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Abstract 
Effects of Hall current on heat transfer and magnetohydrodynamic (MHD) boundary layer flow 
induced by a continuous surface in a parallel free stream of a second-order viscoelastic fluid are 
studied for uniform suction/injection by taking viscous dissipation into account. Complex nonsi-
milar solutions to the stream function and temperature are developed by means of an elegant 
technique, known as homotopy analysis method (HAM). Convergence of the solutions is ensured 
with the help of  -curves. Graphical and tabular results for the effects of Hall current reveal that 
it has a significant influence on: complex velocity, complex temperature, magnitude of the shear 
stress at the surface, magnitude of the rate of heat transfer at the surface and on boundary layer 
thickness. 
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1. Introduction 
Most of the time Hall current was ignored in applying Ohm’s law because it has no extraordinary effect for small 
and average values of the magnetic field. The effects of Hall current are very important in the presence of a strong 
magnetic field [1], because for strong magnetic field electromagnetic force is prominent. The recent research for 
the applications of MHD is towards a strong magnetic field, due to which study of Hall current is very important. 
Actually, in an ionized gas of low density subjected to a strong magnetic field, the conductivity perpendicular to 
the magnetic field is decreased by free spiral movement of electrons and ions about the magnetic lines of force 
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before suffering collisions. A current produced in a direction at right angle to the electric and magnetic fields is 
called Hall current. The important engineering applications for MHD boundary layer flows with heat transfer in-
cluding the effects of Hall current are encountered in MHD power generators and pumps, Hall accelerators, refri-
geration coils, electric transformers, in flight MHD, solar physics involved in the sunspot development, the solar 
cycle, the structure of magnetic stars, electronic system cooling, cool combustors, fibre and granular insulation, 
oil extraction, thermal energy storage and flow through filtering devices and porous material regenerative heat 
exchangers. Some interesting studies regarding the effects of Hall current on MHD boundary layer flow are as 
follows: 

Zaman [2] recently examined the effects of Hall current on the unsteady incompressible MHD fluid flow with 
slip conditions and porous walls. Ayub et al. [3] considered the effects of Hall current on hydromagnetic flow and 
heat transfer in a second grade fluid over a stretching sheet. The effects of Hall current on unsteady MHD flows 
of a second grade fluid are studied by Ahmad et al. [4]. Hall effects on hydromagnetic flow over a surface stret-
ching with a power-law velocity and unsteady duct flow of a non-Newtonian fluid in a porous medium are inves-
tigated by Hayat et al. [5] [6]. The effects of Hall current and heat transfer on flow due to a pull of eccentric ro-
tating disks are discussed by Asghar et al. [7]. Khan et al. [8] described the Hall effects on the pipe flow of a 
Burgers’ fluid. Abo-Eldahab et al. [9] [10] analyzed the effects of Hall current on the mixed convection and free 
convection boundary layer flows of non-Newtonian and micropolar fluids. Debnath et al. [11] investigated the 
effects of Hall current on unsteady hydromagnetic flow past a porous plate in a rotating fluid system. The study of 
boundary layer flows from a continuous surface is important because it is involved in a large number of engi-
neering processes. Since in the remarkable work of Sakiadis [12] such flows are studied extensively through var-
ious aspects, the literature on the topic is quite rich. 

The present paper is devoted to study the effects of Hall current on heat transfer and MHD boundary layer 
flow induced by a continuous surface in a parallel free stream of a second-order viscoelastic fluid. The resulting 
Hall current problem is solved by means of homotopy analysis method (HAM) [13]-[19], which is very power-
ful and efficient in finding the analytic solutions for a wide class of nonlinear differential equations. The method 
gives more realistic analytic solution that converge very rapidly in physical problems. The convergence region 
for the complex nonsimilar series solution is found with the help of  -curves. The effects of Hall current on the 
real and imaginary parts of velocity and temperature are seen for suction/injection with the help of graphs. 
Tables are constructed to discuss the effects of Hall current on magnitude of shear stress at the surface and rate 
of heat transfer at the surface for suction/injection. 

2. The Problem and Its Solution with Convergence Check 
The arising nonlinear problems for flow and heat transfer with effects of Hall current are [20] [21]  

( ) ( )
( )

2
2
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2 2 1
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φ

φ

+
′′′ ′′ ′′ ′ ′′′ ′+ = − − +
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                       (1) 

( )2 21 1 ,
2 2r r rP F P EK F F FF F P EF′′ ′ ′ ′′ ′′ ′′′ ′′Θ + Θ = + −                         (2) 

( ) ( ) ( )0 ,   0 1 , ,F R F Fλ λ′ ′= = − ∞ =                               (3) 

( ) ( )0 1,   0.Θ = Θ ∞ =                                     (4) 

where prime indicates the differentiation with respect to η  only, where η  is the distance from the surface, 
( )wU U Uλ ∞ ∞= +  is the velocity ratio, 02 eR V xR= −  is the suction/injection parameter, 0V  is the suction/ 

injection velocity, ( )rP ν α=  is the Prandtl number, eR  is the Reynold number, ( )1 rK U xα ρν=  is the se- 
cond grade fluid parameter, ( )( )2

r p wE U c T T∞= −  is the Eckert number, Θ  is the dimensionless temperature, 
( )2

0 rN B L Uσ ρ=  is magnetic parameter and F  is the dimensionless stream function, 0R >  corresponds to 
suction and 0R <  corresponds to injection. It is noticed that the nondimensional problems defined by above equa-
tions are nonsimilar. For analytic HAM solutions the initial approximations of ( )F η  and ( )ηΘ  are 

( ) ( ) ( )0 1 2 1 2 e ,F R ηη λ λη λ −= + − + − −                           (5) 

( )0 e ,ηη −Θ =                                           (6) 
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and the auxiliary linear operators are 

( )1 ,F F F′′′ ′= −                                           (7) 

( )2 ,′′Θ = Θ −Θ                                           (8) 

Following the HAM and trying higher iterations with the unique and proper assignment of the results converge 
to the exact solution: 

( ) ( ) ( ) ( ) ( )0 1 2 ,mF F F F Fη η η η η≈ + + + +

                             (9) 

( ) ( ) ( ) ( ) ( )0 1 2 ,mη η η η ηΘ ≈ Θ +Θ +Θ + +Θ

                           (10) 

using the symbolic computation software such as MATLAB, MAPLE or MATHEMATICA successively obtain 
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The complete complex nonsimilar analytic solutions are 
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The coefficients ,
k
m nΓ  and ,

k
m n∆  can be computed by using 

0 0 1
0,0 0,1 0,01 2 ,  ,  1 2 ,R λ λ λΓ = + − Γ = Γ = − +                 (15) 

0 1 0
0,0 0,0 0,10,   0,   1.∆ = ∆ = ∆ =                    (16) 

given by the initial guess approximations in Equations (5) and (6). 
We know that convergence region and rate of approximation for the homotopy analysis method (HAM) de-

pend upon homotopy parameters 1  and 2 . Therefore the  -curves are sketched for ( )( )Re F η  and 
( )( )Re ηΘ . Figure 1 and Figure 2 show that the range for the admissible values of 1  and 2  are 

11.5 0.5− < < −  and 21.5 0.5− < < − , respectively. The computations made show that the series of the di-
mensionless stream function in Equation (13) converges in the whole region of η  when 1 0.8= −  and series 
(14) converges in the whole region of η  when 1 0.8= −  and 2 0.6= − . 

3. Graphs, Tables and Discussion 
In order to discuss the effects of Hall current φ  on the flow field the graphs are drawn for the variation of the 
real and imaginary parts of the velocity profile ( )F η′  with distance from the surface η  and for the real and 
imaginary parts of the shear stress at the wall for different values of the suction/injection parameter R , velocity 
ratio λ , second grade fluid parameter K , magnetic field parameter N  and the homotopy parameter 1  at 
constant wall temperature. 

Figure 3 and Figure 4 elucidate the variation of the real and imaginary parts of the velocity profile ( )F η′  
with η  for suction respectively. Figure 3 shows that for fixed values of 1 , N , K , R  and λ  with in-
crease in Hall current φ  real part of the velocity increases for suction. Figure 4 describes that for fixed values 
of 1 , N , K , R  and λ  with increase in Hall current φ  imaginary part of the velocity increases in mag-
nitude for suction. Similar behavior is observed for injection. In Figure 3 and Figure 4 boundary layer structure 
is observed and the boundary layer thickness increases with increasing Hall current φ , which results in thick- 
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Figure 1. 1 -curve for ( )( )Re F η  .                  

 

 
Figure 2. 2 -curve for ( )( )Re ηΘ .                     

 

 

Figure 3. Influence of φ  on ( )( )Re F η′ .                

 
ening of the boundary layer. Hence, as expected, the velocity increases with increasing Hall current φ . This is 
due to the fact that the effective conductivity decreases with increasing Hall current φ , which reduces the mag-
netic damping force on the velocity. Figure 5 shows the variation of the real part of the skin friction coefficient 
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( )0F ′′  with N  for several values of Hall current φ  for suction. It is found that with increasing Hall current 
φ  the skin friction coefficient decreases at all points for suction. Figure 6 indicates the variation of the real part 
of the skin friction coefficient ( )0F ′′  with suction / injection parameter R  for several values of Hall current 
φ . From Figure 6 it is seen that with increase in Hall current φ  real part of the skin friction coefficient 

( )0F ′′  decreases. When magnetic field is applied perpendicular to the fluid velocity then it gives rise to a 
drag-like or resistive force which slow down or suppress the motion of the fluid on the surface. This leads to a 
reduction in the velocity of the fluid and flow rates. With the increase in the strength of the magnetic field the 
motion of the particulate suspension on the surface reduces due to which skin friction coefficient reduces as in 
Figure 5 and Figure 6. 
 

 

    Figure 4. Influence of φ  on ( )( )Im F η′ .            

 

 

    Figure 5. Influence of φ  on ( )( )Re 0F ′′ .            

 

 

     Figure 6. Influence of φ  on ( )( )Re 0F ′′ .
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In order to discuss the effects of Hall current φ  on the temperature field ( )ηΘ  the graphs are plotted for 
different order of approximations for the variation of the real and imaginary parts of ( )ηΘ  with distance from 
the surface η  and for the real and imaginary parts of the local Nusselt number ( )0′Θ  for different values of the 
seven dimensionless parameters (i) suction/injection parameter R  (ii) velocity ratio λ  (iii) elastic parameter 
K  (iv) magnetic field parameter N  (v) homotopy parameters 1 , 2  (vi) Prandtl number rP  and (vii) Eck-
ert number E . 

Figure 7 and Figure 8 depict the variation of the real and imaginary parts of the temperature profile ( )ηΘ  
with η  for several values of the Hall current φ  for suction. It is observed from Figure 7 that for fixed values of 

1 , 2 , rP , N , K , E , R  and λ  with increase in Hall current φ  real part of the temperature distribution 
increases for suction. Figure 8 shows that imaginary part of the temperature ( )ηΘ  increases by increasing φ . 
Same type of behavior is observed for injection. Figure 9 explains that for fixed values of 1 , 2 , N , K , E , 
R  and λ  with increase in Hall current φ  real part of the temperature gradient ( )0′Θ  decreases at all points 
for suction and decreases for injection for all values of the Prandtl number rP . Figure 10 elucidates that imagi-
nary part of the temperature gradient ( )0′Θ  also decreases with increasing Hall current φ . 

Table 1 shows the absolute values of skin friction coefficient ( )0F ′′  for Hall parameter, 
0.0,0.1,0.3,0.7,1.0,φ =  1 0.8= − . It is observed from Table 1 that a decrease in R  leads to a reduction in the 

values of ( )0F ′′ . It is also observed from Table 1 that for a fixed value of R  with increase in Hall current φ  
magnitude of shear stress at wall decreases. Table 2 indicates the absolute values of heat transfer rate ( )0′Θ  for 
 

 

Figure 7. Influence of φ  on ( )( )Re ηΘ .                  

 

 

Figure 8. Influence of φ  on ( )( )Im ηΘ .                
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Figure 9. Influence of φ  on ( )( )Re 0′Θ .                

 

 
 Figure 10. Influence of φ  on ( )( )Im 0′Θ .                

 
Table 1. Absolute Values of skin friction coefficient ( )0F ′′  with 0.1,K =  0.1λ = , 0.1N = , 1 0.8= − .               

R  0.0φ =  0.1φ =  0.3φ =  0.7φ =  1.0φ =  

1 0.74722 0.74644 0.74055 0.71861 0.70113 

0.5 0.58678 0.58390 0.58037 0.55929 0.54255 

0 0.45300 0.45228 0.44684 0.42521 0.41049 

−0.5 0.34319 0.34250 0.33736 0.31814 0.30277 

−1 0.25544 0.25481 0.25006 0.23210 0.21784 

 
0.1,rP =  0.0,0.1,0.3,0.7,1.0,φ =  1 0.8,= −  2 0.6= − . We observed from Table 2 that for a fixed value of 

Hall current φ  a decrease in the values of R  yields reduction in ( )0′Θ . Also for a fixed value of R  increase 
in Hall current φ  leads to a reduction in local Nusselt number ( )0′Θ . It can be seen from Table 3 that for fixed 
values of ,R  ,K  ,λ  ,N  ,rP  1,  2  and E  the magnitude of ( )0′Θ  for suction decreases with an increase 
in Hall current φ  and for injection increases with an increase in φ . Also for fixed values of ,R  ,K  ,λ  ,N  

,rP  1,  2  and φ  the magnitude of ( )0′Θ  (for suction/injection) decreases by increasing Eckert number 
E . 
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Table 2. Absolute Values of heat transfer coefficient ( )0′Θ  when 0.1,rP =  2E = , 0.1λ = , 0.1N = , 0.1,K =  

1 0.8,= −  2 0.6= − .                                                                                     

R  0.0φ =  0.1φ =  0.3φ =  0.7φ =  1.0φ =  

1 0.349610 0.349588 0.349508 0.349476 0.349470 

0.5 0.324484 0.324456 0.324239 0.323382 0.322661 

0 0.286870 0.286778 0.286114 0.283606 0.281610 

−0.5 0.230163 0.229986 0.228659 0.223712 0.219829 

−1 0.146900 0.146619 0.144518 0.136621 0.130320 

 
Table 3. Absolute Values of temperature gradient at the wall ( )0′Θ  at 0.1,rP =  0.1λ = , 0.1N = , 0.1,K =  1 0.8,= −  

2 0.6= − .                                                                                               

R ϕ E = 2 E = 3 E = 4 

−1 0 0.1469 0.088422 0.033348 

 1 0.130317 0.07007 0.033272 

 2 0.1172 0.053389 0.03312 

 3 0.112094 0.045901 0.032754 

 4 0.109862 0.042334 0.031674 

 5 0.108728 0.04043 0.029945 

1 0 0.29484 0.2778 0.26077 

 1 0.295456 0.279972 0.262491 

 2 0.29611 0.280122 0.264137 

 3 0.296379 0.280589 0.264799 

 4 0.296498 0.280793 0.265089 

 5 0.296558 0.280897 0.265236 

 

4. Conclusions 
In this study the Complex nonsimilar HAM solutions for the stream function and temperature are constructed on 
taking viscous dissipation and Hall currents into account. More significantly, the complex nonsimilar series solu-
tion clearly demonstrates how various physical parameters play their part in determining properties of the flow. 
The results are discussed under the effects of parameter ,R  ,K  ,λ  ,N  ,rP  ,E  1  and 2  through graphs 
and tables. We have following observations: 
 The Complex solution series for dimensionless stream function ( )F η  and dimensionless temperature func-

tion ( )ηΘ  converges in the whole region of η  for 11.5 0.5− < < −  and 21.5 0.5− < < − . 
 Real and imaginary parts of the fluid velocity increases with increase in Hall current φ  for suction/injection. 
 Real and imaginary parts of the fluid temperature increases with increase in Hall current φ  for suction/in- 

jection. 
 Boundary layer thickness increases for suction/injection with increasing Hall current φ , which results in 

thickening of the boundary layer. 
 Absolute values of the skin friction coefficient decreases with increase in Hall current φ  for suction/injection. 
 Increase in Hall current φ  leads to a reduction in the absolute values of the local Nusselt number. 



H. Zaman et al. 
 

 
152 

References 
[1] Cramer, K. and Pai, S. (1973) Magnetofluid Dynamics for Engineers and Applied Physicists. McGraw-Hill, New York. 
[2] Zaman, H. (2013) Hall Effects on the Unsteady Incompressible MHD Fluid Flow with Slip Conditions and Porous 

Walls. Applied Mathematics and Physics, 1, 31-38.  
[3] Ayub, M., Zaman, H. and Ahmad, M. (2010) Series Solution of Hydromagnetic Flow and Heat Transfer with Hall Ef-

fect in a Second Grade Fluid over a Stretching Sheet. Central European Journal of Physics, 8, 135-149.  
http://dx.doi.org/10.2478/s11534-009-0110-0 

[4] Ahmad, M., Zaman, H. and Rehman, N. (2010) Effects of Hall Current on Unsteady MHD Flows of a Second Grade 
Fluid. Central European Journal of Physics, 8, 422-431. http://dx.doi.org/10.2478/s11534-009-0083-z 

[5] Hayat, T., Zaman, H. and Ayub, M., (2010) Analytic Solution of Hydromagnetic Flow with Hall Effect over a Surface 
Stretching with a Power Law Velocity. Numerical Methods for Partial Differential Equations, 27, 937-959.  
http://dx.doi.org/10.1002/num.20562 

[6] Hayat, T., Naz, R. and Asghar, S. (2004) Hall Effects on Unsteady Duct Flow of a Non-Newtonian Fluid in a Porous 
Medium. Applied Mathematics and Computation, 157, 103-114. http://dx.doi.org/10.1016/j.amc.2003.08.069 

[7] Asghar, S., Mohyuddin R.M. and Hayat, T. (2005) Effects of Hall Current and Heat Transfer on Flow Due to a Pull of 
Ecentric Rotating Disks. International Journal of Heat and Mass Transfer, 48, 599-607.  
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.08.023 

[8] Khan, M., Asghar S. and Hayat, T. (2009) Hall Effect on the Pipe Flow of a Burgers’ Fluid: An Exact Solution. Nonli-
near Analysis: Real World Applications, 10, 974-979. http://dx.doi.org/10.1016/j.nonrwa.2007.11.016 

[9] Abo-Eldahab, E.M. and Elbarbary, M.E. (2001) Hall Current Effect on Magnetohydrodynamic Free Convection Flow 
past a Semi-Infinite Vertical Plate with Mass Transfer. International Journal of Engineering Science, 39, 1641-1652.  
http://dx.doi.org/10.1016/S0020-7225(01)00020-9 

[10] Abo-Eldahab, E.M. and Abd El Aziz, M. (2004) Hall Current and Ohmic Heating Effects on Mixed Convection Boun-
dary Layer Flow of a Micropolar Fluid from a Rotating Cone with Power Law Variation in Surface Temperature. In-
ternational Communications in Heat and Mass Transfer, 31, 751-762.  
http://dx.doi.org/10.1016/S0735-1933(04)00062-4 

[11] Debnath, L., Ray, S.C. and Chatterjee, A.K. (1979) Effects of Hall Current on Unsteady Hydromagnetic Flow past a 
Porous Plate in a Rotating Fluid System. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik, 59, 469-471.  
http://dx.doi.org/10.1002/zamm.19790590910 

[12] Sakiadis, B.C. (1961) Boundary Layer Behavior on Continuous Solid Surfaces. AIChE Journal, 7, 26-28.  
http://dx.doi.org/10.1002/aic.690070108 

[13] Liao, S.J. (2003) Beyond Perturbation: Introduction to Homotopy Analysis Method. Chapman and Hall, CRC Press, 
Florida. http://dx.doi.org/10.1201/9780203491164 

[14] Liao, S.J. (1992) The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problem. Ph.D. Thesis, 
Shanghai Jiao Tong University, Shanghai. 

[15] Liao, S.J. (2012) Homotopy Analysis Method in Nonlinear Differential Equations. Springer-Verlag Berlin Heidelberg. 
http://dx.doi.org/10.1007/978-3-642-25132-0  

[16] Liao, S.J. (2013) Advances in the Homotopy Analysis Method. World Scientific Publishing Company, Singapore. 
[17] Liao, S.J. (2009) Notes on the Homotopy Analysis Method: Some Definitions and Theorems. Communications in Non-

linear Science and Numerical Simulation, 14, 983-997.  
[18] Ayub, M., Zaman, H., Sajid, M. and Hayat, T. (2008) Analytical Solution of Stagnation-Point Flow of a Viscoelastic 

Fluid towards a Stretching Surface. Communications in Nonlinear Science and Numerical Simulation, 13, 1822-1835.  
http://dx.doi.org/10.1016/j.cnsns.2007.04.021 

[19] Zaman, H. and Ayub, M. (2010) Series Solution of Unsteady Free Convection Flow with Mass Transfer along an Ac-
celerated Vertical Porous Plate with Suction. Central European Journal of Physics, 8, 931-939.  
http://dx.doi.org/10.2478/s11534-010-0007-y 

[20] Hady, F.M. and Gorla, R.S.R. (1998) Heat Transfer from a Continuous Surface in a Parallel Free Stream of Viscoelas-
tic Fluid. Acta Mechanica, 128, 201-208. http://dx.doi.org/10.1007/BF01251890 

[21] Zaman, H., Hayat, T., Ayub, M. and Gorla, R.S.R. (2011) Series Solution for Heat Transfer from a Continuous Surface 
in a Parallel Free Stream of Viscoelastic Fluid. Numerical Methods for Partial Differential Equations, 27, 1511-1524.  
http://dx.doi.org/10.1002/num.20593 

http://dx.doi.org/10.2478/s11534-009-0110-0
http://dx.doi.org/10.2478/s11534-009-0083-z
http://dx.doi.org/10.1002/num.20562
http://dx.doi.org/10.1016/j.amc.2003.08.069
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.08.023
http://dx.doi.org/10.1016/j.nonrwa.2007.11.016
http://dx.doi.org/10.1016/S0020-7225(01)00020-9
http://dx.doi.org/10.1016/S0735-1933(04)00062-4
http://dx.doi.org/10.1002/zamm.19790590910
http://dx.doi.org/10.1002/aic.690070108
http://dx.doi.org/10.1201/9780203491164
http://dx.doi.org/10.1007/978-3-642-25132-0
http://dx.doi.org/10.1016/j.cnsns.2007.04.021
http://dx.doi.org/10.2478/s11534-010-0007-y
http://dx.doi.org/10.1007/BF01251890
http://dx.doi.org/10.1002/num.20593

	Effects of Hall Current on MHD Boundary Layer Second-Order Viscoelastic Fluid Flow Induced by a Continuous Surface with Heat Transfer
	Abstract
	Keywords
	1. Introduction
	2. The Problem and Its Solution with Convergence Check
	3. Graphs, Tables and Discussion
	4. Conclusions
	References

