistent equation given by 

( ) ( )tanh tanhi is bJ s bJϕ ϕ= = = .                          (1) 
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Here the binary interaction has been renormalized ( )2J J n=  so as to make the Lagrangian ( )WΛ  an ex- 
tensive quantity. The polarization vanishes if 1bJ < . This situation is called symmetric vacuum. It does not 
vanish if 1bJ > , and then vacuum is asymmetric. 

Another important property of mean field theories is the disappearance of fluctuations at least in the limit of 
infinitely large systems. 

2.3. World Points Internal Spaces 
We endow a world point with a (non-directly observable) organization by assuming that the polarization iϕ  
may be considered as the length i iϕ φ=  of a vector iφ  in a d-dimensional abstract space called the internal 
space of W: 

1i

i
i

id

µ

ϕ

φ
ϕ
ϕ

 
 
 =
 
 
 



. 

To give an analytical expression to the components iµϕ  of vector iφ  we pose the following question: can a 
world point be considered as a set of d subsets (sub-world points so to speak) such that the system obtained by 
putting these d sub-world points together, reproduces the polarization of the world point as a whole? 

To answer that question we must study more carefully the statistical mechanics of a world point made of d 
sub-world points. Let nµ  (with 1, , dµ =  ), n n dµ ≅ , be the number of cosmic bits associated with a sub 
world point µ  of W. The polarization components are given by the statistical averages of the d order parame- 
ters sµ µϕ =  with 

,
1, ,

1
n

s
n µ

µ α µ
αµ

σ
=

= ∑


. 

The calculation, a classical calculation in statistical mechanics, is given in Appendix 1. The polarizations 
iµϕ  are obtained by minimizing the quantity ( )1 Logb ZΛ = − , somehow similar to a free energy. In the 

framework of a mean field theory Λ  is given by 

( ) ( ) ( ) ( )2 1 Ln 1 1 Ln 1
22

nJ n
bdd µ ν µ µ µ µ

µν µ
ϕ ϕ ϕ ϕ ϕ ϕ−  Λ = + + + + − − ∑ ∑ .                (2) 

The polarizations are obtained by solving the set of d equations given by: 0µϕ∂Λ ∂ =  (the saddle point 
method). In the case where d = 1, that is to say if 

1µ µϕ ϕδ= , 

the free energy per bit reduces to 

( ) ( ) ( )2 1 1 1Ln 1 Ln 1
2 2 2
Jn

b
ϕ ϕϕ ϕ ϕ ϕ−  + −    Λ = + + + −        

. 

The condition 0ϕ∂Λ ∂ =  gives Equation (1). 
When b is large enough, ( )1bJ > , the global polarization ϕ  does not vanish and it does not fluctuate. This 

no fluctuation property is also desirable for the components µϕ  to give to φ  the properties of a vector, but 
this is not guaranteed. To illustrate this point we use a good approximation for the solution of the self consistent 
Equation (1) 

( )1 21 1 bJϕ = −  

for 0 1 1bJ< < . Let us take 1.5bJ =  for example. Then 0.58ϕ ≅ : Whereas a majority of CBs is oriented 
along 1σ = + , about 20% are oriented along 1σ = − . Therefore if the world point is divided into d sub world 
points the order parameters µϕ  strongly depend on the way the sharing has been carried out. To cope with this 
difficulty we consider an isolated sub-world point µ . Its polarization µϕ  is given by the following self-consis- 
tent equation: 
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tanh
Jn

s b
n
µ

µ µ µϕ ϕ
 

= =  
 

. 

The order parameter does not vanish and does not fluctuate if 

1
n

bJ
n
µ >  

Therefore the polarization components µϕ  are well defined quantity if bJ d> , the condition that we are 
looking for. This yields a highest value for d 

( )Intd bJ= . 

d is called the dimensionality of internal space. Our space is 4-dimensional. This implies that 4 5bJ< <  , 
that is 1bJ >  and the vacuum is asymmetric indeed. 

By expanding the logarithmic functions to second order in Equation (2) and by using the definition of polari- 
zation components, one has 

( ) ( )
( )

2
2 22 2

n JnW J d b
d dµ µ ν

µ µν µ
ϕ ϕ ϕ

≠

 
Λ = − + − 

  
∑ ∑ .                     (3) 

The expression (3) is rewritten along 

( ) TGφ φ φΛ = , 

where G is a d-dimensional symmetric matrix whose elements are 

( ),2 22 2
n d JnG J G

bd dµµ µ ν µ≠
− = − + = 

 
. 

G is called the space-time generator. A more convenient form of G is its diagonal representation. The eigen- 
values of G are solutions of the following equation:  

( ) ( )( )( ) 1
Det 1

d
G I G d G G Gµµ µν µµ µνλ λ λ

−
− = + − − − − . 

The diagonal representation identifies two and only two subspaces for G. The first one corresponds to the ei- 
genvalue 

( ) ( )1 1
2t

nG G d G bJ
dbµµ µν= + − = − . 

It is not degenerate. This subspace, of dimension 1 whatever d, will be called “time type dimension”. The 
other subspace corresponds to the eigenvalue 

2s
nG G G
bdµµ µν= − = . 

This subspace, of dimension d − 1, will be called “space type dimensions”.  

2.4. Gauge Symmetry Invariance 
Nothing determines the orientation of the internal space of a world point. Therefore physics must be insensitive 
to any reorientation of the internal space or to any permutation of its axes. This generates two sorts of gauge in- 
variance symmetry. Let us consider the permutation invariance. Then G must transform according to direct sums 
of irreducible representations of Sd , the group of permutations of d objects. Let us for example consider four 
dimensional spaces. The permutation group 4S  of four objects has 4! 24=  elements. Since 4S  has 5 classes 
there are 5 irreducible representations that are 

* *
1 1 2 3 3, , , ,Γ Γ Γ Γ Γ , 

with orders 1, 1, 2, 3 and 3 respectively [5]. The table of characters of these representations is given in Table 1. 
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The invariance of four dimensional matrices, such as G, under those transformations, requires the matrix to 
commute with the 24 matrices of permutations. An example of a permutation matrix is 

1
1

1
1

 
 
 
 
 
 

, 

which is a four dimensional representation of the permutation ( ) ( )1234 2431⇒ . Let 4Γ  be this representation. 
Its characters are given in Table 2. 

From these tables it is deduced that 

4 1 3Γ = Γ ⊕Γ  

a sum of two irreducible representations with dimensions 1 (time type dimension) and 3 (space type dimension) 
respectively.  

The state Ψ  of the universe is now determined by a family of world point states { }iφΨ =  and the Lan- 
grangian ( )Λ Ψ  of the system becomes 

( ) ( )T GΛ Ψ = Ψ ∆⊗ Ψ ,                               (4) 

an expression that, via the Cartesian product, takes the global independence of internal spaces into account. The 
universe is now seen as a fibre bundle where ∆  forms the basis of the fibre bundle and G its fibres. If G is the 
same whatever the world point, the fibre bundle is trivial and we are dealing with flat spaces. If G is world point 
dependant, the fibre bundle is not trivial and we are dealing with general relativity. 

3. Recovering the Space-Time Continuum 
3.1. The Possible States of the Universe 
The possible states Ψ  of the universe are obtained by minimizing the Lagrangian (4) under the constraint 

T NΨ Ψ =  (N is the number of world points) that is by minimizing the expression 

( ) ( )T TG Nκ  Ψ ∆⊗ Ψ − Ψ Ψ −   

where κ  is a Lagrange multiplier. The solution is an eigenvalue equation 

( )G κ∆⊗ Ψ = Ψ                                     (5) 

 
Table 1. Table of characters of S4.                                                                           

Classes ( )1 :1  ( ):6ab  ( )( ):3ab cd  ( ) :8abc  ( ) : 6abcd  

1Γ  1 1 1 1 1 

*
1Γ  1 −1 1 1 −1 

2Γ  2 0 2 −1 0 

3Γ  3 1 −1 0 −1 

*
3Γ  3 −1 −1 0 1 

 
Table 2. Table of characters of Γ4.                                                                           

Classes ( )1 :1  ( ):6ab  ( )( ):3ab cd  ( ) :8abc  ( ) : 6abcd  

4Γ  4 2 0 1 0 
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3.2. Derivatives in Discrete Spaces 
To introduce the notion of derivatives in the context of discrete spaces one must introduce a square N-dimen- 
sional matrix D, namely the square root of ∆  that is 2D∆ = . Since the elements of ∆  are positive or nega- 
tive D is, in general, a complex matrix. 

One defines the increment iδφ  of a polarization iφ  of world point “i” by 

i ij j
j

Dδφ φ= ∑ . 

or 

i ij j
j

Dµ µδϕ ϕ= ∑  

for each component of iφ . The first order derivative of iφ  along the axis µ  is then defined by 

*

ij j
j

D

x l

µ

µ

ϕ
φ∂

=
∂

∑
, 

where l* is the smallest length that has a physically measurable meaning, that is the scale where the metrics is 
lost and also the scale where the distinction between the particles, be they fermions or bosons, disappears. 
Therefore l* should be the scale where super symmetry theories (Susy) come into play. Accordingly, the metric 
scale l* must be of the order of * 2110  cml −≅ . 

D may be seen as a differential operator because it is linear and it obeys the Leibniz formula. 
Let us consider two states φ  and η . One has  

( )ij j j ij j ij j
j j j

D D Dφ η φ η+ = +∑ ∑ ∑  

that is ( )δ φ η δφ δη+ = +  and D  is linear indeed.  
On the other hand 

( ) ( )

( ) ( )( )

ij j j ij j i i j i i
j j

ij i j j i ij i i ij j i j i
j j j

D D

D D D

ϕ η φ φ φ η η η

φη φ η φη φ φ η η

   = − + − +   

 = + − + − − 

∑ ∑

∑ ∑ ∑
. 

The second term vanishes because the elements of D are random 
0ij i i i i ij

j j
D Dφη φη= ≅∑ ∑ . 

The third term is a second order term. It may also be ignored and one has 

( ) ,ij i j j i i ij j i ij j
j j j

D D Dφη φ η φ η η φ+ = +∑ ∑ ∑  

whence ( )δ φη φδη ηδφ= + , the Leibniz formula. 
iφ  is a scalar field but physics generally deals with vector fields that are vectors of the internal spaces of 

world points. The components of a vector field iψ  are given by 

i iCν µν ν
µ

ψ ϕ= ∑  

The parameters Cµν  are the components of vector νψ  and the increment of the thν  component is given 
by 

i i ij j
j

C C Dµ ν µν ν µν νδ ψ δϕ ϕ= = ∑ . 

The first order derivative of iνψ  along the axis µ  then writes  

* *

1
i ij j

j

C
D

x l l
µνν

µ ν ν
µ

ψ
δ ψ ϕ

∂
= =

∂ ∑ . 

The connection between D and the usual classical first order derivatives is more carefully studied in Appendix 2. 
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Let us now consider second order derivatives. 
The second order increment of a scalar function iφ  at world point “i” is 

( ) ( )2 2
i j jijijj j

Dδ φ φ φ= = ∆∑ ∑  

or 
2

i ij j
j

µ µδ ϕ ϕ= ∆∑  

for each component of iφ . The second order derivative of iφ  along the axis µ  is given by 

2

2 2

ij j
j

x l

µ

µ

ϕ
φ

∗

∆
∂

=
∂

∑
, 

and the second order derivative of the vector field component iνψ  along axis µ  by 
2

2 2
i

ij j
j

C
x l

µνν
ν

µ

ψ
ϕ∗

∂
= ∆

∂
∑ . 

3.3. Klein-Gordon Equation 
For trivial fibre bundles where the G matrix is the same whatever the world point, one entry of Equation (5) 
( )G ψ κψ∆⊗ =  writes 

ij j i
j

Gνµ ν µ
ν

ϕ κϕ∆ =∑ . 

One introduces the coefficient Cµν  in both members of this equation and carries out the sum over index µ . 
2

2
2l G

x
µ

µν ν
µ µ

ψ
κψ∗ ∂

=
∂

∑ . 

By using the diagonal expression of G and the two parameters tG  and sG  the final equation reads 
2 2

2
2 2t s

s s

l G G
t x ν νψ κψ∗  ∂ ∂
+ = ∂ ∂ 

∑                              (6) 

recognized a set of four Klein-Gordon equations. Let us write 

( )SignG G G Gµµ µµ µµ µ µµε= = . 

The metric tensor g is defined by 
gµν µν µδ ε= . 

Since bJ > 1 its 1d −  elements associated with sG  are 

Sign 1
2s

n
bd

ε  = = + 
 

, 

and its unique element associated with tG  is 

( )Sign 1 1
2t

n Jb
db

ε  = − = − 
 

 

that is  

1
1

1

g

− 
 + =
 
 

+ 



. 
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The metrics is therefore Minkowskian. It would be Euclidian for 1bJ < . It is worth pointing out that there is 
no more ambiguity on the sign of g (whereas relativistic mechanics does not distinguish between g and –g). The 
three dimensions of space and the unique dimension of time constitute a conformal space with dilatations factors 
given by sG  and tG  respectively. With 21tG c= −  and 1sG =  we recover the usual expression of the 
Klein-Gordon equation 

( ) ( )
22

2 2

1 , ,mcr t r t
c t ν νψ ψ

 ∂  − + ∆ + =   ∂    

.                      (7) 

The identification of Equation (6) with Equation (7) allows fundamental parameters to be expressed in terms 
of the basic parameters b, J and l* of the discrete space model. 

1) The speed of light c is a universal dimensionless constant given by 

2 1
1

s

t

G
c

G bJ
= =

−
. 

The speed of light diverges at the transition 1bJ = . 
2) The constant of Planck writes 

* 2l n bd= .  

3) Finally the mass m of the particle associated with the field ψ  is given by ( )2mcκ =  (provided that 
0κ > ). 

The connection between the eigenvalue Equation (5) and the Klein-Gordon Equation (7) establishes the link 
between the discrete and the continuous descriptions of our universe. 

4. Discussion and Conclusions 
The universe exists. The universe is globally ordered (it is not pure chaos). The universe shows some degree of 
disorder (it is not fully frozen). We present in this contribution a model of discrete universe fully and only based 
on these three very general statements. According to this model the universe is made of elementary physical 
systems called “cosmic bits”. The idea that the universe is made of bits is not new. Wheeler, for example, states 
that physics at large could be understood in terms of “It from bit” [6]. There is however a fundamental difference 
between his approach and ours. In the Wheeler approach the bits are to be understood as signals of information 
that are transmitted through some channel from an emitter to a receiver. The physical laws are the results of 
computations carried out on those bits by a huge sort of universal computer, a Turing machine for example, 
according to convenient programs. The physical world would be the result of these computations and the 
physicists would be the receivers. In our approach, there is no program and no programmer behind the stage. 
The bits are physical objects, not signals, that together constitute a system somehow similar to a ferromagnetic 
powder. The process that moves the bits is purely physical and determined by statistical physics. Moreover, in 
our approach time and space are treated on equal footing, in the spirit of relativity theory, and, therefore, this 
avoids the philosophical problems arising from the necessary existence of a clock driving the computer. 

Besides the three statements there is, a priori, no other prerequisites, no landscape, no metrics, no fields, no 
particles. Everything has to be rebuilt. The 4-dimensional time-space continuum has been recovered in this 
contribution but it remains to prove that the postulates of quantum theory or the Lagrangian of general relativity 
for example can also be recovered. These topics are outside the scope of the present discussion. As a matter of 
fact the model does not bring any essentially new results but it allows many concepts that are introduced in 
physical theories without justifications to be given a physical interpretation. Let us finish this paper by a list of 
these concepts. 

World point: this term has been introduced by Einstein to denote a point of the space-time continuum. In his 
context a world point is a mathematical point with zero dimension. Here a world point is a physical entity with a 
physical dimension l* ( )* 2110  cml −≅  called the metric limit because the notion of a distance disappear into a 
world point. In his book “The Meaning of Relativity”, Einstein suggests that the difficulties he is facing in trying 
to unify gravity and electromagnetism could be possibly solved in discrete spaces [7]. 

Internal spaces: This notion is introduced in particles theory but is not given a physical interpretation. Here an 
internal space is the internal space of a world point that is the space spanned by all possible states φ  of the 
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world point. 
Generator G: the Lagrangian of a world point i in state iφ  writes ( ) T

i i iGφ φ φΛ = . G is a generator 
associated with i. All physical properties, fields, particles etc, are determined by G. 

Gauge symmetry invariance: If G is invariant under the operations of a symmetry group the physical 
phenomena generated by G must be invariant under these operations, a property called. gauge symmetry 
invariance. 

4S  as the fundamental gauge invariance: nothing determines the orientation and the respective directions of 
the d axes of internal spaces. In particular any permutation of axes must leave physics unchanged. Therefore G 
must be invariant under the operations of the permutation group Sd  of d objects, that is 4S  in our 4- 
dimensional space. 

Space-time generation: 4S , we have seen, is of paramount importance because its irreducible representations 
generate the dimensions of the universe, 1Γ  for the time-like dimension and 3Γ  for the three space-like 
dimensions.  

Minkowski metrics: the model generates a specific metrics with signature (−, +, +, +) that is the Minkowski 
metrics. It eliminates the ambiguity between the signatures (−, +, +, +) and (+, −, −, −) that are equivalent in 
special relativity.  

Finally, the appearance of the Klein-Gordon equation and the equivalence principle (in Appendix 2) strongly 
suggests that the quantum theory is, so to speak, cosubstantial with our model. 
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Appendix 1 
In this appendix, one computes the partition function of world points W. 

The Lagrangian of a world point W made of d sub-points , 1, , dµ ν =   is given by 

( )
,2

JW
n αµ βν

αµ βν
σ σΛ = − ∑ . 

with 

n n s sµ ν µ ν µα νβ µα νβ
α β αβ
σ σ σ σ

  = =  
  
∑ ∑ ∑  

one has 

2
J n n s s
n µ ν µ ν

µν
Λ = − ∑ . 

The partition function is 

( )
{ }

expZ b
σ

= − Λ∑ , 

where the sum is over all possible configurations of the world point.  

{ }( )
{ }

exp
2s

bJZ n n s s w s
n

µ

µ ν µ ν µ
µν

 
=  

 
∑ ∑ . 

{ }( )w sµ  is a sum over all bits states for a given set of polarizations { }sµ . { }( )w sµ  is purely combinato- 
rial in nature. It is given by 

 { }( ) ( )
!
! !

nw s
n n

µ

µ µ
µ

↑ ↓

=
∏

. 

By using the Stirling formula one obtains 

( ) ( ) ( ) ( ) ( )( )Ln 1 Ln 1 1 Ln 1
2

n
w s s s sµ

µ µ µ µ
µ

 
≅ − + + + − − 

 
∑ , 

where a non-relevant constant has been skipped. The partition function reads:  

( ) ( ) ( ) ( )( )
{ }

exp 1 Ln 1 1 Ln 1
2 2s

nJbZ n n s s s s s s
n

µ

µ
µ ν µ ν µ µ µ µ

µν µ

  
= − + + + − −  

   
∑ ∑ ∑ , 

a sum that, in the thermodynamic limit, reduces to one term where s sµ µ µϕ≡ =  (the so-called saddle point 
method). F, the free energy, is defined by ( )1 LogF b Z= −  One has with n n dµ ≅  

( ) ( ) ( ) ( )2 1 Ln 1 1 Ln 1
22

nJ nF
bdd µ ν µ µ µ µ

µν µ
ϕ ϕ ϕ ϕ ϕ ϕ−  = + + + + − − ∑ ∑ . 

The realizable physical states are those that minimize F. 

Appendix 2 
In this appendix one studies more carefully the connections between discrete and continuous derivatives 

The derivative ( )g x  of a continuous function ( )f x  is defined in the limit 0dx →  by 

( ) ( ) ( )f x dx f x
g x

dx
+ − 

=  
 

. 

When a computer is used for the calculation, the most accurate estimate of the derivative is obtained by using 
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the smallest dx  that can be programmed. This value is given by the bit of the memory that controls the least 
significant digit of x. Let x* be this value. Then the variable x and the function ( )f x  are discrete: ( ) *x i i x= ×   
and ( ) ( )( )f x i f i= . The approximate value of the derivative is 

( ) ( ) ( )( )*

1 1g i f i f i
x

= + − , 

that we can be written 

( ) ( )C

i
g i D f=  

where f is described as a column vector with elements ( )f i  and CD  is a classical differential operator 

1 1
1 1

CD

 
 − =
 −
 
 





. 

CD  shows some similarities with the operator D that we have introduced in section III B. Any square matrix 
such as ∆  can be expressed, according to the LDU theorem of Banachiewicz [8], as a product of a lower tri- 
angular matrix L, a diagonal matrix A and an upper triangular matrix U. When the matrix is real, and symmetric, 
as is the case for ∆ , the two triangular matrices are each other conjugate: 

TD AD∆ = , 
where D is a triangular (as CD ) here a random triangular matrix, that is Dij = 0 for i < j. DT is the conjugate 
matrix and A is diagonal. Since ∆  is real the diagonal matrix A can be absorbed in D and TD  hence 

TD D∆ = . 
D and CD  are both triangular. Moreover they both obey the following conditions 

0 .C C
ij ij ij ij

i j i j
D D D D= = ≅ ≅∑ ∑ ∑ ∑  

The second order derivative )(ih , understood as the derivative of )(ig , is 

( ) ( ) ( )( ) ( ) ( ) ( )* 2

1 11 ( 2 2 1C C

i
D D f g i g i f i f i f i

x x∗
⋅ = + − = + − + +   . 

The operator 2C C CD D D= ⋅  is therefore given by 

2

1
1 2 1

1 2 1
1

CD

 
 − =
 −
 
 





. 

Can the operator CD  be considered a quantum operator? For an operator to be considered a quantum opera- 
tor it is necessary that its representative matrix be hermitic which is not the case for CD . Nevertheless the op- 
erator TC CD D , where TCD  is the conjugate of CD , is hermitic. We have 

T 1 1 1 1 2 1
1 1 1 1 1 2 1

1

C CD D

    
    − − − −    ⋅ = =
    − − − −
    
    

  

  

. 

A second order derivative is a measurement of the curvature of f. We observe that TC CD D⋅  yields the good 
value of the curvature of f but the wrong sign. To correct this difficulty it is convenient to see i CD , ( )2i 1= − , 
rather than CD  (and Ti CD  rather than TCD ) to be the convenient representation of a quantum derivation op- 

erator. In other words, the derivative D must correspond to the quantum operator 1
i x
∂
∂

 or 1
i

D
x
∂

→
∂

. This is 

the correspondence principle. 
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